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Abstract: Well-defined statistical copolymers of n-hexyl isocyanate, HIC, and 3-(triethoxysilyl)propyl
isocyanate, TESPI, were synthesized via coordination polymerization mechanism, employing a chiral
half-titanocene complex as initiator. The monomer reactivity ratios of the statistical copolymers
were calculated using linear graphical methods and the computer program COPOINT in the frame
of the terminal model. The molecular and structural characteristics of the copolymers were also
calculated. The kinetics of the thermal decomposition of the statistical copolymers was studied by
Thermogravimetric Analysis, TGA, and Differential Thermogravimetry, DTG, and the activation
energy of this process was calculated employing several theoretical models. In addition, block
copolymers constituted from PHIC and PTESPI blocks were synthesized by sequential coordination
polymerization. All samples were characterized by nuclear magnetic resonance, NMR, spectroscopy
and size exclusion chromatography, SEC. The thermal stability of the blocks was also studied by TGA
and DTG and compared to the corresponding statistical copolymers.

Keywords: n-hexyl isocyanate; 3-(triethoxysilyl) propyl isocyanate; coordination polymerization;
half-titanocene complex; statistical copolymers; block copolymers; thermal decomposition

1. Introduction

Poly(alkyl isocyanate)s, PICs, constitute an interesting class of polymeric materials
since they adopt helical conformation both in solution and in bulk [1–4]. It has been shown,
employing various characterization techniques, that PICs are stiff-chain polymers. Their
properties depend on several parameters, such as temperature, solvent, nature of the
isocyanate’s side group and polymer’s molecular weight [1,2,5–8]. Therefore, they may
behave either as rigid rods or as semiflexible worm-like chains. Combination of PICs with
other rigid or more flexible chains in diblock copolymers or more complex macromolecular
architectures opens new horizons in nanotechnology focusing on the microphase separation,
the ordering kinetics and the self-assembly behavior in solution [9–11]. Consequently, novel
applications are expected to emerge, making these materials possible candidates as optical
switches, recognition devices, etc. [12–16].

The synthesis of well-defined structures based on PICs was, for many years, hindered
by the lack of efficient synthetic routes to control their molecular characteristics [17,18].
Anionic polymerization based on NaCN initiation was originally reported by Shashoua
et al. [5,7]. However, this system, along with other anionic polymerizations utilizing
classical initiators, failed to give polymers with predetermined molecular and structural
characteristics due to the presence of back-biting reactions leading to the formation of
trimers [19].

Two different approaches were then developed to resolve the synthetic drawbacks con-
cerning the polymerization of alkyl isocyanates, ICs. The successful anionic polymerization
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of ICs was achieved using sodium naphthalenide (Na-Naph) in combination with either the
crown ether 15C5 or the salt NaBPh4 [9–22]. By this method, a number of homopolymers
of ICs (n-octyl, n-hexyl and 3-(triethoxysilyl)propyl isocyanates), as well as the triblock
copolymer poly [3-(triethoxysilyl)propyl isocyanate–b-styrene-b-3-(triethoxysilyl) propyl
isocyanate], were synthesized [20,22–24]. Well-defined triblock copolymers and pentablock
terpolymers of n-hexyl isocyanate (H), styrene (S) and isoprene (I) were synthesized as
well [25]. Polymerization with NaBPh4 as an additive was found to be more promising
than with 15C5 because NaBPh4 stabilizes the amidate anion of the growing polyisocyanate
(common ion effect) by forming a tight ion pair, which prevents the back-biting reaction.
Furthermore, the back-biting reaction is inhibited by the very bulky tetraphenylboron
anion. More recently, benzyl sodium [26], along with metal enolate monofunctional initia-
tors [27–29] such as sodium benzanilide and sodium deoxybenzoin, were developed to
promote the anionic polymerization with characteristics of living reactions. More complex
structures, such as star polymers, star-block and miktoarm star copolymers, were prepared
by anionic polymerization high vacuum techniques [30].

The second approach was developed in 1991 by Novak’s Group. They developed a
“living” coordination polymerization methodology based on titanium catalysts, leading to
well-defined homopolymers [31] and block copolymers [32]. More specifically, organotita-
nium (IV) complexes of the type TiCl3(OCH2CF3) and CpTiCl2L (Cp = cyclopentadiene
and L= -OCH2CF3, -N(CH3)2, -CH3) [33] were initially utilized. The replacement of one
of the chlorine atoms with the bulkier and more electron-donating Cp group reduces
the Lewis acidity of the titanium center and the polymerization of HIC proceeds in a
slower but more controlled manner. Polymers having controlled molecular weights and
narrow molecular weight distributions were obtained at high yields, with polymerizations
conducted at room temperature. Following this methodology, several isocyanates were
polymerized. Furthermore, diblock and triblock copolymers of poly(ethylene oxide) and
poly(n-hexyl isocyanate), PEO-b-PHIC [34] and PHIC-b-PEO-b-PHIC [35], along with tri-
block copolymers having poly(dimethyl siloxane), PDMS, middle block and PHIC end
blocks, PHIC-b-PDMS-b-PHIC [36], were synthesized. Using the same chemistry and in
combination with anionic and atom transfer radical polymerization techniques, complex
macromolecular architectures based on PHIC, such as block, graft, block-graft and mik-
toarm star copolymers and molecular brushes, were synthesized [37–43]. Several other
applications of the organotitanium polymerization of isocyanates have been reported in
the literature [44,45].

