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Abstract: Given the increasingly prominent contradiction between the supply of and demand for
wood, the abundant resource of bamboo can be a good substitute. Bamboo scrimber can effectively
improve the utilization rate of bamboo and has good mechanical properties. However, bamboo
scrimber has the problem of poor mildew resistance, and does not meet the requirements for outdoor
applications. In this study, in order to further improve the mildew resistance and mechanical
properties of bamboo scrimber, alkali treatment was used to remove some nutrients from the bamboo
bundles and change the pH of the bamboo scrimber. The results showed that nutrients such as
hemicellulose, lignin, starch, and sugar were notably removed from bamboo bundles, and the pH
of bamboo was slightly alkaline. The anti-mildew effect was significantly enhanced, which could
allow use in outdoor environments, and the mechanical properties and dimensional stability were
also improved. Among them, TB6 bamboo scrimber showed comprehensively excellent properties.
The infection time in the laboratory mildew test increased from 3 days to more than 30 days, and the
infection time in the outdoor mildew resistance test increased from 1 week to more than 8 weeks;
the static bending intensity of TB6 increased by 62.6% to 150 MPa, and the bending modulus
increased by 71.7% to 14.2 GPa; the change rate of water absorption thickness was reduced to 0.58%.
This modification method effectively improved the mildew resistance of bamboo scrimber, while
maintaining high mechanical strength, and provides a new method for the outdoor application of
bamboo scrimber.

Keywords: bamboo scrimber; alkali treatment; anti-mildew; mechanical properties; dimensional
stability

1. Introduction

With the rapid development of the economy, the demand for wood in various fields
is increasing, and the problem of wood shortage is becoming more prominent [1,2].
In addition, in recent years, some countries have taken a series of measures to limit
the logging of timber as a means of timber protection. Bamboo is an ideal building
material, with the advantages of high yield, short growth period, high strength, and
good toughness [3,4]. Therefore, the utilization of bamboo is of great significance in
relieving the pressure on wood resources. With the rapid development of the bamboo
processing industry, a large number of bamboo composite materials, especially bamboo
scrimber, laminated bamboo and plybamboo have been developed [5]. Compared with
other bamboo composite materials, bamboo scrimber contains more raw materials,
including small-sized bamboo, so the utilization rate of bamboo scrimber is higher [6,7].
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However, bamboo contains a large amount of nutrients such as starch and sugar, making
bamboo-based materials susceptible to erosion by mold and rotting fungi, resulting in
a decrease in density and strength, discoloration of the material surface, and a serious
impact on its service life [8]. Therefore, it is necessary to develop bamboo scrimber with
excellent mechanical strength and mildew resistance [9].

In order to extend the service life of bamboo, many methods have been adopted,
including physical and chemical modifications. Physical modification methods include
high-temperature carbonization [10], ultrasonic processing [11], heat treatment [12,13], and
microwave treatment [14]. Physical mildew prevention methods are simple processes with
a low cost, but they cannot guarantee that bamboo will not be corroded by mold over a
long time. Chemical modification methods include soaking, acetylation [15,16], and resin
modification [17,18], etc. Chemical mildew control methods are effective and durable,
but they are costly and complex to operate, and can also cause environmental pollution
and harm human health. Furthermore, many microbes have developed resistance to used
chemicals [19]. Therefore, it is necessary to develop a new and effective method to improve
the mildew resistance of bamboo.

In this work, we developed bamboo scrimber with mildew resistance and good
mechanical properties (Figure 1). First, a sodium hydroxide (NaOH) and sodium sulfite
(Na2SO3) impregnating process was used to remove most of the hemicellulose, lignin,
starch, sugars, and other nutrients; at the same time, the internal pH of bamboo was
increased, which helped to improve its mildew resistance. Then, the bamboo bundles were
impregnated and hot-pressed to form a dense structure, resulting in bamboo scrimber with
excellent mechanical properties.
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Figure 1. Schematic diagram of the preparation process and internal structure change of mildew
resistant bamboo scrimber.

