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Abstract: Conventionally, the optimization of bonding process parameters requires multi-parameter
repetitive experiments, the processing of data, and the characterization of complex relationships
between process parameters, and performance must be achieved with the help of new technologies.
This work focused on improving metal–metal bonding performance by applying SLJ experiments,
finite element models (FEMs), and the Xgboost machine learning (ML) algorithm. The importance
ranking of process parameters on tensile–shear strength (TSS) was evaluated with the interpreta-
tion toolkit SHAP (Shapley additive explanations) and it optimized reasonable bonding process
parameters. The validity of the FEM was verified using SLJ experiments. The Xgboost models
with 70 runs can achieve better prediction results. According to the degree of influence, the process
parameters affecting the TSS ranked from high to low are roughness, adhesive layer thickness, and
lap length, and the corresponding optimized values were 0.89 µm, 0.1 mm, and 27 mm, respectively.
The experimentally measured TSS values increased by 14% from the optimized process parameters
via the Xgboost model. ML methods provide a more accurate and intuitive understanding of process
parameters on TSS.

Keywords: single-lap joints; finite element models; Xgboost machine learning algorithm; interpreta-
tion toolkit SHAP; process parameter optimization

1. Introduction

Due to the benefits of obtaining lighter and stronger structures with better weight
reduction, smaller stress concentrations, more uniform stress distribution, and lower manu-
facturing costs compared to traditional metal connections (such as welding, bolting, and
riveting) [1–3], adhesive bonding technology is widely used in the aerospace, automotive,
marine, wind energy, construction, and furniture fields [4]. Besides the above advantages,
adhesive bonding technology for metal–metal structures also has excellent fatigue resis-
tance and damage tolerance properties, making it beneficial for aerospace application [5].

Single-lap joints (SLJs), stepped-lap joints, double-lap joints, scarf joints, tube joints,
and butt strap lap joints are common examples [6]. Among them, SLJs are representative
and have attracted wide attention from scholars. For instance, Pinto et al. [7] evaluated the
effect of different adhesive thicknesses on the tensile strength of metal–metal SLJs bonded
with ductile and brittle adhesives by numerical and experimental methods. Rodríguez
et al. [8] modified several SLJ stress models for Volkersen, Goland and Reissner, Hart-Smith,
and Ojalvo and Eidinoff. Zimmermann et al. [9] developed an analytical model to describe
the out-of-plane deformation at the end of the lap joint.

Furthermore, researchers are also concentrating on understanding the damage be-
havior of bonded joints and adhesive failure modes. Grant et al. [10] investigated the
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effect of adhesive thickness change on the bending moment at the edge of metal–metal
joints and proposed a joint failure criterion. Natu et al. [11] stated that adhesives exist in
adhesive failure, adhesive/cohesive failure, cohesive failure, and matrix failure modes with
metal–metal joints. Cui et al. [12] investigated the effects of surface roughness, lap length,
and adhesive layer thickness on the shear strength of metal–metal SLJs with experimental
methods, and they further explored the damage failure modes of different bonded joints.
Meanwhile, the interface between the adhesive and the adherend becomes the concern of
the research, and interfacial bonding is affected by wettability, interfacial defects, and other
factors [13]. Guo et al. [14] emphasized that anodization can introduce nanoscale porous
structures to the metal surface, increase the wettability between the metal and adhesive,
and further improve interfacial bonding between metal and adhesive. The reliability and
performance of bonded joints will deteriorate due to grease on the interface [15]. These
research studies are essential in promoting broader engineering applications of metal–metal
bonding technology.

Moreover, the metal–metal joint connection needs to be parametrically designed for
better bonding qualities; an important indicator is the shear strength of the joints [16].
The orthogonal experiment method is frequently used to optimize the process parameters.
However, there is a disadvantage of fewer sample data and a large level span of experi-
mental design, resulting in optimized process parameters that may not be optimal. More
sample data can be obtained by the finite element models (FEMs), and Zhang et al. [17]
utilized the FEM to generate large amounts of virtual data as a data source for machine
learning (ML). In recent years, ML has been a promising technology with increasingly
obvious advantages in data model fitting and data mining, through utilizing a large amount
of accumulated experimental data, improving the efficiency of new material design and
development, and significantly reducing the consumption of funds and time. Meanwhile,
as a powerful tool to reveal and characterize the complex relationship between material
properties and individual features, Jeon et al. [18] evaluated the importance ranking of
tempering temperature, holding time, and various elements on Vicker’s hardness by us-
ing the ML algorithm and interpretation toolkit SHAP (Shapley additive explanations).
Compared to traditional physical methods, ML can directly face the required properties
by optimizing the manufacturing process of existing materials, avoiding the intertwined
processes of physics and chemistry [19]. ML has been successfully applied in materials
science fields [20,21].