In this study, we report the synthesis of homopolymers, statistical and block copoly-
mers based on n-hexyl isocyanate, HIC, and 3-(triethoxysilyl)propyl isocyanate, TESPI, by
using a chiral, half-titanocene complex as initiator. The copolymers were characterized by
nuclear magnetic resonance spectroscopy and size exclusion chromatography, and their
thermal properties were investigated employing Thermogravimetric Analysis, TGA and
Differential Thermogravimetry, DTG, measurements. The purpose of this work was to
have a system that could be able to form cross-linked structures through the controlled
hydrolysis of the alkoxysilyl groups [46,47]. In addition, these materials are able to react
with certain surfaces or nanoparticles bearing hydroxyl groups in order to achieve the
chemical modification of these surfaces or nanoparticles by grafting hydrophobic helical
polymer chains onto them [48–51].

2. Materials and Methods
2.1. Materials

CpTiCl3 (Aldrich Europe, Buchs, Switzerland. 97%), hexanes, tetrahydrofuran and
(S)-2-butanol (Aldrich, 99%) were used as received. n-Hexyl isocyanate, HIC, (Aldrich,
98%) and 3-(triethoxysilyl)propyl isocyanate TESPI, (Aldrich, 95%) were dried over CaH2
and 4,4′- methylene-bis(phenyl isocyanate) overnight and distilled under reduced pressure.
Acetonitrile was dried over CaH2 and 4,4′-methylene-bis(phenyl isocyanate) overnight and
distilled. Toluene was dried over CaH2 overnight and distilled. Ethanol and triethylamine
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were dried over Na and distilled. The initiator CpTiCl2(O-(S)-2-Bu) was synthesized
according to previously reported protocols [52] and stored in the glove box. All synthetic
procedures were performed under an inert atmosphere, employing standard Schlenk and
glove box techniques [53]. The glassware used for the polymerization procedures was
flame-dried under vacuum. Typical synthetic routes are presented below.

2.2. Synthesis of Poly[3-(Triethoxysilyl)propyl Isocyanate], PTESPI

In a 50 mL flask, [CpTiCl2(O-(S)-2-Bu)] (0.0370 g, 0.14 mmol) was dissolved in toluene
(0.5 mL). 3-(Triethoxysilyl) propyl isocyanate, TESPI, (2.7 mL, 10.90 mmol) was added to
the yellow solution. After 20 h, ethanol (1 mL) and toluene (1.5 mL) were added to the
viscous solution. The solution became faint yellow immediately. The content of the Schlenk
flask was transferred to a 50 mL Schlenk flask containing acetonitrile (20 mL). The white
solid was separated from the yellow solution by filtration. The white polymer was dried
under vacuum for 24 h. The polymer was soluble in toluene, tetrahydrofuran, chloroform
and hexanes. Vigorous stirring for a few seconds is needed in order to be fully dissolved.
The solution was colorless and clear.

Yield: 37%.

2.3. General Synthesis of Statistical Copolymers of HIC and TESPI, PHIC-Stat-PTESPI

In a 50 mL flask, [CpTiCl2(O-(S)-2-Bu)] was dissolved in toluene (1.0 mL). TESPI and
HIC were added to the yellow solution. The copolymerization reaction was allowed to
take place at room temperature. After 20 h, ethanol (1 mL) and toluene (5 mL) were added
to the viscous solution. The solution became faint yellow immediately. The content of the
Schlenk flask was transferred to a 100 mL Schlenk flask containing acetonitrile (25 mL). The
white gel was separated from the yellow solution by removing the liquid phase. The faint
yellow polymer was dried under vacuum for 24 h.

The amounts of each monomer and half-titanonocene complex for each sample are
given in Table 1.

Table 1. Synthesis of the statistical copolymers PHIC-stat-PTESPI.

Ratio 80/20 60/40 50/50 40/60 20/80

[CpTiCl2(O-
(S)-2-Bu)]

0.0528 g,
(0.20 mmol)

0.0564 g,
(0.21 mmol)

0.0568 g,
(0.22 mmol)

0.0544 g,
(0.21 mmol)

0.0529 g,
(0.21 mmol)

TESPI 1.6 mL,
(6.46 mmol)

2.8 mL,
(11.31 mmol)

3.3 mL,
(13.32 mmol)

3.7 mL,
(14.94 mmol)

4.4 mL,
(17.77 mmol)

HIC 3.8 mL,
(26.08 mmol)

2.5 mL,
(17.16 mmol)

1.9 mL,
(13.04 mmol)

1.4 mL,
(9,61 mmol)

0.6 mL,
(4.11 mmol)

Yield 38% 39% 47% 41% 44%

2.4. General Synthesis of Block Copolymers of HIC and TESPI, PTESPI-b-PHIC

As an example, the synthesis of the block copolymer B1 is described:
In a 50 mL flask, [CpTiCl2(O-(S)-2-Bu)] (0.0345 g, 0.13 mmol) was dissolved in toluene

(0.5 mL). TESPI (0.5 mL, 2.01 mmol) was added to the yellow solution. After 1 h, HIC
(1.0 mL, 6.86 mmol) was added. After 4 h, ethanol (0.5 mL) and toluene (2.0 mL) were
added to the viscous solution. The solution became faint yellow immediately. The content
of the flask was transferred to a 50 mL Schlenk flask containing acetonitrile (10 mL). The
white crude solid product was partially soluble in toluene, tetrahydrofuran and chloroform
due to the presence of insoluble inorganic compounds in the reaction mixture. Therefore,
it was filtered through a Por.4 sintered glass funnel. The white polymer was dried under
vacuum for 24 h. The polymer:

NMR Ratio (mol): 84% HIC and 16% TESPI.
Yield: 46%
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Similar procedures were adopted for the remaining samples. More details are given in
Table 2.