2. Experimental Section
2.1. Materials

Bamboo bundles (1000 mm × 20 mm × 5 mm) and phenolic resin were purchased
from Zhejiang Yongyu Furniture Co., Ltd. (Taizhou, China). Bamboo bundles were cut in
150 mm × 20 mm × 5 mm. NaOH and Na2SO3 were purchased from Nanjing Chemical
Reagent Co., Ltd. (Nanjing, China). All chemicals used in the experiments were of analytical
reagent grade. Aspergillus niger, Penicillium citrinum, and Trichoderma viride were received
from the lab.
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2.2. Treatment of Bamboo Bundles

First, 2.5 mol·L−1 NaOH and 0.4 mol·L−1 Na2SO3 solutions were prepared. The
bamboo bundles were impregnated in a mixture of 80 ◦C for 0, 0.5, 1, 2, 4, 6, 8 and 10 h,
respectively. After treatment, the bamboo bundles were rinsed with deionized water and
dried until the moisture content reached 10%.

2.3. Preparation of Bamboo Scrimer

The treated bamboo bundles were soaked in phenolic resin at room temperature for
15 min, then pressed at 150 ◦C and 3 MPa for 18 min. The size of the bamboo scrimber
was 150 mm × 150 mm × 15 mm, and the average density was 1.0 g·cm−1. The bamboo
bundles and bamboo scrimber prepared by alkali treatment 0.5, 1, 2, 4, 6, 8, and 10 h were
named TB0.5, TB1, TB2, TB4, TB6, TB8, and TB10, respectively, and the control group was
named NB.

2.4. Anti-Mildew Property

The anti-mildew property was evaluated according to the Chinese national standard
GB/T 18261 [20]. In this study, Aspergillus niger, Penicillium citrinum and Trichoderma viride
were used for mildew resistance testing. Bamboo scrimber and mold were incubated at
28 ◦C and 85% relative humidity for 30 days. Outdoor mildew tests were carried out
during the warm and humid season. The samples were stacked in the natural environment,
exposing them to the natural conditions of mold infection. The test ended when the surface
of the control sample was completely infected with mold. The prevention efficiency was
evaluated based on Table 1 and Equation (1).

E =

(
1 − D1

D0

)
× 100 (1)

where D1 is the average infection value (AIV) of the treated sample and D0 is the AIV of
control sample.

Table 1. Sample infection value classification [20].

Infection Value Sample Infected Area

0 No mycelium or mold
1 Surface infected area is less than 1/4
2 Surface infected area is between 1/4 and 1/2
3 Surface infected area is between 1/2 and 3/4
4 Surface infected area is over 3/4

2.5. Mechanical Properties

Flexural strength and modulus of elasticity were tested according to Chinese national
standard GB/T 17657-2013 using a universal testing machine [21]. Three-point bending test
was performed on 5 samples in each group. The size of sample was 150 mm× 10 mm× 5 mm.

2.6. Dimensional Stability

Dimensional stability was tested according to GB/T 17657. The specimens were placed
in a constant temperature and humidity chamber with a temperature of 23 ± 2 ◦C and
relative humidity of (50 ± 3)% for at least 72 h for balanced treatment. Part of the specimens
were placed in an electric thermostatic drying oven with a temperature of 70 ± 2 ◦C for
24 h and the length of the samples was measured. The remaining specimens were placed
in the constant temperature and humidity chamber with a temperature of 40 ± 2 ◦C and
relative humidity of 90–95%. After treatment for 96 ± 1 h, their length and thickness were
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measured to obtain the total size change rate. The length change rate and thickness change
rate were calculated according to Equations (2) and (3).

∆L =
l2 − l1

l1
× 100 (2)

∆t =
t2 − t1

t1
× 100 (3)

where l1 represents the initial length of the sample, l2 represents the final length of the
sample, t1 represents the initial thickness of the sample, and t2 represents the final thickness
of the sample.

2.7. pH Measurement

The pH of bamboo scrimber was measured according to the Chinese national standard
GB/T 6043-2009 [22]. Three grams of bamboo powder was accurately weighed, placed in a
50 mL beaker; 30 mL of distilled water, free of carbon dioxide, was accurately measured,
mixed for 5 min, and then stirred for 15 min. After standing for 20 min, pH value was
measured.

