Structure–Property Correlation in Natural Rubber Nanocomposite Foams: A Comparison between Nanoclay and Cellulose Nanofiber Used as Nanofillers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of NC/NR and CNF/NR Nanocomposite Foams
2.3. Characterizations
2.3.1. Transmission Electron Microscopy (TEM)
2.3.2. Density Measurement
2.3.3. Scanning Electron Microscopy (SEM)
2.3.4. Shrinkage Measurement
2.3.5. Wide-Angle X-ray Diffraction (WAXD) Measurement
2.3.6. Mechanical Property Measurement
Tensile Properties
Compression Set
3. Results and Discussion
3.1. Cellular Structure and Foam Properties
3.2. Dispersion of Nanofiller in NR Foams
3.3. Stress–Strain Behavior
3.4. Strain-Induced Crystallization
3.5. Model for Strain-Induced Crystallization of CNF/NR Foams
3.6. Compression Set of NR and NR Nanocomposite Foams
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Klempner, D.; Frisch, K.C. Handbook of Polymeric Foams and Foam Technology; Hanser Publishers: Munich, Germany, 1991; 454p. [Google Scholar]
- Wimolmala, E.; Khongnual, K.; Sombatsompop, N. Mechanical and morphological proproties of cellular NR/SBR vulcanizates under thermal and weathering ageing. J. Appl. Polym. Sci. 2009, 114, 2816–2827. [Google Scholar] [CrossRef]
- Zhang, B.S.; Lv, X.F.; Zhang, Z.X.; Liu, Y.; Kim, J.K.; Xin, Z.X. Effect of carbon black content on microcellular structure and physical properties of chlorinated polyethylene rubber foams. Mater. Des. 2010, 31, 3106–3110. [Google Scholar] [CrossRef]
- Lopattananon, N.; Julyanon, J.; Masa, A.; Kaesaman, A.; Thongpin, C.; Sakai, T. The role of nanofillers on (natural rubber)/(ethylene vinyl acetate)/clay nanocomposite in blending and foaming. J. Vinyl Addit. Technol. 2015, 21, 134–146. [Google Scholar] [CrossRef]
- Sawangpet, K.; Walong, A.; Thongnuanchan, B.; Kaesaman, A.; Sakai, T.; Lopattananon, N. Foaming and physical properties, flame retardancy, and combustibility of polyethylene octene foams modified by natural rubber and expandable graphite. J. Vinyl Addit. Technol. 2020, 26, 423–433. [Google Scholar] [CrossRef]
- Morton, M. Introduction to polymer science. In Rubber Technology, 3rd ed.; Springer Science & Business Media: Dordrecht, The Netherlands, 1999; pp. 1–19. [Google Scholar]
- Jansomboon, W. Reinforcement of Natural Rubber Filled Silicagraphene Blend by Electron Beam Irradiation. Ph.D. Thesis, Kasetsart University, Bangkok, Thailand, 2020. [Google Scholar]
- Kim, J.-H.; Choi, K.-C.; Yoon, J.-M. The foaming characteristics and physical properties of natural rubber foams: Effects of carbon black content and foaming pressure. J. Ind. Eng. Chem. 2006, 12, 795–801. [Google Scholar]
- Kim, J.-H.; Koh, J.-S.; Choi, K.-C.; Yoon, J.-M.; Kim, S.-Y. Effects of foaming temperature and carbon black content on the cure characteristics and mechanical properties of natural rubber foams. J. Ind. Eng. Chem. 2007, 13, 198–205. [Google Scholar]
- Ariff, Z.M.; Zakaria, Z.; Tay, L.H.; Lee, S.Y. Effect of foaming temperature and rubber grades on properties of natural foams. J. Appl. Polym. Sci. 2008, 107, 2531–2538. [Google Scholar] [CrossRef]
- Najib, N.N.; Arif, Z.M.; Manan, N.A.; Bakar, A.A.; Sipaut, C.S. Effect of blowing agent concentration on cell morphology and impact properties of natural rubber foam. J. Phys. Sci. 2009, 20, 13–25. [Google Scholar]
- Najib, N.N.; Ariff, Z.M.; Bakar, A.A.; Sipaut, C.S. Correlation between the acoustic and dynamic mechanical properties of natural rubber foam: Effect of foaming temperature. Mater. Des. 2011, 32, 505–511. [Google Scholar] [CrossRef]