Table 2. Synthesis of the block copolymers PTESPI-b-PHIC.

Sample B1 B2 B3 B4 B5

[CpTiCl2(O-
(S)-2-Bu)]

0.0345 g
(0.13 mmol)

0.0293 g
(0.11 mmol)

0.0349 g
(0.14 mmol)

0.0273 g
(0.11 mmol)

0.0285 g
(0.12 mmol)

TESPI 0.5 mL
(2.01 mmol)

0.8 mL
(3.23 mmol)

1.0 mL
(4.03 mmol)

1.1 mL
(4.44 mmol)

1.30 mL
(5.25 mmol)

HIC 1.0 mL
(6.86 mmol)

0.7 mL
(4.80 mmol)

0.5 mL
(3.43 mmol)

0.4 mL
(2.74 mmol)

0.2 mL
(1.37 mmol)

2.5. Characterization Techniques

The polymers were characterized by size exclusion chromatography, SEC, and 1H-
NMR spectroscopy. SEC was performed on a modular instrument consisting of a Waters
model 510 pump, a Waters model U6K sample injector, a Waters model 410 differential
refractometer, a Waters model 486 UV spectrophotometer and a set of 5 µ-Styragel columns.
The columns were housed in an oven thermostated at 40 ◦C. Tetrahydrofuran was the carrier
solvent at a flow rate of 1 mL/min. The system was calibrated with eight polystyrene, PS,
standards having molecular weights in the range of 1000 to 500,000.

The 1H NMR measurements were recorded on a Bruker Avance Neo (Billerica, MA,
USA) V3–400 MHz spectrometer at room temperature in deuterated chloroform (CDCl3).

The thermal stability and the kinetics of thermal decomposition of the copolymers
were studied by Thermogravimetric Analysis, TGA, employing a Q50 TGA model from
TA Instruments (New Castle, DE, USA). The samples were placed in a platinum pan and
heated up to 600 ◦C in a 60 mL/min flow of nitrogen at heating rates of 3, 5, 7, 10, 15 and
20 ◦C/min.

The optical properties of the copolymers were investigated via circular dichroism. CD
spectra were recorded in hexane solutions using a Jasco J-815 CD spectrometer (Easton,
MD, USA).

3. Results and Discussion
3.1. Polymerization of TESPI via Coordination Polymerization

The efficient polymerization of TESPI, employing CpTiCl2(O-(S)-2-Bu) as initiator, was
confirmed using typical experimental conditions as in the case of the polymerization of HIC.
The SEC trace of the polymer is given in Figure S1 of the Supporting Information Section,
SIS. A typical symmetric peak of very low dispersity was obtained, meaning that the
polymerization reaction is well controlled, as in the case of the polymerization of HIC. The
number average molecular weight Mn value was equal to 15.9× 103, whereas the dispersity
Ð was equal to 1.13. In order to achieve this result, the reaction yield was allowed to be
less than 50%. Patten and Novak [31,33] reported the reversibility of the polymerization
reaction of isocyanates with organotitanium (IV) catalysts. To avoid depolymerization and
achieve high yields, the reaction should be conducted in bulk or at very high concentrations.
Under these conditions, the viscosity of the polymerization solution becomes extremely
high, and therefore, the dispersity of the polymer is drastically increased, and several side
reactions may take place. To avoid all these drawbacks, the polymerization was allowed to
take place up to moderate yields. For the present sample, the yield was 37%.

The synthesis of the desired product was also confirmed by 1H NMR spectroscopy, as
shown in Figure S2 of the SIS. The characteristic peaks from the ethoxysilyl side groups
are obvious in the spectrum, located at 1.19 ppm (-Si-OCH2-CH3, 9 protons) and 3.80 ppm
(-Si-OCH2-CH3, 6 protons). All the signals are in agreement with the NMR data reported
for the homopolymer, as synthesized by anionic polymerization techniques [23].
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Circular dichroism, CD, measurements were recorded in the homopolymer to study
the conformation of the polymer chain, as shown in Figure S3 of the SIS. In previous
studies, polymerization of HIC with the same half-titanocene complex optically active
helical polymers were obtained [52]. In the present case, the same conclusion was not
confirmed. This is probably due to the steric hindrance introduced by the bulky side chain
of TESPI. Thus, the polymer adopts a more random configuration in space. Finally, no
change in conformation was observed upon changing the temperature up to 55 ◦C.

3.2. Statistical Copolymers

A set of five copolymers of HIC and TESPI were prepared in order to calculate the
monomer reactivity ratios. Different feed ratios were involved in each copolymerization
(monomer molar ratios HIC/TESPI: 80/20, 60/40, 50/50, 40/60 and 20/80). Different
copolymers are denoted by the various feed molar ratios of the monomers, e.g., sample
20/80 indicates the copolymer was synthesized by using 20% HIC and 80% TESPI as molar
feed composition. The copolymerization procedure was monitored by SEC and 1H-NMR
spectroscopy.