2.8. Chemical Analysis

The samples were sliced along the transverse direction, mounted on a specimen holder
with a conductive adhesive, then gilded with sputtering. Scanning electron microscopy
(SEM, S2020641400 TM3030, Hitachi, Tokyo, Japan) was used to observe the cross-section
morphology of alkali treated samples and untreated samples under the accelerated voltage
of 15 kV. The bamboo bundles were characterized by Fourier transform infrared spectrome-
try (FTIR, S20023024 IR Prestige-21, Shimadzu, Kyoto, Japan). Each group of samples was
ground into powder and pressed with KBr, and the wavenumber was between 4000 and
400 cm−1. The crystal structure changes of the sample fibers were detected by X-ray diffrac-
tion (XRD, LabX XRD-6000, Shimadzu, Kyoto, Japan), and all samples were pulverized
into powder using a small, low-speed grinder. XRD used Cu Kα (λ = 1.5418 nm) radiation,
2θ range of 5–60◦, and step size of 0.02◦. The crystallinity (CrI) of cellulose before and after
treatment was calculated by the method of Segal [23]:

CrI =
(

I200 − Iam

I200

)
× 100% (4)

where CrI is the relative crystallinity, I200 is the diffraction peak of 200 crystal plane, and
Iam is the diffraction intensity of amorphous region.

The relative contents of cellulose, hemicellulose, and lignin in the bamboo bundles
were calculated by Van Soest method [24]. The content of bamboo starch was determined
by UV spectrophotometry, and 1.0 g of dried bamboo powder was weighed and placed
into a beaker, and 70 mL of distilled water was added for boiling. After boiling, the
starch solution was immediately pumped and filtered to obtain bamboo starch filtrate.
The absorbance value of bamboo starch solution at the peak absorption wavelength of
580 nm was determined using an ultraviolet spectrophotometer. The soluble sugar content
of bamboo was determined using a UV spectrophotometer: 1.5 g of sample powder was
weighed and 30 mL distilled water was added and heated at 50 ◦C for 30 min. The
absorbance value was measured at 490 nm.

3. Results and Discussion
3.1. Chemical Characterization

Figure 2a shows the XRD pattern of the sample before and after alkali treatment. The
results showed that the location of the diffraction peak of cellulose in bamboo did not
change much, indicating that alkali treatment has little effect on the crystal area of cellulose,
and the crystal structure of bamboo cellulose has not been damaged [25]. The diffraction
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peaks of all bamboo bundles were 16.6◦, 21.9◦, and 34.6◦, representing the (110), (200), and
(004) planes of cellulose, respectively. As the alkali treatment time prolonged, the intensity
of the I200 crystal plane diffraction peaks gradually increased. The relative crystallinity of
each sample was calculated according to the Segal method and Figure S1. Among them,
the peak intensity of Iam (18.3◦) and I200 was used to calculate the crystallinity [26]. The
calculation results of crystallinity are shown in Figure 2b. The crystallinity of NB was 52.1%,
and as the alkali treatment time was prolonged, the crystallinity of the sample gradually
increased, with TB8 having the highest crystallinity (57.1%), 10.8% higher than NB. This is
because the removal of hemicellulose and the extraction of pectin exposed the hydroxyl
groups of amorphous microfibers, forming hydrogen bonds with the microfibers on the
surface of the crystallization zone, thereby improving the crystallinity of bamboo fibers [27].
However, the crystallinity of TB10 slightly decreased, mainly due to the dissolution of
lignin and hemicellulose, as well as the reaction between the alkali and the crystallization
zone, which caused the destruction of the crystal structure, resulting in a slight decrease in
crystallinity.
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FTIR was used to analyze the effect of alkali treatment on the chemical composition
of bamboo, as shown in Figure 2c,d. The absorption peaks at 895 cm−1, 1165 cm−1,
2910 cm−1, and 3420 cm−1 belong to the C–H stretching vibration peak, C–O–C stretch-
ing vibration peak, –CH2 stretching vibration peak and O–H absorption peak in the
molecular structures of cellulose, respectively [28–30]. As shown in Figure S2a,d, after
alkali treatment, the characteristic peak intensity at 3420 cm−1 and 1165 cm−1 increased,
indicating that alkali treatment increased cellulose relative content. In the control group,
there was an absorption peak at 1735 cm−1, which disappeared after 1 h of alkali treat-
ment (Figure S2b). This peak was the stretching vibration absorption peak of non-
conjugated C=O of hemicellulose [31,32]. The disappearance of this peak indicated that
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the hemicellulose had been destroyed, which may have been due to the hydrolysis reac-
tion between hemicellulose and alkali. The absorption peaks at 1600 cm−1, 1510 cm−1,
1462 cm−1, and 1250 cm−1 belong to the aromatic skeletal vibration, asymmetric C–H
bending vibration from –OCH3, and C–O stretching of the syringyl ring and ester in
the molecular structures of lignin [31–33]. The intensity of 1250 cm−1 decreased after
alkali treatment (Figure S2c), indicating that alkali treatment also reduced lignin content.
These results are consistent with the analysis of XRD above.