- Vahidifar, A.; Nouri Khorasani, S.; Park, C.B.; Naguib, H.E.; Khonakdar, H.A. Fabrication and characterization of closed-cell rubber foams based on natural rubber/carbon black by one-step foam processing. Ind. Eng. Chem. Res. 2016, 55, 2407–2416. [Google Scholar] [CrossRef]
- Vahidifar, A.; Nouri Khorasani, S.; Park, C.B.; Khonakdar, H.A.; Reuter, U.; Naguib, H.; Esmizadeh, E. Towards the development of uniform closed cell nanocomposite foams using natural rubber containing pristine and organo-modified nanoclays. RSC Adv. 2016, 6, 53981–53990. [Google Scholar] [CrossRef]
- Charoeythornkhajhornchai, P.; Samthong, C.; Boonkerd, K.; Somwangthanaroj, A. Effect of azodicarbonamide on microstructure, cure kinetics and physical properties of natural rubber foam. J. Cell. Plast. 2016, 53, 287–303. [Google Scholar] [CrossRef]
- Salmazo, L.O.; Lopez-Gil, A.; Ariff, Z.M.; Job, A.E.; Rodriguez-Perez, M.A. Influence of the irradiation dose in the cellular structure of natural rubber foams cross-linked by electron beam irradiation. Ind. Crops Prod. 2016, 89, 339–349. [Google Scholar] [CrossRef]
- Charoeythornkhajhornchai, P.; Samthong, C.; Somwangthanaroj, A. Effect of graphene treated with cyclohexyl diamine by diazonium reaction on cure kinetics, mechanical, thermal, and physical properties of natural rubber/graphene nanocomposite foam. Polym. Compos. 2019, 40, E1766–E1776. [Google Scholar] [CrossRef]
- Lee, Y.H.; Wang, K.H.; Park, C.B.; Sain, M. Effects of clay dispersion on the foam morphology of LDPE/clay nanocomposites. J. Appl. Polym. Sci. 2007, 103, 2129–2134. [Google Scholar] [CrossRef]
- Zhai, W.; Park, C.B. Effect of nanoclay addition on the foaming behavior of linear polypropylene-based soft thermoplastic polyolefin foam blown in continuous extrusion. Polym. Eng. Sci. 2011, 51, 2387–2397. [Google Scholar] [CrossRef]
- Cho, S.Y.; Park, H.H.; Yun, Y.S.; Jin, H.-J. Influence of cellulose nanofibers on the morphology and physical properties of poly(lactic acid) foaming by supercritical carbon dioxide. Macromol. Res. 2012, 21, 529–533. [Google Scholar] [CrossRef]
- Dlouhá, J.; Suryanegara, L.; Yano, H. The role of cellulose nanofibres in supercritical foaming of polylactic acid and their effect on the foam morphology. Soft Matter. 2012, 8, 8704. [Google Scholar] [CrossRef]
- Ma, J.; Duan, Z.; Xue, C.; Deng, F. Morphology and mechanical properties of EVA/OMMT nanocomposite foams. J. Thermoplast. Compos. Mater. 2012, 26, 555–569. [Google Scholar] [CrossRef]
- Nofar, M.; Majithiya, K.; Kuboki, T.; Park, C.B. The foamability of low-melt-strength linear polypropylene with nanoclay and coupling agent. J. Cell. Plast. 2012, 48, 271–287. [Google Scholar] [CrossRef]
- Saraeian, P.; Tavakoli, H.; Ghassemi, A. Production of polystyrene-nanoclay nanocomposite foam and effect of nanoclay particles on foam cell size. J. Compos. Mater. 2013, 47, 2211–2217. [Google Scholar] [CrossRef]
- Dlouhá, J.; Suryanegara, L.; Yano, H. Cellulose nanofibre-poly(lactic acid) microcellular foams exhibiting high tensile toughness. React. Funct. Polym. 2014, 85, 201–207. [Google Scholar] [CrossRef]
- Wang, X.C.; Jing, X.; Peng, Y.Y.; Ma, Z.K.; Liu, C.T.; Turng, L.S.; Shen, C.Y. The effect of nanoclay on the crystallization behavior, microcellular structure, and mechanical properties of thermoplastic polyurethane nanocomposite foams. Polym. Eng. Sci. 2016, 10, 319–327. [Google Scholar] [CrossRef]
- Wang, L.; Ishihara, S.; Hikima, Y.; Ohshima, M.; Sekiguchi, T.; Sato, A.; Yano, H. Unprecedented development of ultrahigh expansion injection-molded polypropylene foams by introducing hydrophobic-modified cellulose nanofibers. ACS Appl. Mater. Interfaces 2017, 9, 9250–9254. [Google Scholar] [CrossRef]