As one of the ML boosting models, the Xgboost model improves prediction accuracy
by controlling model complexity and reducing variance. Therefore, there is a lower risk of
overfitting and a simpler trained model. Calculating each feature’s marginal contribution
to the model’s output is the main goal of SHAP, and this method’s biggest benefit is
that it makes it clear whether the input’s known conditions have a positive or negative
impact on the prediction’s results, thus avoiding the “black box” problem of other ML
models [22]. However, there are only a few applications of ML models for predicting
the failure of bonded joints. Gu et al. [23] applied a deep neuronal network (black box)
coupled with a genetically programmed (gray box) model for predicting the failure loads
of metal–composite bonded joints. As far as we know, there is no published literature
for predicting the mechanical performance of metal–metal single-lap specimens using the
Xgboost ML model. Therefore, it provides an opportunity for this work.

In this work, the tensile–shear strength (TSS) of metal–metal SLJs was investigated.
Firstly, the validity of the FEM was verified by single-lap process experiments. Secondly,
considering the effects of different process parameters such as lap length (LL), the thickness
of the adhesive layer (TAL), and roughness, 630 sets of single-lap FEMs were established,
the maximum load of each model was extracted, and the TSS was calculated. A total of
630 sets of TSS data were obtained with different process parameters. Finally, 504 sets
of training set data were used to train the Xgboost model, and 126 sets of test set data
were used to predict TSS. The importance ranking of input features on model outputs was
obtained with the interpretation toolkit SHAP. The reasonable bonding process parameters
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were optimized. ML methods provide a more accurate and intuitive understanding of
process parameters on TSS.

2. Materials and Methods
2.1. Material Pretreatment

As the literature [24,25] suggested, the metal lap areas should be polished and an-
odized before metal–metal lapping. In this work, the metal surface was pretreated by
phosphoric acid anodizing after sanding with 400#, 800#, and 1200# sandpaper. The surface
roughness was measured with a MyKo NT9100 optical surface profiler, as shown in Figure 1.
The metal surface pretreatment process was shown in Table 1.

In addition, the sanding direction was perpendicular to the length of the adherend
until there were visible sanding scratches. The anodizing process includes:

(1) Firstly, 25–30 g/L NaOH solution was degreased for 2 min.
(2) Secondly, 300 g/L HNO3 solution was pickled for 1 min.
(3) Thirdly, 150 g/L H3PO4 solution was anodized for 20 min, and the voltage value was

stabilized at 15 V.

Table 1. Metal surface pretreatment process.

Type Surface Pretreatment Mean Value of
Roughness/µm

Type-1 400# sandpaper sanding followed by anodizing 1.16
Type-2 800# sandpaper sanding followed by anodizing 0.89
Type-3 1200# sandpaper sanding followed by anodizing 0.76
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Figure 1. Metal surface roughness values: (a) Type-1; (b) Type-2; (c) Type-3.

2.2. Curing Process

The adhesive DW-3 resin produced by Shanghai Huayi Resin Co., Ltd. (Shanghai,
China) was applied in this work. It was mixed with A, B, and C components according to
the weight ratio of 5:1:0.2. Among them, Component A is an epoxy polymer, Component B
is an aromatic amine synthesizer, and Component C is a KH550 silane coupling agent, and
its function improves the interfacial interaction between inorganic and organic substances.
The vacuum mixing defoamer, typed as TMV-200T, was used to mix more uniformly
and reduce bubbles. Based on the autoclave platform, the curing process I for the DW-3
adhesive involved heating to 60 ◦C at 1.5 ◦C/min and then holding for 480 min, followed
by cooling down to 40 ◦C at a rate of 1 ◦C/min (shown in Figure 2). In conventional cases,
the DW-3 adhesive has good flowability, and it is easy for it to seep out from the edge of
the overlap to form gel tumors [26,27], which will increase the bonding area and make the
TSS be calculated inaccurately through Equation (1).
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2.3. SLJ Specimen Curing

