Tannic Acid-Induced Gelation of Aqueous Suspensions of Cellulose Nanocrystals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of SH-CNC/TA Hydrogels
2.3. Synthesis of SH-CNC/TA-Mn+ Hydrogels
2.4. Characterizations
2.5. Rheological Measurement
2.6. Model Development
3. Results and Discussion
3.1. SH-CNC/TA Hydrogels Assembly and Proposed Formation Mechanism
3.2. Morphology and Microstructure of SH-CNC/TA Hydrogel
3.3. Dynamic Rheological Properties of SH-CNC/TA Hydrogels
3.4. Effect of Metal Cations on the Rheological Properties of SH-CNC/TA Hydrogels
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lenvin, A.; Hakala, T.A.; Schnaider, L.; Bernardes, G.J.L.; Gazit, E.; Knowles, T.P.J. Biomimetic peptide self-assembly for functional materials. Nat. Rev. Chem. 2020, 4, 615–634. [Google Scholar] [CrossRef]
- Ma, Y.; Yin, H.; Yang, J.; Lin, H.; Chen, S.; Zhou, J.; Zhuo, S.; Wang, X. Recent Progress of Noncovalent Interaction-Driven Self-Assembly of Photonic Organic Micro-/Nanostructures. Adv. Opt. Mater. 2023, 11, 202201000. [Google Scholar] [CrossRef]
- Dalala, S.; Sadhu, K.K. Fluorogenic response from DNA templated micrometer range self-assembled gold nanorod. J. Mater. Chem. B 2023, 11, 9019–9026. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Li, Z.; Wang, J.; Yang, S. Iron ions induced self-assembly of graphene oxide lubricating coating with self-adapting low friction characteristics. Carbon 2023, 201, 1151–1159. [Google Scholar] [CrossRef]
- Ai, L.; Pei, Y.; Song, Z.; Yong, X.; Song, H.; Liu, G.; Nie, M.; Waterhouse, G.I.N.; Yan, X.; Lu, S. Ligand-Triggered Self-Assembly of Flexible Carbon Dot Nanoribbons for Optoelectronic Memristor Devices and Neuromorphic Computing. Adv. Sci. 2023, 10, 202207688. [Google Scholar] [CrossRef]
- Credico, B.; Manzini, E.; Viganò, L.; Canevali, C.; D’Arienzo, M.; Mostoni, S.; Nisticò, R.; Scotti, R. Silica nanoparticles self-assembly process in polymer composites: Towards advanced materials. Ceram. Int. 2023, 49, 26165–26181. [Google Scholar] [CrossRef]
- Berglund, L.; Squinca, P.; Bas, Y.; Zattarin, E.; Aili, D.; Rakar, J.; Junker, J.; Starkenberg, A.; Diamanti, M.; Sivlér, P.; et al. Self-Assembly of Nanocellulose Hydrogels Mimicking Bacterial Cellulose for Wound Dressing Applications. Biomacromolecules 2023, 24, 2264–2277. [Google Scholar] [CrossRef]
- Zhang, X.; Elsayed, I.; Navarathna, C.; Schueneman, G.T.; Hassan, E.B. Biohybrid Hydrogel and Aerogel from Self-Assembled Nanocellulose and Nanochitin as a High-Efficiency Adsorbent for Water Purification. ACS Appl. Mater. Interfaces 2019, 11, 46714–46725. [Google Scholar] [CrossRef]
- Feng, Y.; Yu, J.; Sun, D.; Ren, W.; Shao, C.; Sun, R. Solvent-induced in-situ self-assembly lignin nanoparticles to reinforce conductive nanocomposite organogels as anti-freezing and anti-dehydration flexible strain sensors. Chem. Eng. J. 2022, 433, 133202. [Google Scholar] [CrossRef]