The 1H-NMR spectrum of the statistical copolymer 80/20 is shown in Figure 1. The
two peaks at 3.5–4.0 ppm are assigned to protons (b), (e) and (f). The single peak at
0.98 ppm corresponds to the three methyl protons (k) of HIC and the three (o) protons of
the end-group coming from the initiator complex. In addition, the single peak at 0.61 ppm
is due to (c) protons of TESPI. The multiple peaks around 1.2 ppm belong to the protons
(a), (j), (h), (i) and (l), whereas the peak at 1.6 ppm is assigned to protons (d), (g) and (n).
Finally, the small peak at 3.24 ppm is due to the (m) protons. From the integration of the
peaks at 3.5–4.0 ppm and 0.9 ppm, the composition of the copolymer can be calculated.
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The molecular characteristics of the statistical copolymers, derived from SEC measure-
ments, along with their composition by NMR spectroscopy, are given in Table 3. The SEC
traces of the statistical copolymers, shown in Figure 2, reveal the presence of symmetrical
peaks having relatively low dispersity values. This was achieved since the conversions of
the copolymerization reactions were relatively low, meaning that under these experimental
conditions, the copolymerization procedure is well controlled. The low conversions were
also desirable in order to obey the copolymerization equation and, thus, be able to apply
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the linear methods for the calculation of the monomer reactivity ratios [54], as will be
described below.

Table 3. Molecular characteristics of the statistical copolymers.

Molar Monomer Ratio
in Feed (HIC/TESPI)

a Mw × 10−3 a Ð
b Mol Composition

(HIC/TESPI)
c Yield

80/20 22.1 1.17 87/13 38%

60/40 25.0 1.25 68/32 39%

50/50 23.6 1.26 53/47 47%

40/60 22.0 1.28 45/54 41%

20/80 11.8 1.36 19/81 44%
a by SEC in CHCl3; b by 1H NMR in CDCl3; c Based on both monomers, after precipitation and purification,
calculated gravimetrically.
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Circular dichroism data from the statistical copolymers do not confirm the existence
of helical conformation for the copolymeric chains. This is due to the random arrangement
of the monomer units along the macromolecular chain and the steric hindrance introduced
by the bulky side chain of TESPI, which facilitates a more planar conformation. Finally, no
change in conformation was observed upon changing the solution temperature.

Reactivity Ratios

The monomer reactivity ratios were estimated using the well-documented Fineman–
Ross [55], FR, inverted Fineman–Ross [55], inv-FR, Kelen–Tüdos [56] (KT) and extended
Kelen–Tüdos [56], ext-KT, graphical methods, along with the computer program CO-
POINT [57].

The FR method, employed for the calculation of the reactivity ratios rHIC and rTESPI,
corresponding to the HIC and TESPI monomers, is based on the following equations:

G = HrHIC − rTESPI

with G = X(Y−1)
Y , H = X2

Y

and X = MHIC
MTESPI

, Y = d[MHIC]
d[MTESPI]

where MHIC and MTESPI are the feed monomer composition, and dMHIC and dMTESPI are
the final copolymer composition, as measured by the NMR spectra. The linear equation
between G and H can be applied for the calculation of rHIC and rTESPI as the slope and the
intercept of the plot, respectively.
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The inv-FR method is obtained from the rearrangement of the data of the FR equation
and is described by the following relationship:

G
H

= rHIC −
1
H

rTESPI

Considering the linear plot of G/H vs. 1/H, the rHIC can be obtained from the intercept,
whereas the rTESPI from the slope of the graph.

A different approach was proposed by Kelen and Tüdos in order to provide a better
accuracy for the determination of the reactivity ratios. For this purpose, a new arbitrary
constant (α) was introduced into the FR equation. The constant is equal to

√
HminHmax,

with Hmin and Hmax being the minimum and maximum values of H, respectively. The
Kelen–Tüdos equation is given below:

η =
(

rHIC +
rTESPI

α

)
ξ − rTESPI

α

With η = G
α+H and ξ = H

H+α
The plot of η vs. ξ is a straight line, yielding −rTESPI/α and rHIC as intercepts on

extrapolation to ξ = 0 and ξ = 1, respectively.
The above-mentioned equations can only be employed for sufficiently low copoly-

merization conversions (ideally < 10%) in order to satisfy the copolymerization equation.
However, the extended KT method can be applied for higher yields (up to 50%) since it
takes into consideration the composition changes both in the reaction mixture of monomers
and in the resulting copolymer. For this purpose, a new conversion-dependent parameter
(z) is introduced, given by the equation:

z =
log(1− ζHIC)

log(1− ζTESPI)

and the previous parameters G, H are redefined as:

G =
Y− 1

a
and H =

Y
z2

The parameters ζTESPI and ζHIC are given by the following equations:

ζTESPI = w
(

µ + X
µ + Y

)

ζHIC =

(
Y
X

)
ζTESPI

where µ is the ratio of the molecular weight of PTESPI to the molecular weight of HIC, and
w is the conversion of the copolymerization reactions.