In this work, for the purpose of improving the seepage phenomenon of the adhesive
layer from the edges during the lapping process, the curing of the SLJ specimen was
divided into two steps. In the first step, the pre-curing process II was determined based
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on the adhesive’s gel point (GP) time range. GP indicates the resin’s transition from a
visco-fluid state to a highly elastic state, thus weakening its flowability. In the second step,
pre-curing was conducted, followed by lapping (shown in Figure 3c) to finish the secondary
complete curing (SCC). The pre-curing process (PCP) dramatically improves the seepage
phenomenon of resin from the lapping edges after SCC.
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2.3.1. Adhesive PCP Determination

Fiber Bragg grating (FBG) and thermocouples were applied to record wavelength and
temperature changes during the adhesive curing process. The principle was that the change
in the temperature field during the curing process would cause a change in the grating’s
effective refractive index, ultimately reflected as a shift in the central reflection wavelength.
Therefore, the strain acting on the grating can be calculated through changes in temperature
and central reflection wavelength, and the strain calculation equation was reported in the
literature [28]. It can be found that the GP of the adhesive appeared in 105 min (shown in
Figure 3a). The adhesive was heated to 60 ◦C for 27 min at a heating rate of 1.5 ◦C/min and
then kept in the autoclave platform for 78 min. There was no obvious seepage phenomenon
of the adhesive layer at the edge of the SLJ specimen after SCC via appropriately extending
the holding time from 78 min to 100~110 min. Therefore, the pre-curing process II was
determined as heating to 60 ◦C at a rate of 1.5 ◦C/min with a holding time of 100~110 min.

2.3.2. Pre-Curing

The adhesive is coated in the lap area of each adherend and a squeegee tool (seen in
Figure 3b) is used to control the adhesive thickness; the symbol T (2 mm thick adherend
+1/2 TAL) represents the groove height of the squeegee tool. With the pre-curing of the
adhesive with pre-curing process II, the adhesive can fully impregnate the adherend and
keep good adhesion after PCP.

2.3.3. Secondary Complete Curing

The lapping specimens must be vacuum-bagged, adopting curing process I to finish
SCC for preparing SLJ specimens, and a 0.1 MPa vacuum is pumped based on the autoclave
platform during the SCC process. The whole process of the bonding experiment is shown
in Figure 4.
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2.4. Mechanical Performance Test

A 2A12-T4 aluminum alloy produced by Shanghai Chengzhong Metal Co., Ltd.
(Shanghai, China) was used in this work. The mechanical properties were measured accord-
ing to the People’s Republic of China’s metal tensile test standard GB/T228.1-2010 [29] and
are listed in Table 2. Nominal stress–strain data were transformed into real stress–strain
data by the equation in the literature [30]. The plastic strain–stress curve of the 2A12-T4
aluminum alloy is shown in Figure 5.

Table 2. Mechanical properties of the 2A12-T4 aluminum alloy.

Tensile
Strength/MPa Yield Stress/MPa Young’s

Modulus/GPa Elongation/%

442 260 18.0 23–26
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In order to clarify the effect of different roughnesses on the bonding performance, the
test standards ASTM-D897-08 [31] and ASTM-D1002-10 [32] were applied to measure the
mechanical parameters of the adhesives, and the results are listed in Table 3.
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Table 3. DW-3 adhesive mechanical parameters.

Roughness/µm E (GPa) G1 = G2
(GPa) t0

n (MPa) t0
s=t0

t
(MPa)

GC
n

(J/mm2)
GS=GT
(J/mm2)

1.16
0.89
0.76

5
7.6

8.339
9.149

8
17
19

18.6
9

16.5
18

17.8
where E, G1, and G2 represent the elastic modulus, tangential 1 modulus, and tangential 2 modulus of the
adhesive layer unit, respectively. t0

n, t0
s , and t0

t mean the maximum critical stresses of the cohesive unit in the
normal direction, tangential direction 1, and tangential direction 2, respectively. GC

n , GS, and GT are the normal,
tangential, and mixed fracture energy, respectively.

The size of the single-lap specimen is diagramed in Figure 6b, and the TSS of the
SLJs was tested according to the National Standard of the People’s Republic of China
(GB7124-1986 [33]) by using the MTS universal experiment machine (shown in Figure 6a).
The tensile rate was 5 mm/min, and the TSS value was calculated based on Equation (1).

