Influence of Isothermal Aging on Microstructure and Shear Property of Novel Epoxy Composite SAC305 Solder Joints
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Thermal Behaviors of the Solder Pastes
3.2. Microstructure Observation
3.3. IMC Growth Kinetics
3.4. Shear Force
3.5. Fracture Morphology
4. Conclusions
- After high-temperature storage for 1000 h, the macroscopic images revealed the epoxy layer on the joint surface remained intact without any noticeable defects. As the aging time was prolonged, the thicknesses and grain sizes of the interfacial IMC layer of all the joints increased, and the Cu3Sn layer emerged between the Cu6Sn5 layer and the Cu pad. However, the growth rate of the interfacial IMC layer of the epoxy composite joint was lower than that of the monolithic joint.
- The addition of epoxy resulted in a more uniform morphology of interfacial IMCs in the as-soldered joints, leading to higher thermal stability in the epoxy composite solder joints. With the addition of 4 wt.%, 8 wt.% and 12 wt.% epoxy, the growth coefficients of the IMC layer gradually decreased from 1.74 × 10−17 m2/s to 1.00 × 10−17 m2/s, 0.63 × 10−17 m2/s and 0.71 × 10−17 m2/s, respectively.
- The shear forces of the epoxy composite joints were remarkably increased due to their thinner IMC layers and the extra bonding area created by the epoxy layer. After aging for 1000 h, the fracture location of the monolithic joint transformed from the solder bulk to the interface of the solder/IMC layer, which presented a ductile/brittle mixed fracture. However, the fracture mode of the epoxy composite joint remained almost unchanged after long-term aging, showing its better ductility.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.; Lu, Y.; Tu, K.N. Low temperature interfacial reaction in 3D IC nanoscale materials. Mater. Sci. Eng. R 2022, 151, 100701. [Google Scholar] [CrossRef]
- Hou, Z.; Zhao, X.; Gu, Y.; Tan, C.; Huo, Y.; Shi, S.; Liu, Y. Enhancement mechanism of Te doping on microstructure, wettability and mechanical properties of Sn–Bi-based solder. Mater. Sci. Eng. A 2022, 848, 143445. [Google Scholar] [CrossRef]
- Dele-Afolabi, T.T.; Ansari, M.N.M.; Azmah Hanim, M.A.; Oyekanmi, A.A.; Ojo-Kupoluyi, O.J.; Atiqah, A. Recent advances in Sn-based lead free solder interconnects for microelectronics packaging: Materials and Technologies. J. Mater. Res. Technol. 2023, 25, 4231–4263. [Google Scholar] [CrossRef]
- Ismail, N.; Atiqah, A.; Jalar, A.; Bakar, M.; Rahim, R.; Ismail, A.; Hamzah, A.; Keng, L. A systematic literature review: The effects of surface roughness on the wettability and formation of intermetallic compound layers in lead-free solder joints. J. Manuf. Process 2022, 83, 68–85. [Google Scholar] [CrossRef]
- Du, Y.; Wang, Y.; Ji, X.; Tan, S.; Han, J.; Guo, F. TEM and EBSD characterization revealing the recrystallization process occurring in the Sn-3.0Ag-0.5Cu Ball Grid Array solder joints during thermal cycling. Mater. Charact. 2023, 200, 112890. [Google Scholar] [CrossRef]
- Zhong, S.J.; Zhang, L.; Li, M.L.; Long, W.M.; Wang, F.J. Development of lead-free interconnection materials in electronic industry during the past decades: Structure and properties. Mater. Des. 2022, 215, 110439. [Google Scholar] [CrossRef]
- Ren, X.; Wang, Y.; Liu, X.; Zou, L.; Zhao, N. Process dependence and nucleus models of β-Sn grains in SAC305 freestanding solder balls and BGA solder joints. J. Mater. Process Technol. 2022, 302, 117468. [Google Scholar] [CrossRef]
- Yi, X.; Zhang, R.; Hu, X. Study on the microstructure and mechanical property of Cu-foam modified Sn3.0Ag0.5Cu solder joints by ultrasonic-assisted soldering. J. Manuf. Process 2021, 64, 508–517. [Google Scholar] [CrossRef]
- Shen, Y.A.; Chen, S.W.; Chen, H.Z.; Chang, C.M.; Ouyang, Y.H. Extremely thin interlayer of multi-element intermetallic compound between Sn-based solders and FeCoNiMn high-entropy alloy. Appl. Surf. Sci. 2021, 558, 149945. [Google Scholar] [CrossRef]
- Wang, J.; Yodo, S.; Tatsumi, H.; Nishikawa, H. Thermal conductivity and reliability reinforcement for sintered microscale Ag particle with AlN nanoparticles additive. Mater. Charact. 2023, 203, 113150. [Google Scholar] [CrossRef]