- Tian, G.; Zhong, X.; Wu, X.; Wang, Z. Self-Assembly Preparation of Nano-Lignin/Cationic Polyacrylamide Complexes. Polymers 2021, 13, 1726. [Google Scholar] [CrossRef]
- Kadokawa, J. Preparation of Composite Materials from Self-Assembled Chitin Nanofibers. Polymers 2021, 13, 3548. [Google Scholar] [CrossRef] [PubMed]
- Parton, T.G.; Parker, R.M.; Vignolini, S. Chiral self-assembly of cellulose nanocrystals is driven by crystallite bundles. Nat. Commun. 2022, 13, 2657. [Google Scholar] [CrossRef]
- Abitbol, T.; Rivkin, A.; Cao, Y.; Nevo, Y.; Abraham, E.; Ben-Shalom, T.; Lapidot, S.; Shoseyov, O. Nanocellulose, a tiny fiber with huge applications. Curr. Opin. Biotechnol. 2016, 39, 76–88. [Google Scholar] [CrossRef]
- Revol, J.-F.; Bradford, H.; Giasson, J.; Marchessault, R.H.; Gray, D.G. Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int. J. Biol. Macromol. 1992, 14, 170–172. [Google Scholar] [CrossRef] [PubMed]
- Habibi, Y.; Lucia, L.A.; Rojas, O.J. Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications. Chem. Rev. 2010, 110, 3479–3500. [Google Scholar] [CrossRef] [PubMed]
- Håkansson, K.M.O.; Fall, A.B.; Söderberg, L.D. Hydrodynamic alignment and assembly of nanofibrils resulting in strong cellulose filaments. Nat. Commun. 2014, 5, 4018. [Google Scholar] [CrossRef]
- Wicklein, B.; Kocjan, A.; Bergström, L. Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. Nat. Nanotechnol. 2015, 10, 277–283. [Google Scholar] [CrossRef]
- Yao, K.; Meng, Q.; Bulone, V.; Zhou, Q. Flexible and Responsive Chiral Nematic Cellulose Nanocrystal/Poly(ethylene glycol) Composite Films with Uniform and Tunable Structural Color. Adv. Mater. 2017, 29, 1701323. [Google Scholar] [CrossRef]
- Prathapan, R.; Glatz, B.A.; Ghosh, A.K.; Michel, S.; Fery, A.; Garnier, G.; Tabor, R.F. Enhancing Printing Resolution on Hydrophobic Polymer Surfaces Using Patterned Coatings of Cellulose Nanocrystals. Langmuir 2019, 35, 7155–7160. [Google Scholar] [CrossRef]
- Chu, Y.; Sun, Y.; Wu, W.; Xiao, H. Dispersion properties of nanocellulose: A review. Carbohydr. Polym. 2020, 250, 116892. [Google Scholar] [CrossRef]
- Dufresne, A. Nanocellulose: A new ageless bionanomaterial. Mater. Today 2013, 16, 220–227. [Google Scholar] [CrossRef]
- Gorbacheva, S.N.; Ilyin, S.O. Morphology and rheology of heavy crude oil/water emulsions stabilized by microfibrillated cellulose. Energy Fuels 2021, 35, 6527–6540. [Google Scholar] [CrossRef]
- Ilyin, S.O.; Gorbacheva, S.N.; Yadykova, A.Y. Rheology and tribology of nanocellulose-based biodegradable greases: Wear and friction protection mechanisms of cellulose microfibrils. Tribol. Int. 2023, 178, 108080. [Google Scholar] [CrossRef]
- Schenker, M.; Schoelkopf, J.; Gane, P.; Mangin, P. Influence of shear rheometer measurement systems on the rheological properties of microfibrillated cellulose (MFC) suspensions. Cellulose 2018, 25, 961–976. [Google Scholar] [CrossRef]