τ = P/(B × L) (1)

where τ represents the TSS of the adhesive; symbol P is the maximum load for the shear
failure of the specimen; and B and L indicate the width and length of the overlapping
surface, respectively.
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3. Constitutive Model
3.1. Elasto-Plasticity Constitutive Model [34]

The isotropic elastic constitutive equations of metals are shown in Equations (2) and (3),
and the plastic constitutive equations are shown in Equations (4)–(6).

ε11
ε22
ε33
γ12
γ13
γ23

 =



1/E −µ/E −µ/E 0 0 0
−µ/E 1/E −µ/E 0 0 0
−µ/E −µ/E 1/E 0 0 0

0 0 0 1/G 0 0
0 0 0 0 1/G 0
0 0 0 0 0 1/G





σ11
σ22
σ33
σ12
σ13
σ23

 (2)

G = E/[2 × (1 + µ)] (3)

where E represents the Young’s modulus; µ is the Poisson’s ratio, 0.33; and G indicates the
shear modulus.

σe =

[
3
2

(
σ2

11 + σ2
22 + σ2

33 + 2σ2
12 + 2σ2

23 + 2σ2
31

)]1/2
(4)
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f = σe − σy
(
dεp
)
= 0 (5)

dε
p
ij = dλσ′ij (6)

where σe represents the equivalent stress; f expresses a function of the yield surface; σy is
the yield stress and is expressed as a function of the equivalent plastic strain; dε

p
ij is the

equivalent plastic strain increment; and λ is the effective Lame constant.

3.2. The Initial Damage Model for a Cohesive Element [34]

A single-lap FEM was used to simulate the SLJ mechanical properties by applying a
typical bilinear model (traction–separation law), and the characterized parameters mainly
contain the modulus, critical traction force, and fracture energy (shown in Table 3). The
initial damage criterion of the cohesive unit adopts the quadratic nominal stress criterion
(seen in Equation (7)), and the damage begins when the sum of squared stresses of the
cohesive unit in the normal, tangential 1, and tangential 2 directions reaches 1.{

〈tn〉
t0
n

}2

+

{
ts

t0
s

}2
+

{
tt

t0
t

}2
= 1 (7)

where tn, ts, and tt represent the stresses of the cohesive unit in the normal direction,
tangential direction 1, and tangential direction 2, respectively. t0

n, t0
s , and t0

t are the maximum
critical stresses of the cohesive unit in the normal direction, tangential direction 1, and
tangential direction 2, respectively.

3.3. The Damage Evolution Model for a Cohesive Element [34]

The damage evolution stage begins after the initial damage to the adhesive occurs,
and the damage evolution is based on the energy fracture criterion. The softening method
is linear, and the linear softening specifies the linear softening stress–strain response of the
linear elastic material or the linear evolution of the damage variables accompanying the de-
formation of the elastic-plastic material, and the mixing mode uses the BK energy criterion
(shown in Equation (8)). Figure 7 describes a mode mix based on traction components.

GC = GC
n +

(
GC

s − GC
n

){
G

GS
GT

}η

(8)

where Gn, Gs, and GT denote the work conducted by the cohesive unit along the normal,
tangential direction 1, and tangential direction 2, respectively; GC

n ,GC
s , and GC denote the

normal, tangential, and mixed fracture energy, respectively.
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4. Results and Discussion
4.1. Numerical Model Verification

An LL of 25 mm, TAL of 0.2 mm, and roughness of 1.16 µm were chosen for the
SLJ experiment and the establishment of the corresponding FEM. Among them, a single-
lap FEM is shown in Figure 8, and a global grid size of 1 mm was applied to mesh the
part. There are 6250 elements per piece of adherend, and the grid type is a C3D8R linear
hexahedral element. The adhesive layer has 625 elements, and the grid type is a COH3D8
linear hexahedral element. The thickness direction is divided into grids by sweeping. The
fixed end is coupled to the reference point RP-2, and the boundary conditions for RP-2 are
encastre. The loading end is coupled to the reference point RP-1, and the RP-1 imposes a
displacement constraint. The contact between the adhesive layer and the adherend is set as
a tie.
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Figure 8. Single-lap FEM.

