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Abstract: Cleansing foam is a common multicomponent polymeric functional material. It contains
ingredients in innumerable combinations, which makes formulation optimization challenging. In
this study, we used artificial intelligence (AI) with machine learning to develop a cleansing capability
prediction system that considers the effects of self-assembled structures and chemical properties
of ingredients. Over 500 cleansing foam samples were prepared and tested. Molecular descriptors
and Hansen solubility index were used to estimate the cleansing capabilities of each formulation
set. We used five machine-learning models to predict the cleansing capability. In addition, we
employed an in silico formulation by generating virtual formulations and predicting their cleansing
capabilities using an established AI model. The achieved accuracy was R2 = 0.770. Our observations
revealed that mixtures of cosmetic ingredients exhibit complex interactions, resulting in nonlinear
behavior, which adds to the complexity of predicting cleansing performance. Nevertheless, accurate
chemical property descriptors, along with the aid of in silico formulations, enabled the identification
of potential ingredients. We anticipate that our system will efficiently predict the chemical properties
of polymer-containing blends.

Keywords: QSPR; AI; machine learning; cleansing capability; super-multicomponent system

1. Introduction

Quantitative structure–property relationships (QSPRs) are used in several fields, such
as environmental chemistry [1], drug design [2], and materials science [3], demonstrating
their versatility and ability in scientific research and industrial applications. The QSPR is
a statistical and mathematical method for expressing the relationship between chemical
structure and physical properties, which enables the rapid prediction of physical properties.
This expectation is particularly high in materials science, where recent advances in syn-
thetic technology have enabled the creation of nearly an infinite variety of polymers. The
materials produced by this synthesis require highly desirable physical properties. In recent
years, several materials have been improved by adding different mixtures. For example,
adding nanoparticles or nanofillers to a material to tailor a nanocomposite improves its
thermal response and ionic conductivity [4–8]. Several attempts have been made to predict
the physical and chemical properties of such complex systems using QSPRs. In the context
of the prediction of physical or chemical properties of mixtures, reports predicting the flash
point [9], diffusion coefficient [10], boiling point [11], refractive indices [12], or toxicity [13]
of binary mixtures are available. Surfactants are representative functional polymers, and
studies related to surfactants were performed that predicted the properties such as crit-
ical micelle concentration, cloud point, and the hydrophilic–lipophilic balance of binary
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mixtures [14,15]. From the perspective of multicomponent mixtures comprising three or
more substances, examples of predicting properties such as vapor–liquid critical volume
are available [16].

In several reports, molecular descriptors were acquired, and mixtures were charac-
terized using methods such as weighted averages. Subsequently, predictive models are
often constructed using linear prediction models (or their derivatives), machine learning, or
deep-learning approaches. However, in the case of multicomponent systems, particularly
with large-molecular-weight materials, challenges still exist for QSPRs regarding prediction
accuracy [17], and reports using predictive models for estimating mixture effects are scarce.
The lack of extensive research on predicting the properties of multicomponent mixtures,
particularly those involving surfactants, and applying these predictive models to infer
mixture effects and facilitate product design underscores the novelty and significance of
this study.

The cleansing foam used in cosmetics is a typical polymeric multicomponent system,
and polymers, such as polyethylene glycol or polyglycerin, are often used as ingredients.
It is used to wash excess sebum and dirt from the skin, and a makeup remover is used to
remove makeup cosmetics. In recent years, a growing need has been observed for highly
functional cleansing foams because people want to use only one product for cleansing
foam and makeup removal for reasons of time (shortening procedures) and ecology (saving
water and reducing chemical emissions into the environment) [18]. Solvent-based cleansing
agents, such as makeup remover oils, are highly soluble in makeup products, which contain
oil and pigments, resulting in excellent removability. However, solvent-based cleansing
agents are associated with problems such as high environmental impact, high material
costs, and a feeling of residual oiliness after rinsing [19]. By contrast, surfactant-based
cleansing agents such as cleansing foams have excellent rinsing properties but weak oil
removability because they are primarily water-based. In this study, the latter approach was
used to improve the cleansing performance of the foams.