Among these linear methodologies, the KT and ext-KT methods provide reactivity
ratio values with relatively higher accuracy. However, they still are susceptible to statistical
limitations, which are inherent more or less to all linear least-square approaches. To
minimize these limitations, non-linear methodologies can be employed. Several non-
linear approaches have been developed in the literature [54]. Among them, the COPOINT
computer program is frequently employed. This software is based on non-linear least-
squared difference procedures. COPOINT is a rather simple program that numerically
integrates the differential copolymerization equations applied by the user and fits them to
the experimental composition data. The copolymerization parameters are determined after
minimizing the sum of the square difference between the measured and calculated polymer
compositions. COPOINT also evaluates the statistical error of the sum and provides the
user with a probable error range for the estimated parameters.
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The copolymerization data are given in Table S1 of the SIS, and the associated graphs
are given in Figures 3–6. The analysis was based on the terminal model [54,58]. The
similarity of the chemical nature of the two isocyanate monomers, along with the very
good linearity of the plots, support the conclusion that the terminal model better suites
this copolymerization reaction and further suggests that the copolymerization follows the
conventional copolymerization kinetics. According to the terminal model, the propagation
reaction is governed only by the nature of the monomer and of the terminal unit of the
growing polymer chain. The monomer reactivity ratios, rHIC and rTESPI, calculated by all
the aforementioned methods, are reported in Table 4.
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Table 4. Reactivity ratios of HIC and TESPI in the statistical copolymers P(HIC-stat-TESPI).

Method rHIC rTESPI

F-R 1.68 1.22

IF-R 1.58 1.09

K-T 1.54 1.07

ext K-T 1.69 1.05

COPOINT 1.49 a 0.95 b

a: ±3.6% b: ±1.99%, estimated error ranges from COPOINT measurements.

The different calculation methods yielded similar results for the reactivity ratios.
The values of both HIC and TESPI are greater than unity or very close to that, while the
reactivity ratio of HIC is considerably higher than that of TESPI. These findings reveal that
both monomers tend to homopolymerize, finally forming multiblock copolymers. Since
the reactivity ratio of HIC is higher than that of TESPI, the monomer sequences of the
HIC monomer units are longer than those of TESPI. To confirm these conclusions, the
statistical distribution of the dyad monomer sequences MHIC-MHIC, MHIC-MTESPI, and
MTESPI-MTESPI was calculated according to the Igarashi equations [59]:

X = ϕHIC −
2ϕHIC(1−ϕHIC)

1 +
[
(2ϕHIC − 1)2 + 4rHICrTESPIϕHIC(1−ϕHIC)

] 1
2

Y = (1−ϕHIC)−
2ϕHIC(1−ϕHIC)

1 +
[
(2ϕHIC − 1)2 + 4rHICrTESPIϕHIC(1−ϕHIC)

] 1
2

Z =
4ϕHIC(1−ϕHIC)

1 +
[
(2ϕHIC − 1)2 + 4rHICrTESPIϕHIC(1−ϕHIC)

] 1
2

where X, Y and Z are the mole fractions of the MHIC-MHIC, MTESPI-MTESPI and MHIC-
MTESPI dyads in the copolymer, respectively, whereas ϕHIC is the HIC mole fraction in the
copolymer. The mean sequence lengths, µHIC and µTESPI, were also calculated using the
following equations [54]:

µHIC = 1 + rHIC
[MHIC]

[MTESPI]

µTESPI = 1 + rTESPI
[MTESPI]

[MHIC]
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The results are provided in Table 5, and the plot of the dyad mole fraction versus the
HIC mole fraction is given in Figure 7. The results confirm the conclusion drawn by the
reactivity ratios.

Table 5. Dyad sequences and mean sequence lengths of the statistical copolymers.

SAMPLE M(HIC)–
M(HIC)

M(TESPI)–
M(TESPI)

M(HIC)–
M(TESPI) µ(HIC) µ(TESPI)

20/80 0.04496 0.66496 0.29009 1.35 5.09

40/60 0.22981 0.31721 0.45299 1.96 2.48

50/50 0.30276 0.24256 0.45467 2.46 1.97

60/40 0.47609 0.12109 0.40283 3.84 1.50

80/20 0.75697 0.02277 0.22026 7.02 1.24
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3.3. Block Copolymers

The synthesis of block copolymers PHIC-b-PTESPI was conducted by sequential
addition of monomers, which always starts from the polymerization of TESPI. TESPI is a
bulkier monomer than HIC with a lower rate of polymerization, as was confirmed by the
calculation of the reactivity ratios. Therefore, the polymerization of TESPI was conducted
first for the following reasons: (a) The polymerization of TESPI as the second monomer
would be very difficult due to the low rate of polymerization of this monomer and the fact
that the reaction had to be promoted in a viscous medium after the polymerization of the
HIC as the first monomer. These conditions would lead to a loss of control of the molecular
characteristics of the block copolymers and minimal incorporation of TESPI monomer units
into the final product. (b) It is well reported that the polymerization yield is not allowed
to reach very high levels in order to control the molecular characteristics of the produced
polyisocyanate. If HIC was the first monomer for polymerization, the subsequent addition
of TESPI would result in a second block, which would actually be a statistical copolymer
containing not only TESPI but HIC monomer units as well coming from the unreacted
quantity of the HIC monomer after the polymerization of the first block. Therefore, the
final product would have increased chemical heterogeneity. When TESPI is polymerized
first, the remaining quantity of the monomer will be very difficult to further react after the
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addition of HIC due to its low polymerization rate compared to that of HIC. Consequently,
the purity of the final product is highly improved.