- Tu, K.N. Reliability challenges in 3D IC packaging technology. Microelectron. Reliab. 2011, 51, 517–523. [Google Scholar] [CrossRef]
- Zhang, H.; Ma, Z.; Yang, S.; Fan, M.; Cheng, X. Microstructure and mechanical properties of Sn-xGa alloys and solder joints. J. Mater. Res. Technol. 2023, 26, 3830–3839. [Google Scholar] [CrossRef]
- Li, Z.; Cheng, K.; Liu, J.; He, Y.; Xiao, Y. Effect of Thermal aging on the interfacial reaction behavior and failure mechanism of Ni-xCu/Sn soldering joints under shear loading. Materials 2023, 16, 5253. [Google Scholar] [CrossRef]
- Peng, W.; Monlevade, E.; Marques, M.E. Effect of thermal aging on the interfacial structure of SnAgCu solder joints on Cu. Microelectron. Reliab. 2007, 47, 2161–2168. [Google Scholar] [CrossRef]
- Wang, J.; Nishikawa, H. Impact strength of Sn–3.0 Ag–0.5 Cu solder bumps during isothermal aging. Microelectron. Reliab. 2014, 54, 1583–1591. [Google Scholar] [CrossRef]
- Yang, L.; Zhu, L.; Zhang, Y.; Zhou, S.; Wang, G.; Shen, S.; Shi, X. Microstructure, IMCs layer and reliability of Sn-58Bi solder joint reinforced by Mo nanoparticles during thermal cycling. Mater. Charact. 2019, 148, 280–291. [Google Scholar] [CrossRef]
- Jiang, N.; Zhang, L.; Liu, Z.-Q.; Sun, L.; Long, W.-M.; He, P.; Xiong, M.-Y.; Zhao, M. Reliability issues of lead-free solder joints in electronic devices. Sci. Technol. Adv. Mat. 2019, 20, 876–901. [Google Scholar] [CrossRef] [PubMed]
- Li, M.L.; Zhang, L.; Jiang, N.; Zhang, L.; Zhong, S.J. Materials modification of the lead-free solders incorporated with micro/nano-sized particles: A review. Mater. Des. 2021, 197, 109224. [Google Scholar] [CrossRef]
- Zhang, P.; Xue, S.; Wang, J. New challenges of miniaturization of electronic devices: Electromigration and thermomigration in lead-free solder joints. Mater. Des. 2020, 192, 108726. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, L.; Wang, X.; Lu, X.; Guo, Y.-H. Intermetallic compound evolution and mechanical properties of Cu/Sn58Bi/Cu 3D structures blended with B4C nanoparticles during isothermal aging. J. Mater. Res. Technol. 2023, 24, 3643–3656. [Google Scholar] [CrossRef]
- Park, B.G.; Myung, W.R.; Lee, C.J.; Jung, S.B. Mechanical, electrical, and thermal reliability of Sn-58 wt.% Bi solder joints with Ag-decorated MWCNT for LED package component during aging treatment. Composites Part B 2020, 182, 107617. [Google Scholar] [CrossRef]
- Zhang, L.; Tu, K.-N. Structure and properties of lead-free solders bearing micro and nano particles. Mater. Sci. Eng. R 2014, 82, 1–32. [Google Scholar] [CrossRef]
- Myung, W.R.; Kim, Y.; Kim, K.Y.; Jung, S.B. Drop reliability of epoxy-contained Sn-58 wt.%Bi solder joint with ENIG and ENEPIG surface finish under temperature and humidity test. J. Electron. Mater. 2016, 45, 3651–3658. [Google Scholar] [CrossRef]
- Kang, M.S.; Kim, D.S.; Shin, Y.E. Suppression of the growth of intermetallic compound layers with the addition of graphene nano-sheets to an epoxy Sn–Ag–Cu Solder on a Cu substrate. Materials 2019, 12, 936. [Google Scholar] [CrossRef] [PubMed]
- Myung, W.R.; Kim, Y.; Jung, S.B. Mechanical property of the epoxy-contained Sn–58Bi solder with OSP surface finish. J. Alloys Compd. 2014, 615, S411–S417. [Google Scholar] [CrossRef]
- Kim, J.; Myung, W.R.; Jung, S.B. Effects of aging treatment on mechanical properties of Sn-58Bi epoxy solder on ENEPIG-surface-finished PCB. J. Electron. Mater. 2016, 45, 5895–5903. [Google Scholar] [CrossRef]
- Sung, Y.G.; Myung, W.R.; Jeong, H.; Ko, M.K.; Moon, J.; Jung, S.B. Mechanical reliability of the epoxy Sn-58wt.% Bi solder joints with different surface finishes under thermal shock. J. Electron. Mater. 2018, 47, 4165–4169. [Google Scholar] [CrossRef]
- Liu, L.; Xue, S.; Ni, R.; Zhang, P.; Wu, J. Study on the reliability of Sn–Bi composite solder pastes with thermosetting epoxy under thermal cycling and humidity treatment. Crystals 2021, 11, 733. [Google Scholar] [CrossRef]
- Zhang, P.; Xue, S.; Liu, L.; Wu, J.; Luo, Q.; Wang, J. Microstructure and shear behaviour of Sn-3.0 Ag-0.5 Cu composite solder pastes enhanced by epoxy resin. Polymers 2022, 14, 5303. [Google Scholar] [CrossRef]
- JIS Z3198-7; Test Methods for Lead-Free Solders—Part 7: Methods for Shear Strength of Solder Joints on Chip Components. Japanese Industrial Standard: Tokyo, Japan, 2003.