Cleansing foams are composed of numerous components. They contain several types
of surfactants, polyols, pH adjusters, and water, making optimizing the formulations
difficult because an infinite number of ingredient combinations are possible. Therefore,
artificial intelligence (AI) using machine learning has been introduced into formulation
design to construct a cleansing capability prediction system that considers the effects of
surfactant self-assembly and chemical characteristics of ingredients.

The focus of this study is twofold. First, it aims to extend our understanding of
property prediction for multicomponent mixtures. Second, it aims to determine high-
performance mixing conditions using predictive models. To achieve these goals, we
employed various machine-learning methods. In addition, in silico simulations have been
introduced to assist human formulators in achieving desirable products during product
development.

2. Materials and Methods
2.1. Evaluation of Cleansing Capability

Cleaning foams consisting of 537 samples of ionic surfactants, amphoteric surfactants,
nonionic surfactants, polyols, a pH adjuster, and water were prepared by thorough mix-
ing and stirring. Examples of ingredients and formulations are listed in Tables 1 and 2,
respectively. Each sample comprised ~20% ionic surfactants, 10% nonionic surfactants,
10% polyols, 1% citric acid, and 60% water by weight. To study the prepared samples, a
waterproof eyeliner pencil was placed on a piece of white artificial leather that was dried
for 30 min. Then, 0.1 mL of the corresponding cleansing foam sample was added to the
dried eyeliner, rubbed 30 times, rinsed, and dried. A schematic of all the procedures is
shown in Figure 1.
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Table 1. Examples of ingredients used in the formulations prepared in this study.

Category The Number of
Ingredients Ingredient Examples

Anionic surfactant 8
Potassium cocoyl glutamate
Potassium cocoyl glycinate

Amphoteric surfactant 4
Lauramidopropyl hydroxysultaine

Sodium cocoamphoacetate

Nonionic surfactant 24
Eicosaglycerol hexacaprylate

Decaglycerol isostearate
PEG-20 glyceryl triisostearate

Polyol 33
PPG-9 diglyceryl ether

Cyclohexylglycerin
Glycerin

pH adjuster 1 Citric acid

Base 1 Water

Table 2. Example of cleansing foam samples in this study.

Category Material Name

Anionic
surfactant Potassium cocoyl glutamate 6 7 13 8 8 7

Amphoteric
surfactant

Lauramidopropyl
Hydroxysultaine 5 9 4 9 7 7

Nonionic
surfactants

Eicosaglycerol hexacaprylate 10 10 10

Decaglycerol isostearate 10

PEG-20 glyceryl
triisostearate

10 10

Polyols

PPG-9 diglyceryl ether 11 11

Cyclohexylglycerin 9 14

Glycerin 11 13

pH adjuster Citric acid 0.8 0.8 0.8 0.8 0.8 0.8

Base Water 69.2 62.2 58.2 61.2 63.2 62.2

The cleansing capability was evaluated using the eyeliner pencil residual ratio, which
was calculated using the color differences as follows:

Cleansing capability (%) =

√(
L∗

1 − L∗
2
)2

+
(
a∗1 − a∗2

)2
+
(

b∗1 − b∗2
)2√(

L∗
1 − L∗

0
)2

+
(
a∗1 − a∗0

)2
+
(

b∗1 − b∗0
)2

∗ 100 (1)

where L* indicates lightness, and a* and b* indicate chromaticity. (L*, a*, b*) represents the
color space value measured using a colorimeter (CM-2600d, Konica Minolta, Inc., Tokyo,
Japan). (L*0, a*0, b*0), (L*1, a*1, b*1), and (L*2, a*2, b*2) represent the color space values of
the white artificial leather before applying the eyeliner pencil, after applying it, and after
cleaning it, respectively [20].
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Figure 1. Schematic of the evaluation test to determine the cleansing capability of the prepared
samples, Equation (1).