The load–displacement curves for the experiment and simulation of SLJs during the
tensile–shear process are shown in Figure 9a. The load increases with displacement, and
the bonding region will rupture when the curve reaches the maximum load. That is because
the cured DW-3 adhesive is a brittle material (shown in Figure 10), the tensile fracture is
relatively smooth, and there is no tough nest on the fracture surface. When it reached
the maximum load, the joint was peeled off, resulting in the bonding region rupture. The
maximum load of the experiment and simulation curves were extracted, and the TSS values
were calculated (seen in Figure 9b). The simulation results’ maximum load and TSS values
are 9.31 kN and 14.9 MPa, respectively. In comparison, the experiment’s maximum load
and TSS values are 9.18 kN and 14.7 MPa, respectively (the average of the three samples
was taken). The relative errors of the maximum load and the TSS among the simulation
and the experiment test are 1.41% and 1.36% (calculated by Equation (9)), respectively. It
indicates that single-lap FEMs have a certain effectiveness.

δ = (Psi − Pex)/Pex (9)

where parameter δ is the relative error, symbol P means the load, and the subscript index si
and ex represent the simulation and experiment, respectively.

Furthermore, the experiment and simulation demonstrate the warpage deformation in
the lapping region (shown in Figure 11a). The warpage deformation can be explained by the
eccentricity of the load leading to small moments at the joint ends during the tensile–shear
process. When the shear strength reaches the strength of the joint, it will cause edge cracks
and more significant bending moments [12,35]. Ultimately, the joint fails under the action
of shear and peel stresses. The warpage degree of the two joints is almost the same, further
proving the effectiveness of the single-lap FEM. Meanwhile, the adhesive is mainly in an
adhesion/cohesive failure mode after the joint is stripped (seen in Figure 11b).
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4.2. Single-Lap FEM Stress Distribution

The stress distribution of the adhesive at different tensile–shear times is shown in
Figure 12, and it can be found that the location of the maximum stress moves from the lap
edge to the center region as time increases. The stress was extracted from the center region
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element at 0.046 s (seen in Figure 13), and it was discovered that the maximum stress was
28.61 MPa at 0.044 s.
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Figure 13. The stress from the center region element.

At 0.044 s, path 1, path 2, and path 3 were created sequentially from the edge to the
center region of the adhesive layer. The extracted path data are normalized (the length of
the adhesive layer in the x-direction needs to be divided by LL), and the distribution of
shear stresses on the three paths can be seen in Figure 14a. A symmetric distribution of
shear stresses is shown as (x/LL = 0.5), with smaller shear stresses at the two ends and
larger shear stresses at the center region. The maximum shear stress increases slightly
from the edge to the center region (from path 1 to path 3). Similarly, the peel stresses for
the three paths are shown in Figure 14b. The maximum peel stresses in the center region
of the adhesive layer are close to the position “0”, part of the region has negative stress
under compressive conditions. The larger stress change in the adhesive layer near the
end of the lap region indicates the end of the joint’s occurring stress concentration. The
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same phenomenon has been shown in the literature [36], which is caused by the rotation
of the adherend [37]. The maximum peel stress increases slightly from the edge to the
center region. In addition, peel stresses and shear stresses provide further evidence of joint
failure behavior.
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4.3. Bonding Performance Prediction Based on Xgboost ML Algorithm

A total of 630 sets of single-lap FEMs with different process parameters were estab-
lished, and the maximum load corresponding to each model was extracted for calculating
the TSS values. Among the 630 sets of FEMs, LL increases from 10 to 30 mm, and the incre-
ment is 1 mm. TAL increases from 0.1 to 1 mm, and the increment is 0.1 mm. Roughness
values are 1.16 µm, 0.89 µm, and 0.76 µm.

The flow chart for predicting the metal–metal bonding performance based on the
Xgboost ML algorithm is shown in Figure 15. The process can be described as:
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Figure 15. The flow chart for predicting the metal–metal bonding performance based on the Xgboost
ML algorithm.

(1) A total of 630 sets of TSS values with different process parameters were obtained
from 630 sets of single-lap FEMs and then merged.

(2) Data classification: the input independent features are LL, TAL, and roughness,
and the output variables are TSS values.
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(3) Data slicing. The training set is 80% of the total dataset, and the test set is 20%. The
Xgboost model was trained from 504 sets of training set data, and 126 sets of test set data
were input to the Xgboost model for TSS prediction.

(4) The best modeling parameters for the Xgboost model were obtained by performing
hyperparameter optimization.

(5) The importance ranking of the input features on the model output was evaluated
with SHAP, and the reasonable bonding process parameters were optimized.