The samples are denoted by the letter B followed by a number differentiating the
various samples. The synthetic procedure was monitored by SEC. The characteristic traces
of all samples are given in Figure 8, whereas the molecular characteristics of the block
copolymers are in Table 6. In all cases, the peaks were symmetrical, and the samples had
very low dispersity values, indicating that the copolymerization reaction was very well
controlled for all the samples. The conversions were relatively high but not quantitative
(always lower than 80% for both monomers). Relatively low molecular weight samples
were targeted in order to have lower viscosity solutions during the copolymerization reac-
tion, thus avoiding termination reactions and achieving better control over the molecular
characteristics. It was not easy to take samples for SEC analysis of the first block since
sampling from a very viscous media would result in termination reactions.
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Table 6. Molecular characteristics of the block copolymers.

Sample a Mw × 10−3 a Ð

b Mole%
Composition
(HIC/TESPI)

B1 11.1 1.19 84/16

B2 12.2 1.19 65/35

B3 13.5 1.12 28/72

B4 14.7 1.14 26/74

B5 17.3 1.16 14/86
a by SEC in CHCl3; b by 1H NMR in CDCl3.

The copolymer compositions were calculated by NMR spectroscopy, as analyzed
previously in the case of the statistical copolymers. A characteristic spectrum is given in
Figure 9. The compositions of the samples were very close to the stoichiometry employed
for the copolymer synthesis, confirming the high control, which was promoted during the
copolymerization reaction.

The chirality of the block copolymer chains was verified by their CD spectra, as shown
in Figure 10. The chirality originates from the PHIC blocks since PTESPI adopts a more
flexible and random conformation, as was indicated by the absence of signals in the PTESPI
spectrum. The copolymer exhibits a Cotton effect at 255 nm due to the n-p* transitions of
the amide chromophore, which is negative. This leads to the conclusion that the helix is
left-handed (M). At shorter wavelengths (205 nm), an exciton couplet was observed due
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to the arrangement of the chiral amide linkages along the main chain. The stability of the
helical structure in solution upon increasing the temperature was also studied [60]. The
structure changes progressively, from rigid rod to coil, with the temperature increase, in
agreement with the literature. This behavior is reversible in heating and cooling cycles.
This phenomenon is not readily observed in a low molecular weight polymer, meaning that
the helical structure remains intact at least up to 55 ◦C, as proven in previous studies [52].
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3.4. Thermal Decomposition Studies
3.4.1. Homopolymers

The thermal stability of the two homopolymers, PHIC and PTESPI, was studied by
TGA and DTG measurements under different heating rates. The results are presented in
Figures 11 and 12.
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Figure 12. TGA (a) and DTG (b) plots for PHIC at various heating rates.

The DTG plots for PHIC reveal the presence of a single decomposition peak at all
heating rates. However, the presence of a small shoulder at lower temperatures is obvious.
Despite this observation, the mechanism of thermal decomposition of PHIC is not very
complex and, in addition, the homopolymer is considered to be thermally unstable since the
decomposition process is initiated at 150 ◦C. A slightly different behavior was confirmed for
PTESPI. A major decomposition step is present as well, accompanied by a small shoulder
at lower temperatures, as in the case of PHIC. However, a second degradation peak is
also observed at much higher temperatures. This event may be attributed to the thermal
degradation of inorganic silicon-based residues produced from the decomposition of the
side groups of the PTESPI monomer units. In addition, PTESPI is considered to be a more
thermally stable polymer compared to PHIC since both the initiation and the completion
of the degradation process are located at higher temperatures (from 10 to 20 ◦C) than
PHIC chains.
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From these results, it is reasonable to conclude that the nature of the side group of
polyisocyanates may affect the thermal stability of the polymers despite the fact of the
chemical similarity of the main polymeric chain for all polyisocyanates. Coordination
polymerization techniques have been performed by our group for the homopolymerization
of 2-chloroethyl isocyanate, ClEIC [61], and 2-phenylethyl isocyanate, PEIC [62], as well.
The thermal stability of the respective homopolymers follows the order: PClEIC < PHIC
< PTESPI < PPEIC. The thermally stable aromatic ring in PPEIC offers higher thermal
stability to the respective homopolymer compared to the other polyisocyanates. PClEIC
was found to be the more thermally sensitive polymer. The thermal elimination of the side
chlorine groups may be associated with the formation of reactive radicals, which evidently
promotes the further decomposition of the polymeric chains. More details will be provided
in future publications.

The rate of heating affects the thermal decomposition by increasing the temperatures
of decomposition for the same sample. This result confirms that the thermal degradation
process is also a kinetic phenomenon. The higher the heating rate, the slower the response
of the material to the induced change.

3.4.2. Statistical Copolymers

The thermal degradation of the statistical copolymers 80/20, 60/40 and 50/50 was
studied, and the results are displayed in Figure 13 and Figures S4 and S5 of the SIS.
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Figure 13. TGA (a) and DTG (b) plots for the statistical copolymer 80/20 at various heating rates.

The thermal decomposition profiles of the statistical copolymers combine the charac-
teristics of both the PHIC and PTESPI homopolymers degradation behavior. A single major
decomposition step prevails, having a small shoulder at lower temperatures, as in the case
of the PHIC and PTESPI homopolymers. A second small peak is also visible, coming from
the presence of the sequences of the TESPI monomer units. This peak is not so pronounced
as in the case of the PTESPI homopolymer. However, the peak becomes more intensive
upon increasing the TESPI content of the statistical copolymer.