2.2. Modeling of AI
2.2.1. Data Processing

We trained the AI on the prescribing data and modeled them using descriptors and
Hansen dissolution parameters to incorporate chemical information. Figure 2 shows the
data-processing flowchart.
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2.2.2. Molecular Descriptors

A molecular descriptor is a numerical molecular property extracted from a chemical
structure. Each type of molecular descriptor is related to a specific type of interaction
between chemical groups in a particular molecule. Descriptors are used to predict the
chemical properties of not only single chemicals but also chemical mixtures. In addition,
descriptors have been applied to predict the critical micelle concentration (CMC) of gemini
surfactants [21,22]. Therefore, we extracted information from ingredients and predicted
the cleansing capabilities of the prepared formulations using molecular descriptors. The
structural formula of each ingredient was determined using ChemDraw and converted
into a Simplified Molecular Input Line Entry System (SMILES). Regarding the specification
of the degree of polymerization, we adopted the representative degree of polymerization
for each raw material. Descriptor values were then calculated from the SMILES of each
ingredient using the chemoinformatic tools rdkit [23] and PaDEL-descriptor [24]. Entries
with infinite or only one value were removed, and a k-NN imputer was applied to predict
missing values. The weighted average of each ingredient was then calculated using the
molar or weight fraction to estimate the descriptor values of the mixture ingredients.

2.2.3. Hansen Solubility Parameters

We applied Hansen solubility parameters (HSPs) to predict the cleansing capabil-
ity. The HSPs were developed by Hansen to predict the ability of a material to dissolve



Polymers 2023, 15, 4216 5 of 13

in another material, forming a solution. The HSP distance between the solute and sol-
vent is generally calculated to estimate whether a solute dissolves in a solvent. Some
studies have used the HSPs to predict the properties of surfactants [25,26]. In this study,
instead of the solute and solvent, we calculated the distance between each sample and
obtained the cleansing samples with the highest cleansing capability. We adopted this
procedure because the solute, the eyeliner in this study, was made of several ingredients,
and it was difficult to identify its structural formula. The HSP distance was defined as
{4*(dD1-dD2)2 + (dP1-dP2)2 + (dH1-dH2)2}0.5, where dD1, dP1, and dH1 are the values of
each sample—the average calculated based on each component’s proportion by wight in
the mixture—and dD2, dP2 and dH2 are the average values of the three highest cleansing
capabilities in our samples. The HSPs would better estimate the effects of the interactions
between the ingredients in a formulation than the descriptor method, in which measuring
the nonlinear effect of the ingredient interactions is challenging. The HSP values were
calculated using the Hansen Solubility Parameters in Practice (HSPiP) software of ver-
sion 5.0.09. Because some HSPs cannot be calculated using HSPiP for molecules with
high molecular weights, missing HSP values were imputed using a k-NN imputer for the
descriptor calculation.

2.2.4. Modeling and Feature Selection

The number of explanatory variables was >1000 when descriptors and HSPs were
used. Therefore, we applied machine learning to obtain laws to predict cleansing perfor-
mance based on these numerous features. Three types of machine-learning algorithms
are available: supervised learning, unsupervised learning, and reinforcement learning.
Supervised learning (regression) was chosen for this study to predict the results within a
continuous output. The input dataset is described in Sections 2.1 and 2.2, and the output
is the cleansing capability. In this study, we aimed to capture the inherent behavior of
surfactants in cleansing forms, anticipating their utilization in more generic applications,
such as predicting properties other than cleansing capability. Therefore, we did not fo-
cus on developing prediction models specialized for cleansing capability; instead, we
adopted representative machine-learning models. We adopted two decision-tree-based
models (random forest and extra tree regressors), two linear-based models (lasso and partial
least squares), and one support-vector-machine-based model (support vector regressor).
The hyperparameters are listed in Table 3. Each model exhibits unique characteristics:
decision-tree-based models help capture nonlinear relationships in the data, and linear
models are particularly suitable when a linear relationship is assumed between variables.
Support-vector-machine-based models are suitable for predicting high-dimensional data.
We aimed to develop versatile models by employing these diverse methodologies and
uncover new potential for understanding surfactant behavior in cleansing forms. The
hyperparameters were optimized using a grid-search method. All explanatory features
were standardized with a mean of zero and standard deviation of one. Because numerous
features cause noise in the modeling, we adopted the Boruta method [27] to reduce the
noise from unimportant features.