- Li, M.C.; Wu, Q.; Song, K.; Lee, S.; Qing, Y.; Wu, Y. Cellulose nanoparticles: Structure–morphology–rheology relationships. ACS Sustain. Chem. Eng. 2015, 3, 821–832. [Google Scholar] [CrossRef]
- Wu, Q.; Meng, Y.; Wang, S.; Li, Y.; Fu, S.; Ma, L.; Harper, D. Rheological behavior of cellulose nanocrystal suspension: Influence of concentration and aspect ratio. J. Appl. Polym. Sci. 2014, 131. [Google Scholar] [CrossRef]
- Shafiei-Sabet, S.; Hamad, W.Y.; Hatzikiriakos, S.G. Rheology of nanocrystalline cellulose aqueous suspensions. Langmuir 2012, 28, 17124–17133. [Google Scholar] [CrossRef]
- Shafeiei-Sabet, S.; Hamad, W.Y.; Hatzikiriakos, S.G. Influence of degree of sulfation on the rheology of cellulose nanocrystal suspensions. Rheol. Acta 2013, 52, 741–751. [Google Scholar] [CrossRef]
- Shafiei-Sabet, S.; Hamad, W.Y.; Hatzikiriakos, S.G. Ionic strength effects on the microstructure and shear rheology of cellulose nanocrystal suspensions. Cellulose 2014, 21, 3347–3359. [Google Scholar] [CrossRef]
- Zhu, H.; Luo, W.; Ciesielski, P.N.; Fang, Z.; Zhu, J.Y.; Henriksson, G.; Himmel, M.E.; Hu, L. Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications. Chem. Rev. 2016, 116, 9305–9374. [Google Scholar] [CrossRef]
- Lu, Q.; Wu, J.; Wang, H.; Huang, B. One-Pot Green Preparation of Fluorescent Cellulose Nanofibers. Polymers 2022, 14, 1313. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; Wang, L.; Feng, X.; Bu, Y.; Wu, D.; Jin, Z. Supramolecular Hydrogel Formation Based on Tannic Acid. Macromolecules 2017, 50, 666–676. [Google Scholar] [CrossRef]
- Chen, Y.; Jiao, C.; Zhao, Y.; Zhang, J.; Wang, H. Self-Assembled Polyvinyl Alcohol–Tannic Acid Hydrogels with Diverse Microstructures and Good Mechanical Properties. ACS Omega 2018, 3, 11788–11795. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Tang, L.; Wang, S.; Huang, B.; Chen, Y.; Chen, X. An investigation on the characteristics of cellulose nanocrystals from Pennisetum sinese. Biomass Bioenergy 2014, 70, 267–272. [Google Scholar] [CrossRef]
- Chen, Y.; Peng, L.; Liu, T.; Wang, Y.; Shi, S.; Wang, H. Poly(vinyl alcohol)–Tannic Acid Hydrogels with Excellent Mechanical Properties and Shape Memory Behaviors. ACS Appl. Mater. Interfaces 2016, 8, 27199–27206. [Google Scholar] [CrossRef]
- Lu, Q.; Cai, Z.; Lin, F.; Tang, L.; Wang, S.; Huang, B. Extraction of Cellulose Nanocrystals with a High Yield of 88% by Simultaneous Mechanochemical Activation and Phosphotungstic Acid Hydrolysis. ACS Sustain. Chem. Eng. 2016, 4, 2165–2172. [Google Scholar] [CrossRef]
- Lu, Q.; Tang, L.; Lin, F.; Wang, S.; Chen, Y.; Chen, X.; Huang, B. Preparation and characterization of cellulose nanocrystals via ultrasonication-assisted FeCl3-catalyzed hydrolysis. Cellulose 2014, 21, 3497–3506. [Google Scholar] [CrossRef]