3.2. Composition and Morphology Characterization

As shown in Figure 3, the chemical components of bamboo after different alkali
treatment times were quantitatively determined by the Van Soest method. The relative
contents of cellulose, hemicellulose and lignin in control sample were 55 wt%, 21.9 wt%
and 10.4 wt% respectively. The relative contents of lignin and hemicellulose decreased
with the increase of alkali treatment time. When the alkali treatment time was 6 h, the
relative content of lignin decreased to 1.9 wt%, while at 8 h and 10 h, the relative content
decreased to 0.05 wt%. The hemicellulose and lignin were removed in the modified bamboo
bundles, and the relative content of cellulose increased; this was consistent with FTIR and
XRD analysis. The starch and sugar in bamboo are the main factors that contribute to
its susceptibility to mold. As shown in Figure 3, with the increase in treatment time, the
content of starch and sugar in alkali-treated bamboo significantly decreased. In untreated
bamboo, the starch content and sugar content were 5.44% and 1.13%, respectively. After
6 h of treatment, the starch content and sugar content of modified bamboo decreased to
1.99% and 0.57%, respectively. This is mainly because a portion of amylose and sugar
are dissolved in water. In addition, alkaline solution caused amylose to gelatinize and
further dissolve in water, directly reducing the content of starch and sugar in bamboo. The
nutrients in the modified bamboo scrimber were reduced, which helped to improve its
mildew resistance.
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The parenchyma cells of the untreated bamboo scrimber were intact (Figure 4c), while
the treated parenchyma cells collapsed and separated (Figure 4d). This is also because after
alkali treatment, part of the lignin and hemicellulose in bamboo were removed, and a large
number of hydrogen bonds were formed between cellulose, leading to the collapse and
stratification of the parenchyma cells. The untreated parenchyma cells of bamboo scrimber
contained a lot of starch particles (Figure 4a), while these substances disappeared in the
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parenchyma cells treated with alkali (Figure 4b), which was consistent with the results
of previous studies [34,35]; this result was also consistent with that of the starch content
above. This is because after alkali treatment, the starch was gelatinized and dissolved in
the solution, and part of parenchyma cells broke, so that gelatinized starch particles can
more easily precipitate from the cell. Alkali treatment degraded nutrients such as starch in
bamboo, thus improving the mildew resistance of bamboo. These findings are the same as
the results of chemical composition characterization.
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3.3. Anti-Mildew Property

Aspergillus niger, Penicillium citrinum, and Trichoderma viride were selected for mildew
resistance testing, and the mixed bacteria were incubated with the samples for 30 days
(Figure 5a). Obviously, the control sample had poor mildew resistance, as the infection
rate was 100% during over an incubation period of only 6 days. After alkali treatment,
the infection rate of mold decreased and the mildew resistance increased. After 8 days
of incubation with the mixed sample, the TB0.5 sample first developed mold. On the
10th day, TB1 sample also contracted mold. On day 14, the infection rate of TB1 reached
40%, and mold infection began to appear in the sample of TB2. On day 22, the entire
surface of TB2 was infected. Until 30 days of incubation, the TB6 sample was not infected,
and the control efficiency of these samples reached 100% (Figure 5a,e). Outdoor mildew
testing was carried out during the warm and humid season. NB started to mold in the
first week, and the surface was covered with mold in 7 weeks (Figure 5b). Three weeks
later, TB0.5 was also infected, with a final infection of about 50%. TB1 and TB2 were
moldy at weeks 5 and 6, respectively. By the end of the test, no mildew was found in the
samples treated for 4 h or more (Figure 5b,f). Figure 5c shows the efficacy of laboratory
and outdoor mildew prevention tests. TB6, TB8, and TB10 exhibited excellent anti-mold
performance. This is because alkali treatment dissolved nutrients such as starch and sugar
in water, which directly reduced the content of nutrients in bamboo, resulting in insufficient
nutrition for the mold, thus inhibiting the growth and reproduction of mold. Figure 5d
shows a comparison of the mildew resistance of bamboo obtained from our work with
other different treatments [1,36–38]. As can be seen, our work achieved effective mildew
prevention over a longer period of time.
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The optimal pH value for common molds such as Aspergillus niger, Penicillium viridis,
and Aspergillus flavus is 4–6 [39], while most bamboo is acidic, with pH ranging from 4.8
to 6.6, which is also one of the reasons for serious mildew of bamboo. The pH value of
untreated bamboo was 7.06 (Table 2), the pH values of alkali-treated bamboo were greater
than 7, and the pH value of TB10 reached 8. After alkali treatment, the pH value of bamboo
deviates from the optimal pH range of mold growth, affecting the activity of mold metabolic
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enzymes and nutrient absorption, which is also one of the reasons for the decrease in mold
growth on bamboo after alkali treatment.