2.2.5. Modeling Evaluation

Herein, we employed a machine-learning model and optimized its hyperparameters
using grid-search cross-validation, which is a popular method for hyperparameter tuning
that works systematically through multiple combinations of parameter tunings. The scoring
metric used to evaluate the performance of the model was the coefficient of determination,
denoted as R2, which represents the proportion of variance for a dependent variable that is
explained by the independent variables. The R2 values were calculated as follows:

R2 = 1 − ∑n
1 (yi − ŷi)

2

∑n
1 (yi − y)2 , (2)



Polymers 2023, 15, 4216 6 of 13

where ŷi, yi, and y represent the predicted, actual, and mean values of the actual output,
respectively. The dataset comprised 537 samples, and ten-fold cross-validation was applied
to calculate the accuracy. For the computations, 90% of the data were allocated as training
data, and the remaining 10% as test data. This computation was conducted ten times,
ensuring that all data were used as test data at some point. The average value of the ten
R2 scores of the foldout data was accepted as the model performance. The modeling was
executed five times with different random seeds, which were applied to the modeling of
tree models and cross-validation split, and the averaged values were calculated as a result
of accuracy.

Table 3. Hyperparameter set for modeling.

Model Name Hyperparameter Values

Extra tree regressor

The number of trees 10, 50, 100, 500, 1000, 2000

The number of features to consider
when looking for the best split

(the number of features)0.5,
log2(the number of features),

the number of features

The maximum depth of the tree 10, 20, 30

Random forest regressor

The number of trees 10, 50, 100, 500, 1000, 2000

The number of features to consider
when looking for the best split sqrt, log2, none

The maximum depth of the tree 10, 20, 30

Support vector regressor

C 0.1, 1, 10

Epsilon 0.01, 0.1, 1

Kernel Linear, poly, rbf

Partial least squares
regressor The number of components 1 to 20 (integer)

Lasso regressor Alpha 0.0001, 0.001, 0.01, 0.1, 10

2.3. In Silico Formulation

To evaluate whether the AI models could support human formulators, formulations
were virtually created with a computer using the rules described below. We call this
procedure the ‘in silico formulation’.

• All ingredients were assigned to one of six categories (the same categories described
in Table 1): anionic surfactants, amphoteric surfactants, nonionic surfactants, polyols,
a pH adjuster (only citric acid), and a base (only water).

• To compare the predicted and actual cleansing capabilities, the selection of anionic
and amphoteric surfactants was restricted to one type: the anionic surfactant was
restricted to potassium cocoyl glutamate, and amphoteric surfactant was restricted to
lauramidopropyl hydroxysultaine.

• Only one ingredient was selected from each category; for example, two nonionic
surfactants could not be selected for one formulation.

• The addition rates of each ingredient, except for the pH adjuster (citric acid) and
water, were randomized for each category within the predefined ranges described
in Table 4. The addition rate of citric acid was fixed with the value of 0.8 weight%,
and the addition rate of water was calculated such that the sum of all the ingredients
was 100%.

• In the procedure, 105 formulations were made, which were predicted with the best
model described in Section 2.2.4.
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Table 4. Condition of in silico formulation.

Category Material Name Randomize
the Addition Rate

Minimum
Weight% *

Maximum
Weight% *

Anionic
surfactant

Potassium cocoyl
glutamate Yes 3 20

Amphoteric
surfactant

Lauramidopropyl
hydroxysultaine Yes 3 20

Nonionic
surfactant

Eicosaglycerol
hexacaplyrate

PPG-20 glyceryl
triisosterarate etc.
(24 kinds in total)

Yes 0 10

Polyols
PPG-9 diglyceryl ether

glycerin etc.
(33 kinds in total)

Yes 0 30

pH adjuster Citric acid No 0.8% (fixed ratio)

Base Water No 100-Σ (other material
amount)

* Water content was excluded in the weight% expression.

To validate the predictions made by the in silico formulation, the actual cleansing
capabilities of some formulations were measured experimentally (the formulations of the
measured samples are shown in the Section 3).