Generally, a larger value of R2 (near 1) and a smaller RMSE (close to 0) mean that
the model is more precise, and the calculated equations for RMSE and R2 are shown in
Equations (10) and (11), respectively.

RMSE =

√
1
N ∑N

i=1

(
yai − ypi

)2 (10)

R2 = 1−
∑N

i=1
(
ypi − yai

)2

∑N
i=1(yai − ya)

2 (11)

where N denotes the total number of samples, yai indicates the true values, ypi represents
the predicted values, and ya means the average of all real values.

The program was written and debugged in the Jupyter Notebook interface of Ana-
conda3 software. The model accuracy indicators were assessed with the regression coef-
ficient (R2) and the root mean square error (RMSE). The model’s prediction is accurate if
the RMSE is closer to 0 and the R2 is closer to 1. Otherwise, the dataset was re-sliced to
train the Xgboost model until the model was accurate. In order to obtain a more accurate
prediction model, and combined with the computational efficiency of existing computers,
the Xgboost model performed 100 runs in this work (shown in Figure 16). After 50 runs,
the RMSE and R2 values of the model were more stable. Strikingly, based on the values
of R2 and RMSE, the Xgboost model with 70 runs can achieve better prediction results.
Figure 17 compares the predicted TSS and the true TSS under different running times with
the Xgboost model, where the blue dashed line serves as the baseline, and the orange solid
line represents the regression line fitted based on the predicted and the real TSS data points.
The real TSS denotes the TSS calculated based on single-lap FEM. The model’s prediction
results are accurate when the regression line coincides well with the baseline.
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The Xgboost model with 70 runs was selected and combined with SHAP to determine
the importance ranking of process parameters on TSS (shown in Figure 18). SHAP regards
all features as contributors for each sample and produces a prediction value for each feature.
The SHAP values are additive, and the SHAP values of the features can be calculated using
Equation (12). The SHAP values for roughness, TAL, and LL were 0.58, 0.24, and 0.2,
respectively. It means that the importance ranking from high to low is roughness, TAL, and
LL, and the symbol “+” indicates that the feature positively influences the model output.
Firstly, a porous structure was formed after the pretreatment of the metal surface. The
porous structure is serrated when viewed in cross-section (shown in Figure 19a). The porous
structure improves the wettability and mechanical occlusion between the adherend and the
adhesive [38], and EDS analysis of the interface between the metal and the adhesive of the
fractured specimen in Figure 11b (shown in Figure 19b) shows that Al, O, and C elements
are mainly present at the interface, and the porous structure formed after anodization is
Al3O2 [39]. Al-O-C chemical bonds were formed at the interface [14], thereby improving
the interfacial bonding. Surface microscopic morphology is mainly characterized by the
average roughness Ra, and the roughness affects the wetting angle [40]. Surface microscopic
morphology decides the mechanical properties of the SLJs [41]. Thus, roughness has the
highest importance ranking for TSS. Secondly, the change in TAL largely affects the degree
of eccentricity of the load in the tensile–shear process. The transmission of the load is
affected and then generates the bending moment (shown in Figure 19c). TSS decreases as
TAL increases, so the TAL has a higher importance ranking for TSS. Finally, when the LL is
long enough, the increase in LL has little effect on the strength of the joint [12], which means
that the effect of LL on TSS has some limitations, so LL has the lowest importance ranking
for TSS. In addition, the sensitivity analysis of LL and TAL on shear load is conducted
using a single factor in the literature [42], and it was found that TAL has a higher sensitivity
to shear loads than LL.

yi = ybase + f
(

x(1)i + . . . + x(j)
i + . . . x(k)i

)
(12)

where f
(

x(j)
i

)
denotes the SHAP value of the j-th feature for the i-th sample; ybase represent