The temperature at the maximum rate of thermal degradation is decreased upon
increasing the content in HIC monomer units. This result is reasonable, taking into account
the increased thermal stability of the PTESPI homopolymer compared to that of PHIC. In
addition, this temperature value is closer to that found for the PTESPI sample, even in
the case where the content in HIC monomer units is higher in the copolymer. Finally, the
range of decomposition temperatures is similar to that found for the PTESPI homopolymer.
These results indicate that the presence of TESPI units offer greater influence than the HIC
units to the statistical copolymers, improving their thermal stability.
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3.4.3. Block Copolymers

The thermal stability of the block copolymers was examined at a heating rate of
10 ◦C/min. The TGA and DTG plots are given in Figure 14.
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The degradation profiles of the blocks are somewhat different than those of the statistical
copolymers, thus manifesting the effect of the macromolecular architecture on the thermal
stability. The main decomposition peak is similar to that observed for the statistical copolymers
as well. However, the peak at higher temperatures (450–500 ◦C), attributed to the PTESPI
block, is clearly observed, and its contribution becomes progressively more pronounced upon
increasing the PTESPI content of the block copolymers. In addition, the shoulder at lower
temperatures, which is especially obvious in the case of the PHIC homopolymer, is clearly
present in the case of the block copolymers at the range of 150–200 ◦C. This shoulder becomes
a distinct peak for the sample having the highest PTESPI content. In this case, the temperature
of the main decomposition peak is increased due to the increased thermal stability of PTESPI
compared to PHIC. Therefore, the shoulder at lower temperatures is further separated from
the main degradation event and becomes obvious as a separate small peak. These results
clearly indicate that the two blocks have an independent decomposition profile without being
affected by each other to a great extent.

The temperature at the major degradation peak is closer to the temperature corre-
sponding to the PTESPI homopolymer than that of PHIC, as in the case of the statistical
copolymers. This conclusion indicates that the presence of PTESI offers increased thermal
stability to the block copolymers.

3.5. Kinetics of the Thermal Decomposition of the Homopolymers and the Statistical Copolymers

Several methodologies have been applied for the calculation of the activation energies,
Ea, of the thermal decomposition of polymeric substances [63] Among them, the well-
established isoconversional Ozawa–Flynn–Wall (OFW) [64–66] and Kissinger–Akahira–
Sunose (KAS) [67] methods play a dominant role. They can be applied using data of
the TGA measurements without knowledge of the exact mechanism of degradation. In
addition, they provide data for the Ea at each step of the decomposition process. They are
based on the following equations:

(OFW): lnβ = ln
[

0.0048AEa
g(a)R

]
− 1.0516

Ea
RT

(KAS): ln
β

T2 = ln
[

AR
g(a)Ea

]
− Ea

RT
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where α is the conversion, f(α) is the conversion function, g(α) is the integral conversion, β
is the heating rate, T is the absolute temperature, R is the gas constant (R = 8.314 J

mol*K ), A
is the pre-exponential factor ( 1

min ), and Ea is the activation energy ( kJ
mol ). Displaying lnβ

versus 1
T or ln( β

T2 ) versus 1
T , respectively, should emerge in lines with a slope that is directly

proportional to the activation energy. Moreover, a single-step degradation reaction can
be inferred if the determined activation energy values do not significantly change with
different values of α.

The OFW and KAS plots for the PHIC and PTESPI homopolymers, along with the
80/20, 60/40 and 50/50 statistical copolymers, are given in Figure 15 and Figures S6–S9 of
the SIS, whereas the Ea values for each sample and for various conversions are provided in
Tables 7 and 8.
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Table 7. Activation Energy (Ea) values for the homopolymers and the statistical copolymers
(KAS methodology).

Conversion Ea (kJ/mol)
PHIC

Ea (kJ/mol)
PTESPI

Ea (kJ/mol)
50/50

Ea (kJ/mol)
60/40

Ea (kJ/mol)
80/20

0.1 133.78 73.58 68.11 144.34 117.54

0.2 116.64 67.09 98.78 123.32 106.75

0.3 107.00 62.55 54.31 109.91 100.04

0.4 95.58 60.48 88.30 104.05 96.75

0.5 100.54 58.65 86.52 101.26 94.86

0.6 97.39 48.19 85.52 99.82 93.74

0.7 96.06 61.86 85.28 99.30 85.23

0.8 94.71 57.05 85.35 99.02 94.16

0.9 93.42 27.77 86.19 78.53 101.64

Table 8. Activation Energy (Ea) values for the homopolymers and the statistical copolymers
(OFW methodology).

Conversion Ea (kJ/mol)
PHIC

Ea (kJ/mol)
PTESPI

Ea (kJ/mol)
50/50

Ea (kJ/mol)
60/40

Ea (kJ/mol)
80/20

0.1 134.46 81.39 75.25 152.06 125.16

0.2 118.38 75.29 106.76 131.56 114.58

0.3 109.39 71.04 62.69 118.10 108.03

0.4 98.64 69.19 96.81 112.38 104.87

0.5 103.47 67.55 95.19 109.72 103.08

0.6 100.57 57.52 94.22 108.38 102.05

0.7 99.38 62.17 94.43 107.96 93.59

0.8 98.15 69.27 95.25 107.78 102.64

0.9 96.99 42.13 75.25 87.49 110.24

The results derived from the OFW and KAS methods for the homopolymers and the
copolymers are similar, indicating that both approaches provide reliable data for the Ea
values. These values are generally small for all samples and conversions, which means
that a large energy barrier is not required for thermal degradation and that this family of
polymers does not belong to the class of thermally stable polymers.