- Luzi, F.; Puglia, D.; Sarasini, F.; Tirillò, J.; Maffei, G.; Zuorro, A.; Lavecchia, R.; Kenny, J.M.; Torre, L. Valorization and extraction of cellulose nanocrystals from North African grass: Ampelodesmos mauritanicus (Diss). Carbohydr. Polym. 2019, 209, 328–337. [Google Scholar] [CrossRef]
- Ninan, N.; Forget, A.; Shastri, V.P.; Voelcker, N.H.; Blencowe, A. Antibacterial and Anti-Inflammatory pH-Responsive Tannic Acid-Carboxylated Agarose Composite Hydrogels for Wound Healing. ACS Appl. Mater. Interfaces 2016, 8, 28511–28521. [Google Scholar] [CrossRef]
- Zhang, N.; Luo, J.; Liu, R.; Liu, X. Tannic acid stabilized silver nanoparticles for inkjet printing of conductive flexible electronics. RSC Adv. 2016, 6, 83720–83729. [Google Scholar] [CrossRef]
- Ding, Z.; Chi, Z.; Gu, W.; Gu, S.; Liu, J.; Wang, H. Theoretical and experimental investigation on dissolution and regeneration of cellulose in ionic liquid. Carbohydr. Polym. 2012, 89, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Snyder, J.F.; Williams, K.S.; Andzelm, J.W. Cation-Induced Hydrogels of Cellulose Nanofibrils with Tunable Moduli. Biomacromolecules 2013, 14, 3338–3345. [Google Scholar] [CrossRef] [PubMed]
Complex | Bond | ρ (a.u.) | Eint (kJ/mol) |
---|---|---|---|
CNC-TA | C228-H278…O025 C018-H021…O224 C034-H038…O224 O224-H273…O048 O225-H274…O041 C050-H054…O179 O057-H060…O187 O057-H060…O184 C182-H238…O057 O058-H062…O194 O194-H247…O103 O191-H244…O103 | 0.0097 0.0197 0.0151 0.0297 0.0083 0.0227 0.0139 0.0141 0.0068 0.0332 0.0209 0.0208 | −129.891 |
CNC-CNC | C167-H219…O034 C143-H196…O034 C041-H092…O154 O046-H095…O155 O049-H098…O159 C139-H192…O052 C002-H059…O128 C121-H176…O016 C117-H173…O019 | 0.0151 0.0173 0.0281 0.0132 0.0267 0.0207 0.0194 0.0218 0.0169 | −67.568 |
TA-H2O | C018-H021…O175 O175-H177…O048 | 0.02325 0.02312 | −32.667 |
CNC-H2O | C003-H060…O115 O115-H117…O052 | 0.0197 0.0225 | −16.706 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, F.; Lin, W.; Chen, J.; Sun, C.; Zheng, X.; Xu, Y.; Lu, B.; Chen, J.; Huang, B. Tannic Acid-Induced Gelation of Aqueous Suspensions of Cellulose Nanocrystals. Polymers 2023, 15, 4092. https://doi.org/10.3390/polym15204092
Lin F, Lin W, Chen J, Sun C, Zheng X, Xu Y, Lu B, Chen J, Huang B. Tannic Acid-Induced Gelation of Aqueous Suspensions of Cellulose Nanocrystals. Polymers. 2023; 15(20):4092. https://doi.org/10.3390/polym15204092
Chicago/Turabian StyleLin, Fengcai, Wenyan Lin, Jingwen Chen, Chenyi Sun, Xiaoxiao Zheng, Yanlian Xu, Beili Lu, Jipeng Chen, and Biao Huang. 2023. "Tannic Acid-Induced Gelation of Aqueous Suspensions of Cellulose Nanocrystals" Polymers 15, no. 20: 4092. https://doi.org/10.3390/polym15204092
APA StyleLin, F., Lin, W., Chen, J., Sun, C., Zheng, X., Xu, Y., Lu, B., Chen, J., & Huang, B. (2023). Tannic Acid-Induced Gelation of Aqueous Suspensions of Cellulose Nanocrystals. Polymers, 15(20), 4092. https://doi.org/10.3390/polym15204092