the baseline value of SHAP and is the average of all sample prediction sets; and yi is the
predicted value of the i-th sample.
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In order to understand more intuitively whether each data sample in each feature has
a positive or negative effect on the model output by the global interpretation diagram (seen
in Figure 20), it can be observed that the SHAP value first increases and then decreases
as the roughness value increases, indicating that medium roughness was favorable for
improving TSS. Medium roughness will increase the wettability and mechanical occlusion
of the adhesive with the adherend and improve the bonding performance. A very rough
surface is challenging to be entirely impregnated with resin [43]. Smaller roughness makes
it harder to form a robust mechanical occlusion between the adhesive and the adherend.
The SHAP value increases as the TAL decreases, implying that a thinner TAL is more
favorable for improving TSS, and the results are the same as in the literature [10]. The TAL
increase affects the transfer of load, and the shear stress was gradually transformed into
a mixture of shear and peel stress, increasing the bending moment and weakening the
strength of the joint, whereas, with the increase in LL, it did not show that the SHAP value
kept increasing all the time. Among them, some of the smaller LL SHAP values are the
highest, indicating that the longer LL can increase the maximum load and thus increase
the TSS. However, the much longer LL joints increase the risk of being peeled off and have
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a lower TSS. Meanwhile, the literature [44] stated that the peak load does not increase
infinitely with LL and will reach a limit.
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Figure 20. Global interpretation diagram.

SHAP decomposed the final prediction into the sum of the contributions of all input
variables with Equation (13) [45], and the effect of the input features on the prediction results
can be quantified in Figure 21. The base value (15.59 MPa) represents the average values
of the prediction for the whole training set, the features determine the deviation between
the prediction and the base value, and the length of the bar indicates the degree of the
contribution of the features to the prediction value. When LL is 27 mm, TAL is 0.1 mm, and
roughness is 0.89 µm, the final predicted value is 16.83 MPa, which is close to the TSS values
calculated from the single-lap FEM (the FEM from the ML-optimized parameters) and
process experiment (shown in Figure 22), which are 16.66 MPa and 16.76 MPa, respectively.
The validity of the Xgboost algorithm prediction results was proved. It is worth noting that
the load–displacement curves of the FEM and process experiments in Figure 22 show some
deviation in the loading stage because the single-lap specimen is clamped with a hydraulic
fixture rather than being hand-tightened. After the upper end of the single-lap specimen
is clamped, the hydraulic fixture will produce an upward force when clamping the lower
end of the specimen, and the specimen is in a short compression state under the action
of the upper and lower hydraulic fixtures, causing the curve in the loading stage fitting
with a small amount of deviation. As the tensile–shear process goes on, the pressure on
the specimen from the upper and lower hydraulic fixtures is released, and the curve fit
between the experiment and simulation becomes better and better, especially in the vicinity
of reaching the maximum load.

Polymers 2023, 15, x FOR PEER REVIEW 17 of 20 
 

 

where 𝑥ᇱ denotes the vector of simplified input variables obtained from the original in-
put variable x in the dataset; M indicates the number of features in the dataset; φ0 means 
a constant when all inputs are zero; and φi denotes the attribute value for each feature i. 

 
Figure 21. The influence graph of the features on the prediction results. 

 
Figure 22. The verification of ML prediction results. 

5. Conclusions 
In this work, for the purpose of improving the phenomenon of the adhesive layer 

seeping out from the lap edges, the SLJ specimen was prepared by PCPs and the SCC 
process. The bonding performance of metal–metal SLJs was evaluated using process ex-
periments, single-lap FEM, and the Xgboost ML algorithm. Based on the interpretation 
toolkit SHAP, the process parameters (LL, TAL, and roughness) were arranged according 
to the importance ranking on the bonding performance, and reasonable process parame-
ters were determined. The following are the key findings: 
(1) The single-lap FEM was verified by a process experiment, and the simulated maxi-

mum load and TSS error were less than 1.5%. 
(2) When the LL ranged from 10 to 30 mm, the TAL ranged from 0.1 to 1 mm, and the 

roughness measurements were 1.16 µm, 0.89 µm, and 0.76 µm, respectively. Medium 
roughness, thinner TAL, and longer LL were favorable for improving TSS, and the 
importance ranking of process parameters on TSS from high to low is roughness, 
TAL, and LL. 

(3) The optimized values of LL, TAL, and roughness were 27 mm, 0.1 mm, and 0.89 µm, 
respectively. The experimentally measured TSS values increased by 14% from the 
optimized process parameters via the Xgboost ML model. 
This work still has some limitations, as only process experiments, FEM, and machine 

learning methods were used to optimize the metal-to-metal bonding process parameters 

Figure 21. The influence graph of the features on the prediction results.



Polymers 2023, 15, 4085 17 of 20

Polymers 2023, 15, x FOR PEER REVIEW 17 of 20 
 

 

where 𝑥ᇱ denotes the vector of simplified input variables obtained from the original in-
put variable x in the dataset; M indicates the number of features in the dataset; φ0 means 
a constant when all inputs are zero; and φi denotes the attribute value for each feature i. 