Table 2. pH of untreated bamboo and treated bamboo.

Sample pH

NB 7.06
TB0.5 7.53
TB1 7.54
TB2 7.71
TB4 7.73
TB6 7.86
TB8 7.85

TB10 8.03

3.4. Mechanical Properties

The mechanical properties of bamboo scrimber were measured by three-point bending
test, as shown in Figure 6a. The flexural strength (MOE) and flexural modulus (MOR) of
untreated bamboo scrimber were 8.29 GPa and 92.5 MPa, respectively. Compared with
the untreated samples, the mechanical properties of the samples treated with alkaline
were obviously improved. With the extension in alkali treatment time, the mechanical
properties of bamboo scrimber first increased and then decreased. The MOR of TB6 was
the highest, which was 62.6% higher than that of NB, reaching 150 MPa, and its MOE
was also the highest, which was 71.7% higher than that of the NB, reaching 14.2 GPa. The
improvement in mechanical properties of TB6 can be attributed to the removal of most
of the hemicellulose and lignin in the bamboo bundle, exposing more cellulose surfaces.
The large number of hydroxyl groups on the surface of cellulose interact to form hydrogen
bonds, thereby increasing the density of hydrogen bonds [40]; this is consistent with
FTIR and XRD analysis. In addition, after alkali treatment, bamboo cell walls of porosity
increased, the intercellular layer is removed, basically forming micron-grade of directional
bamboo cellulose fiber. Therefore, phenolic resin is more easily immersed in cell walls and
intercellular spaces, generating hydrogen bonds and van der Waals forces with bamboo,
thereby improving the mechanical properties of bamboo, as shown in Figure 6b. After alkali
treatment for 8 h and 10 h, the mechanical properties of the modified bamboo scrimber
decreased, but the MOE and MOR were still higher than those of the control. This is
because the chemical treatment time is too long, and too much lignin and hemicellulose are
removed, so the overall structure of bamboo cannot be maintained, resulting in a decrease
in mechanical properties [41].

3.5. Dimensional Stability

In a hot and dry environment, the ambient humidity decreases and the length of
sample reduces, because the water in the bamboo scrimber spreads into the surrounding
environment, causing the sample to shrink, which results in a decrease in length. In high-
humidity environments, the size of the sample increased with increasing environmental
humidity. This is because external water enters bamboo fibers through pipelines, increasing
the size of the fiber. The change rates of thickness and length of NB are relatively high,
reaching 1.94% and 0.58%, respectively. This is because hemicellulose and cellulose in
bamboo contain lots of hydrophilic free hydroxyl groups. Under the high-humidity en-
vironment, water fully enters the cell wall and cell cavity. The free hydroxyl groups on
cellulose and hemicellulose adsorb water molecules from the environment through hydro-
gen bonds and molecular forces, leading to swelling, which ultimately leads to the increase
in bamboo size [42]. The size change rate of the alkali-treated sample was lower than that of
the untreated bamboo scrimber. The size change rate of TB2, TB4, and TB6 were lower, with
the thickness change rate below 1% and the length change rate between 0.15% and 0.17%
(Table 3), indicating that TB2, TB4, and TB6 have good dimensional stability. This is because
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in a highly alkaline solution, hemicellulose and lignin are degraded, and a large number of
hydrophilic groups are removed, thereby reducing the hygroscopic property of bamboo
scrimber. In contrast, during alkali treatment, the removal of lignin and hemicellulose
results in increased cell wall porosity, which provides space for the penetration of phenolic
resin. Therefore, the bamboo fibers are completely covered with phenolic resin, preventing
the entry of water [43–45]. In summary, highly alkaline solution can degrade hemicellulose
and lignin in bamboo, reduce the moisture absorption performance of bamboo scrimber,
and improve its dimensional stability.