3. Results
3.1. Evaluation of AI Modeling

An AI model was established to predict the cleansing capability. The prediction
accuracy of each model is listed in Table 5. The best prediction accuracy was obtained
with the R2 value of 0.770. The prediction accuracy increased significantly with the use
of the descriptors. The results of the best model, extra tree regressor, using molecular
descriptors, Hansen solubility index, and feature extraction are shown in Figure 3. An
R2 value of 0.770 translates to 15% when converted to a root-mean-square error (RMSE).
We believe this accuracy level is sufficient for screening purposes, such as opting not to
conduct low-predictive cleansing capability experiments before engaging in experiments
using actual substances. Such preliminary filtering enables a more efficient allocation
of resources to experiments with higher probabilities of success, thereby optimizing the
overall research process.

Table 5. Prediction accuracy of each model.

Mol/Weight
Fraction Descriptors

Hansen
Solubility

Index

Feature
Extraction

Extra Tree
Regressor

Random
Forest

Regressor
SVR Lasso PLS

1 Weight Not used Not used Not used 0.661 0.652 0.488 0.526 0.503
2 Mol Not used Not used Not used 0.668 0.643 0.469 0.503 0.472
3 Weight Used Not used Not used 0.751 0.715 0.567 0.565 0.541
4 Mol Used Not used Not used 0.753 0.751 0.509 0.526 0.519
5 Weight Not used Used Not used 0.725 0.657 0.320 0.582 0.535
6 Mol Not used Used Not used 0.719 0.654 0.305 0.556 0.505
7 Weight Used Used Not used 0.748 0.711 0.568 0.582 0.543
8 Mol Used Used Not used 0.751 0.749 0.524 0.537 0.526
9 Weight Used Used Used 0.770 0.738 0.671 0.564 0.532

10 Mol Used Used Used 0.768 0.753 0.620 0.523 0.504
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3.2. In Silico Formulation and Actual Cleansing Capabilities

The cleansing capabilities of the in silico formulations are shown in Figures 4 and 5. A
box with light and dark gray color in these figures indicates the middle 50% of the data (that
is, the middle two quartiles of the data distribution), and horizontal bars display all points
within 1.5 times the interquartile range (that is, all points within 1.5 times the width of the
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In Figure 5, the formulation data were stratified into two categories: those not us-
ing nonionic surfactants and those using nonionic surfactants. Next, each category was
stratified into subcategories based on the polyols to estimate their interactions with non-
ionic surfactants and polyols. The addition of nonionic surfactants increased the cleansing
capabilities, and hydrophobic PPG-9 diglyceryl ether or cyclohexylglycerin, which have
lower inorganic and organic balance (IOB) values, boosted the cleansing capability more
than glycerin.

Several formulations were selected to validate the predicted data obtained from the
in silico formulation, and their cleansing capabilities were measured. The formulations
and results are shown in Table 6 and Figure 6. Nonionic surfactants eicosaglycerol hexa-
caprylate and cyclohexylglycerin/PPG-9 diglyceryl ether, (A) and (B), showed the highest
cleansing capabilities among the actual formulations. Formulations with other nonionic
surfactants and cyclohexylglycerin/PPG-9, (C) and (D), showed lower cleansing capabili-
ties. Formulations with glycerin, (E) and (F), showed much lower cleansing capabilities,
regardless of the type of nonionic surfactant. These tendencies correspond to the results
shown in Figures 4 and 5.
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Table 6. Formulations for comparison of predicted and actual cleansing capabilities.

Category Material Name (A) (B) (C) (D) (E) (F)

Anionic
surfactant Potassium cocoyl glutamate 6 7 13 8 8 7

Amphoteric
surfactant

Lauramidopropyl
Hydroxysultaine 5 9 4 9 7 7

Nonionic
surfactants

Eicosaglycerol hexacaprylate 10 10 10

Decaglycerol isostearate 10

PEG-20 glyceryl
triisostearate 10 10

Polyols

PPG-9 diglyceryl ether 11 11

Cyclohexylglycerin 9 14

Glycerin 11 13

pH adjuster Citric acid 0.8 0.8 0.8 0.8 0.8 0.8

Base Water 69.2 62.2 58.2 61.2 63.2 62.2

Cleansing ca-
pability test

Prediction/% 81.2 78.3 71.9 42.1 7.4 14.4

Actual/% 85.8 85.9 39.8 46.3 8.3 3.6

4. Discussion

The use of descriptors increased the prediction accuracy of all the models, indicating
that the chemical properties expressed as molecular descriptors successfully enabled the
prediction of cleansing capabilities. HSPs improved the prediction accuracy for several
models, but the accuracy was insufficient for models with descriptors, indicating that
descriptors were more informative than HSPs.