 
Figure 21. The influence graph of the features on the prediction results. 

 
Figure 22. The verification of ML prediction results. 

5. Conclusions 
In this work, for the purpose of improving the phenomenon of the adhesive layer 

seeping out from the lap edges, the SLJ specimen was prepared by PCPs and the SCC 
process. The bonding performance of metal–metal SLJs was evaluated using process ex-
periments, single-lap FEM, and the Xgboost ML algorithm. Based on the interpretation 
toolkit SHAP, the process parameters (LL, TAL, and roughness) were arranged according 
to the importance ranking on the bonding performance, and reasonable process parame-
ters were determined. The following are the key findings: 
(1) The single-lap FEM was verified by a process experiment, and the simulated maxi-

mum load and TSS error were less than 1.5%. 
(2) When the LL ranged from 10 to 30 mm, the TAL ranged from 0.1 to 1 mm, and the 

roughness measurements were 1.16 µm, 0.89 µm, and 0.76 µm, respectively. Medium 
roughness, thinner TAL, and longer LL were favorable for improving TSS, and the 
importance ranking of process parameters on TSS from high to low is roughness, 
TAL, and LL. 

(3) The optimized values of LL, TAL, and roughness were 27 mm, 0.1 mm, and 0.89 µm, 
respectively. The experimentally measured TSS values increased by 14% from the 
optimized process parameters via the Xgboost ML model. 
This work still has some limitations, as only process experiments, FEM, and machine 

learning methods were used to optimize the metal-to-metal bonding process parameters 

Figure 22. The verification of ML prediction results.

In addition, the corresponding FEM from the ML-optimized parameters shows a
maximum load of 11.25 kN in Figure 22, which is 20.8% higher than the maximum load
(9.31 kN) of the FEM in Figure 9a. Meanwhile, the TSS (16.76 MPa) with the experiment
measured in Figure 22 is 14% higher than the TSS (14.7 MPa) located in Figure 9b. It is
feasible to use the Xgboost ML algorithm to optimize process parameters and predict the
bonding performance.

g
(
x′
)
= ϕ0 + ∑M

i=1 ϕix′i (13)

where x′ denotes the vector of simplified input variables obtained from the original input
variable x in the dataset; M indicates the number of features in the dataset; ϕ0 means a
constant when all inputs are zero; and ϕi denotes the attribute value for each feature i.

5. Conclusions

In this work, for the purpose of improving the phenomenon of the adhesive layer
seeping out from the lap edges, the SLJ specimen was prepared by PCPs and the SCC
process. The bonding performance of metal–metal SLJs was evaluated using process
experiments, single-lap FEM, and the Xgboost ML algorithm. Based on the interpretation
toolkit SHAP, the process parameters (LL, TAL, and roughness) were arranged according
to the importance ranking on the bonding performance, and reasonable process parameters
were determined. The following are the key findings:

(1) The single-lap FEM was verified by a process experiment, and the simulated maxi-
mum load and TSS error were less than 1.5%.

(2) When the LL ranged from 10 to 30 mm, the TAL ranged from 0.1 to 1 mm, and the
roughness measurements were 1.16 µm, 0.89 µm, and 0.76 µm, respectively. Medium
roughness, thinner TAL, and longer LL were favorable for improving TSS, and the
importance ranking of process parameters on TSS from high to low is roughness, TAL,
and LL.

(3) The optimized values of LL, TAL, and roughness were 27 mm, 0.1 mm, and 0.89 µm,
respectively. The experimentally measured TSS values increased by 14% from the
optimized process parameters via the Xgboost ML model.

This work still has some limitations, as only process experiments, FEM, and machine
learning methods were used to optimize the metal-to-metal bonding process parameters
and improve the bonding performance. Future research should focus on the performance
and failure mechanism of metal–metal joints under special conditions, such as hot and
humid environments, mildew, and other environments, and further promote the broader
engineering applications of metal–metal joints.
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List of Acronyms and Abbreviations

Abbreviation Full name
SLJs Single-lap joints
FEMs Finite element methods
ML Machine learning
SHAPs Shapley additive explanations
TSS Tensile–shear strength
TAL Thickness of the adhesive layer
LL Lap length
GP Gel point
PCP Pre-curing process
SCC Secondary complete curing
FBG Fiber Bragg grating
R2 Regression coefficient
RMSE Root mean square error
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