- Eom, Y.S.; Jang, K.S.; Moon, J.T.; Nam, J.D. Electrical Interconnection with a Smart ACA Composed of Fluxing Polymer and Solder Powder. ETRI J. 2010, 32, 414–421. [Google Scholar] [CrossRef]
- Pal, M.K.; Gergely, G.; Gácsi, Z. Growth kinetics and IMCs layer analysis of SAC305 solder with the reinforcement of SiC during the isothermal aging condition. J. Mater. Res. Technol. 2023, 24, 8320–8331. [Google Scholar] [CrossRef]
- Li, K.; Lei, Y.; Lin, J.; Liu, B.; Bai, H.; Qin, J. Development of Sn-Bi systems lead-free solder paste. In Proceedings of the 2013 14th International Conference on Electronic Packaging Technology, Dalian, China, 11–14 August 2013; pp. 160–162. [Google Scholar] [CrossRef]
- Xu, D.; Li, X.; Wang, C.; Xu, B. Study on wettability and corrosivity of a new no-clean flux for lead-free solder paste in electronic packaging technology. In Proceedings of the 2011 Second International Conference on Mechanic Automation and Control Engineering, Inner Mongolia, China, 15–17 July 2011; pp. 1706–1708. [Google Scholar] [CrossRef]
- Yu, D.Q.; Wang, L. The growth and roughness evolution of intermetallic compounds of Sn–Ag–Cu/Cu interface during soldering reaction. J. Alloys Compd. 2008, 458, 542–547. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, X.; Qiu, R.; Shi, H.; Liu, Y. The combined effects of ultrasonic wave and electric field on the microstructure and properties of Sn2.5Ag0.7Cu0.1RE/Cu soldered joints. J. Mater. Sci. Mater. Electron. 2014, 25, 1681–1686. [Google Scholar] [CrossRef]
- Karthik, M.; Abhinav, J.; Shankar, K.V. Morphological and mechanical behaviour of Cu–Sn alloys—A review. Met. Mater. Int. 2021, 27, 1915–1946. [Google Scholar] [CrossRef]
- Dele-Afolabi, T.; Hanim, M.A.; Ojo-Kupoluyi, O.; Calin, R. Impact of different isothermal aging conditions on the IMC layer growth and shear strength of MWCNT-reinforced Sn–5Sb solder composites on Cu substrate. J. Alloys Compd. 2019, 808, 151714. [Google Scholar] [CrossRef]
- Yang, L.; Lu, X.; Mu, G. Effects of Mo nanoparticles addition on the evolution of microstructure in Cu58Bi-xMo/Cu solder joints during aging. Mater. Today Commun. 2022, 32, 104025. [Google Scholar] [CrossRef]
- Chen, B.; Wang, H.; Zou, M.; Hu, X.; Chen, W.; Jiang, X. Evolution of interfacial IMCs and mechanical properties of Sn–Ag–Cu solder joints with Cu-modified carbon nanotube. J. Mater. Sci. Mater. Electron. 2022, 33, 19160–19173. [Google Scholar] [CrossRef]
- Tu, K.N.; Liu, Y. Recent advances on kinetic analysis of solder joint reactions in 3D IC packaging technology. Mater. Sci. Eng. R 2019, 136, 1–12. [Google Scholar] [CrossRef]
- Lee, T.; Choi, W.; Tu, K.N.; Jang, J.; Kuo, S.; Lin, J.; Frear, D.; Zeng, K.; Kivilahti, J. Morphology, kinetics, and thermodynamics of solid-state aging of eutectic SnPb and Pb-free solders (Sn–3.5 Ag, Sn–3.8 Ag–0.7 Cu and Sn–0.7 Cu) on Cu. J. Mater. Res. 2002, 17, 291–301. [Google Scholar] [CrossRef]