Furthermore, weight% was suitable for linear-based models for the weighted average
calculation, whereas no difference was observed for tree-based models. The mol% of
the weighted average is potentially more accurate based on stoichiometry. However,
because water constitutes > 97 mol% on average in the formulations owing to the high
molecular weights of the surfactants, the influence of water was more dominant in the mol%
calculation. Linear-based models were more affected by this influence than tree-based
models. To predict cleansing capability, nonlinear behavior should also be considered
owing to the interactions between surfactants and water molecules and their self-assembly.
Tree-based models are typically more suitable for nonlinear predictions; therefore, their
prediction accuracies are higher than those of linear-based models. The most accurate
method is the elastic tree regressor. Because this method is based on decision tree models,
its accuracy will decline when the data intended for inference fall into extrapolation regions
relative to the training data. In such cases, additional experiments must be conducted to
augment data and retrain the model. Although we employed descriptors to enhance the
generalization capability of the model, it was estimated that the accuracy of predicting
the cleansing capability of samples made with ingredients not present in the training data
would be lower than the accuracy calculated in this study.

The raw ingredients used included polymer-based components such as PEG-20 glyc-
eryl triisostearate; however, the prediction accuracy was maintained. In addition, as shown
in Figure 4 and Table 6, the formulations using PEG-20 glyceryl triisostearate exhibited a
lower cleansing performance than those using shorter-chain raw materials. This suggests
that the length of the polymer may not be a key factor influencing the cleansing perfor-
mance; instead, it is likely that the higher-order structure between the ingredients plays a
more significant role in cleansing.

The in silico formulation helped us understand the effect not only of each material
on cleansing capabilities but also of combinations of materials with the consequence of
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molecular interactions. The in silico formulation assisted in developing formulations with
higher cleansing capabilities.

In this study, applying prediction and in silico formulation methods, we identified
a cleansing foam formulation consisting of eicosaglycerol hexacaprylate and cyclohexyl-
glycerin/PPG-9 that exhibited a high cleansing capability of >85% for the removal of
waterproof eyeliners.

5. Conclusions

Using AI with machine learning, we built QSPR models that incorporated super-
multicomponent ingredients, including polymers, to estimate the effects of surfactant
self-assembly and chemical characteristics of the ingredients. An accuracy of R2 = 0.770
(RMSE = 15%) was obtained to predict the cleansing performance, which was sufficient for
ingredient screening. Nonlinear behavior, i.e., interactions among cosmetic ingredients in
formulations, makes it more difficult for formulators to predict their performance. However,
a high accuracy was obtained by incorporating chemical characteristics with descriptors.
Based on the molecular structure of the ingredients and surfactant self-assembly, this AI
prediction model showed higher accuracy than conventional approaches, such as multiple
linear regression. Using in silico formulations, formulators can obtain information on which
ingredients should be selected to achieve the highest cleansing capabilities. These findings
suggest that cleansing performance is not merely dependent on the polymer length of the
ingredients but also on the higher-order structures resulting from the interactions between
the ingredients. This prediction model and in silico formulation significantly reduce the
effort required for cosmetic development. In summary, we achieved the following results:

• A QSPR model was constructed for super-multicomponent ingredients, including
polymers, achieving an accuracy of R2 = 0.770 (RMSE = 15%), sufficient for product
development screening.

• Using an in silico formulation, we predicted the optimal combination of the ingredients.
• The application of these technologies reduces the developmental effort and optimizes

the overall development process.

Herein, we demonstrated the applicability of QSPRs to multicomponent mixtures,
focusing specifically on cleansing foams. Based on the insights provided by QSPRs, we
successfully identified an optimal combination of ingredients suitable for product devel-
opment. We believe this methodology has high generalizability, facilitating the discovery
of ideal combinations with minimal experimentation in various fields, not limited to cos-
metics but also in drug development or other material designs. Therefore, the QSPR-based
approach can emerge as a potent tool, yielding significant benefits in these industries.
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