In particular, the Ea values of PTESPI are relatively smaller than those of PHIC.
The differences are not huge since both homopolymers belong to the same family of
polymers with a common main chain structure. These variations have to do with the
presence of the side groups attached to the main chain [68,69]. The existence of these
differences demonstrates that the thermal degradation mechanistically involves not only
the cleavage of the main chain to smaller ones but also the cleavage of the side groups.
These two events occur simultaneously, which is why the thermal degradation peaks
from the DTG plots are not perfectly symmetrical and show shoulders in many cases.
However, the Ea values do not appreciably change with the conversion, indicating that the
degradation mechanism is relatively simple and mainly remains approximately the same
throughout the thermal degradation.

In the case of the copolymers, the Ea values are generally between the values of the
respective homopolymers but clearly much closer to those of the PHIC homopolymer. This
is reasonable since the examined copolymers had a higher content in HIC monomer units
compared to TESPI monomer units.
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Among the various copolymers, the largest Ea values were observed for the sample
60/40. Probably for this particular sample, the maximum possible stabilization of the
tertiary structure is achieved, meaning that a higher energy barrier needs to be overcome
for the thermal degradation of the sample. Similar behavior, in the sense that some of the
copolymers with an intermediate composition presented the maximum Ea value, has also
been observed in the statistical copolymers of PHIC with poly(2-chloroethyl isocyanate),
P(HIC-stat-ClEtIC) [61] and poly(2-phenylethyl isocyanate), P(HIC-stat-PEIC) [62].

It is known that the function g(α) depends on the conversion mechanism and its
mathematical model [70]. Algebraic expressions of functions of the most common re-
action mechanisms operating in solid-state reactions are presented in the SIS (Table S2).
Rearranging the KAS equation, the following equation is obtained:

ln
g(a)
T2 = ln

[
AR
βEa

]
− Ea

RT
(1)

According to this equation, the ln[g(a)/T2] vs. 1000/T graphs are created for a certain
value of β (for example, β = 10 ◦C/min) and for the various proposed models. The slopes
of these plots are able to determine the Ea values, while the intercepts may lead to the
calculation of the pre-exponential factors, A. The plot with the best linear fitting and the
best agreement between the theoretical and the experimental Ea values, as determined by
the OFW and KAS methods, represents the mathematical model or mechanism by which
the thermal decomposition occurs. The plot with the best linearity and the best proximity
of the Ea values for the homopolymer PTESPI is given in Figure 16. Taking into account this
result, the PTESPI homopolymer degrades with the mechanism [F1/3] since the Ea values
predicted by the model and experimentally obtained by the OFW and KAS approaches are
identical. This mechanism belongs to the category of chemical reactions. The corresponding
diagram is of the theoretical model with Ea equal to 50.80 J/mol and a pre-exponential
factor equal to 8.00 min−1 (Figure 16).
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4. Conclusions

Coordination polymerization employing an optically active half-titanocene complex
was efficiently applied for the synthesis of poly[3-(triethoxysilyl)propyl isocyanate], PTESPI
and the subsequent preparation of well-defined statistical and block copolymers with
poly(n-hexyl isocyanate). All samples were characterized by nuclear magnetic resonance,
NMR, spectroscopy and size exclusion chromatography, SEC. The terminal model was



Polymers 2023, 15, 4113 19 of 22

applied to calculate the monomer reactivity ratios of the statistical copolymers, employing
both linear graphical methods and the computer program COPOINT. It was found that the
formation of multiblock copolymers is favored, having longer sequences of HIC monomer
units. The dyad monomer sequences and the mean sequence lengths were also calculated,
confirming the previous conclusions. Well-defined block copolymers PTESPI-b-PHIC with
controlled molecular weights and low dispersities were synthesized by sequential addition
of monomers, starting from the polymerization of TESPI. It was found by the CD spectra
that PTESPI adopts a more flexible and random conformation in solution. However, in the
case of the block copolymers, a negative Cotton effect at 255 nm was observed due to the
helical structure, which is adopted by the PHIC block. The thermal stability and the kinetics
of the thermal decomposition of the homopolymers, the statistical and the block copolymers
were studied by Thermogravimetric Analysis, TGA, and Differential Thermogravimetry,
DTG. The activation energy of this process was calculated, employing the isoconversional
Ozawa–Flynn–Wall (OFW) and Kissinger–Akahira–Sunose (KAS) approaches. It was
found that PTESPI is relatively thermally more stable than PHIC, in terms that the thermal
degradation of PTESPI is completed at much higher temperatures than PHIC. In other
words, the nature of the polymers’ side groups considerably affects the thermal stability
of the polyisocyanate chains. The thermal decomposition of the statistical and block
copolymers resembles that of the respective homopolymers.
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1H NMR spectrum of PTESPI in CDCl3; Figure S3: CD spectrum of PTESPI in hexane for various
temperatures; Figure S4: TGA and DTG plots for the statistical copolymer 60/40 at various heating
rates; Figure S5: TGA and DTG plots for the statistical copolymer 50/50 at various heating rates;
Figure S6: (OFW) and (KAS) plots for the statistical copolymer 80/20; Figure S7: (OFW) and (KAS)
plots for the statistical copolymer 50/50; Figure S8: (OFW) and (KAS) plots for PTESPI; Figure S9:
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Table S2: Models of thermal decomposition.
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