Polymers 2023, 15, x FOR PEER REVIEW 10 of 13 
 

 

 
Figure 6. Mechanical properties of untreated and treated samples. (a) MOE and MOR of untreated 
and treated bamboo scrimber. (b) Diagram of cellulose and phenolic resin binding. 

3.5. Dimensional Stability 
In a hot and dry environment, the ambient humidity decreases and the length of 

sample reduces, because the water in the bamboo scrimber spreads into the surrounding 
environment, causing the sample to shrink, which results in a decrease in length. In high-
humidity environments, the size of the sample increased with increasing environmental 
humidity. This is because external water enters bamboo fibers through pipelines, increas-
ing the size of the fiber. The change rates of thickness and length of NB are relatively high, 
reaching 1.94% and 0.58%, respectively. This is because hemicellulose and cellulose in 
bamboo contain lots of hydrophilic free hydroxyl groups. Under the high-humidity envi-
ronment, water fully enters the cell wall and cell cavity. The free hydroxyl groups on cel-
lulose and hemicellulose adsorb water molecules from the environment through hydro-
gen bonds and molecular forces, leading to swelling, which ultimately leads to the in-
crease in bamboo size [42]. The size change rate of the alkali-treated sample was lower 
than that of the untreated bamboo scrimber. The size change rate of TB2, TB4, and TB6 
were lower, with the thickness change rate below 1% and the length change rate between 
0.15% and 0.17% (Table 3), indicating that TB2, TB4, and TB6 have good dimensional sta-
bility. This is because in a highly alkaline solution, hemicellulose and lignin are degraded, 
and a large number of hydrophilic groups are removed, thereby reducing the hygroscopic 
property of bamboo scrimber. In contrast, during alkali treatment, the removal of lignin 
and hemicellulose results in increased cell wall porosity, which provides space for the 
penetration of phenolic resin. Therefore, the bamboo fibers are completely covered with 
phenolic resin, preventing the entry of water [43–45]. In summary, highly alkaline solution 
can degrade hemicellulose and lignin in bamboo, reduce the moisture absorption perfor-
mance of bamboo scrimber, and improve its dimensional stability. 

  

Figure 6. Mechanical properties of untreated and treated samples. (a) MOE and MOR of untreated
and treated bamboo scrimber. (b) Diagram of cellulose and phenolic resin binding.

Table 3. The size change rate of the samples with the environmental.

Sample Thickness Change Rate (%) Length Change Rate (%)

NB 1.94 ± 0.08 0.58 ± 0.04
TB0.5 1.57 ± 0.05 0.58 ± 0.01
TB1 1.38 ± 0.06 0.22 ± 0.01
TB2 0.96 ± 0.04 0.15 ± 0.03
TB4 0.69 ± 0.02 0.16 ± 0.01
TB6 0.58 ± 0.02 0.17 ± 0.02
TB8 0.62 ± 0.03 0.49 ± 0.03

TB10 0.60 ± 0.03 0.33 ± 0.02

4. Conclusions

This study used a process of alkali treatment, phenolic resin impregnation, and hot-
pressing to prepare modified bamboo scrimber, which showed enhanced mildew resistance
and dimensional stability while maintaining its high mechanical properties. The results
showed that compared with untreated bamboo scrimber, the MOR of TB6 samples increased
by 62.6% to 150 MPa, and the MOE increased by 71.7% to 14.2 GPa; the infection time in the
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laboratory mildew test increased from 3 days to more than 30 days, and the infection time in
the outdoor mildew resistance increased from 1 week to more than 8 weeks; and the change
rate of water absorption thickness also decreased to 0.58%. This occurred because: (1) alkali
treatment partially removed some nutrients from the bamboo bundle and increased the
pH value of the bamboo, changing the internal environment, inhibiting the growth and
reproduction of mold, and improving the mildew resistance of the bamboo scrimber; (2) the
partial removal of hemicellulose and lignin improved the connections between cellulose,
enhancing the hydrogen bond density and van der Waals forces between fibers. Phenolic
resins also generated hydrogen bonds and van der Waals forces with bamboo bundles after
high-pressure densification, which further improved the mechanical properties of bamboo
scrimber. This modification method can effectively improve the mechanical properties
of bamboo and extend its service life, which is of great significance for expanding the
applications of bamboo in outdoor buildings.
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