- Deng, X.; Piotrowski, G.; Williams, J.; Chawla, N. Influence of initial morphology and thickness of Cu6Sn5 and Cu3Sn intermetallics on growth and evolution during thermal aging of Sn-Ag solder/Cu joints. J. Electron. Mater. 2003, 32, 1403–1413. [Google Scholar] [CrossRef]
- Hu, X.; Xu, T.; Keer, L.M.; Li, Y.; Jiang, X. Microstructure evolution and shear fracture behavior of aged Sn3Ag0.5Cu/Cu solder joints. Mater. Sci. Eng. A 2016, 673, 167–177. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, L.; Wang, X.; Guo, Y.H.; Sun, L.; Liu, Y.X.; Chen, C.; Lu, X. Growth behavior and reliability of interfacial IMC for Sn58Bi/Cu and Sn58Bi–AlN/Cu solder joints applied in IGBT modules. J. Mater. Res. Technol. 2022, 21, 4263–4280. [Google Scholar] [CrossRef]
- Wu, J.; Xue, S.; Wang, J.; Wang, J.; Deng, Y. Enhancement on the high-temperature joint reliability and corrosion resistance of Sn–0.3Ag–0.7Cu low-Ag solder contributed by Al2O3 Nanoparticles (0.12 wt%). J. Mater. Sci. Mater. Electron. 2018, 29, 19663–19677. [Google Scholar] [CrossRef]
Points | Cu | Sn | Ag |
---|---|---|---|
A | 55.67 | 44.33 | - |
B | - | 25.93 | 74.07 |
C | 52.95 | 47.05 | - |
D | 75.69 | 24.31 | - |
E | 56.10 | 43.90 | - |
F | 54.65 | 45.35 | - |
G | - | 29.69 | 70.31 |
Solder | Linear Fitted Curve | D Value(m2/s) |
---|---|---|
Monolithic SAC305 | 1.74 × 10−17 | |
SAC305-4ER | 1.00 × 10−17 | |
SAC305-8ER | 0.63 × 10−17 | |
SAC305-12ER | 0.71 × 10−17 |
Points | Cu | Sn | Ag | C | O |
---|---|---|---|---|---|
H | - | 96.99 | 3.01 | - | - |
I | 0.92 | 97.61 | 1.47 | - | - |
J | 53.69 | 45.19 | 1.12 | - | - |
K | 50.27 | 46.77 | 2.96 | - | - |
L | 0.66 | 98.11 | 1.23 | - | - |
M | 1.09 | 97.87 | 1.03 | - | - |
N | 5.77 | 92.73 | 1.50 | - | - |
O | - | - | - | 69.71 | 30.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, P.; Xue, S.; Liu, L.; Wang, J.; Tatsumi, H.; Nishikawa, H. Influence of Isothermal Aging on Microstructure and Shear Property of Novel Epoxy Composite SAC305 Solder Joints. Polymers 2023, 15, 4168. https://doi.org/10.3390/polym15204168
Zhang P, Xue S, Liu L, Wang J, Tatsumi H, Nishikawa H. Influence of Isothermal Aging on Microstructure and Shear Property of Novel Epoxy Composite SAC305 Solder Joints. Polymers. 2023; 15(20):4168. https://doi.org/10.3390/polym15204168
Chicago/Turabian StyleZhang, Peng, Songbai Xue, Lu Liu, Jianhao Wang, Hiroaki Tatsumi, and Hiroshi Nishikawa. 2023. "Influence of Isothermal Aging on Microstructure and Shear Property of Novel Epoxy Composite SAC305 Solder Joints" Polymers 15, no. 20: 4168. https://doi.org/10.3390/polym15204168
APA StyleZhang, P., Xue, S., Liu, L., Wang, J., Tatsumi, H., & Nishikawa, H. (2023). Influence of Isothermal Aging on Microstructure and Shear Property of Novel Epoxy Composite SAC305 Solder Joints. Polymers, 15(20), 4168. https://doi.org/10.3390/polym15204168