- Zimmermann, M.V.G.; Silva, M.P.; Zattera, A.J.; Santana, R.M.C. Effect of nanocellulose fibers and acetylated nanocellulose fibers on properties of poly(ethylene-co-vinyl acetate) foams. J. Appl. Polym. Sci. 2017, 134, 44760–44771. [Google Scholar] [CrossRef]
- Seo, H.W.; Kim, Y.J.; Kim, S.; Park, J.; Choi, K.; Park, I.-K.; Kim, T.; Suhr, J.; Kim, K.J.; Nam, J.-D. Nanoplatelet reinforcement of cavity cell walls in polymer foams using carbon dioxide supercritical fluid. J. Appl. Polym. Sci. 2018, 135, 46615. [Google Scholar] [CrossRef]
- Wang, L.; Hikima, Y.; Ohshima, M.; Sekiguchi, T.; Yano, H. Evolution of cellular morphologies and crystalline structures in high-expansion isotactic polypropylene/cellulose nanofiber nanocomposite foams. RSC Adv. 2018, 8, 15405–15416. [Google Scholar] [CrossRef]
- Zimmermann, M.V.G.; Zattera, A.J.; Santana, R.M.C. Nanocomposites foams of poly(ethylene-co-vinyl acetate) with short and long nanocellulose fibers and foaming with supercritical CO2. Polym. Bull. 2018, 75, 1789–1807. [Google Scholar] [CrossRef]
- Wang, X.-C.; Zhu, Q.-S.; Dong, B.-B.; Wu, H.-H.; Liu, C.-T.; Shen, C.-Y.; Turng, L.-S.; Geng, T. The effects of nanoclay and deformation conditions on the inelastic behavior of thermoplastic polyurethane foams. Polym. Test. 2019, 79, 106043. [Google Scholar] [CrossRef]
- Yasim-Anuar, T.A.T.; Arin, H.; Norrrahim, M.N.F.; Hassan, M.A.; Andou, Y.; Tsukegi, T.; Nishida, H. Well-dispersed cellulose nanofiber in low density polyethylene nanocomposite by liquid-assisted extrusion. Polymers 2020, 12, 927. [Google Scholar] [CrossRef]
- Wongvasana, B.; Thongnuanchan, B.; Masa, A.; Saito, H.; Sakai, T.; Lopattananon, N. Comparative structure–property rela-tionship between nanoclay and cellulose nanofiber reinforced natural rubber nanocomposites. Polymers 2022, 14, 3747. [Google Scholar] [CrossRef] [PubMed]
- ASTM D3575; Standard Test Methods for Flexible Cellular Materials Made from Olefin Polymers. ASTM International: West Conshohocken, PA, USA, 2020.
- ASTM D1056; Standard Specification for Flexible Cellular Materials—Sponge or Expanded Rubber. ASTM International: West Conshohocken, PA, USA, 2020.
- Colton, J.S.; Suh, N.P. The nucleation of microcellular thermoplastic foam with additives: Part I: Theoretical considerations. Polym. Eng. Sci. 1987, 27, 485–492. [Google Scholar] [CrossRef]
- Nguyen, Q.T.; Baird, D.G. An improved technique for exfoliating and dispersing nanoclay particles into polymer matrices using supercritical carbon dioxide. Polymer 2007, 48, 6923–6933. [Google Scholar] [CrossRef]
- Oh, K.; Seo, Y.P.; Hong, S.M.; Takahara, A.; Lee, K.H.; Seo, Y. Dispersion and reaggregation of nanoparticles in the polypropylene copolymer foamed by supercritical carbon dioxide. Phys. Chem. Chem. Phys. 2013, 15, 11061–11069. [Google Scholar] [CrossRef]
- Wongvasana, B.; Thongnuanchan, B.; Masa, A.; Saito, H.; Sakai, T.; Lopattananon, N. Reinforcement behavior of chemically unmodified cellulose nanofiber in natural rubber nanocomposites. Polymers 2023, 15, 1274. [Google Scholar] [CrossRef]
- Anand, G.; Vishvanathperumal, S. Properties of SBR/NR Blend: The effects of carbon black/silica (CB/SiO2) hybrid filler and silane coupling agent. Silicon 2022, 14, 9051–9060. [Google Scholar] [CrossRef]
- Shimbo, M.; Higashitani, I.; Miyano, Y. Mechanism of strength plastics having fine cell. J. Cell. Plast. 2007, 43, 157–167. [Google Scholar] [CrossRef]
- Masa, A.; Iimori, S.; Saito, R.; Saito, H.; Sakai, T.; Kaesaman, A.; Lopattananon, N. Strain-induced crystallization behavior of phenolic resin crosslinked natural rubber/clay nanocomposites. J. Appl. Polym. Sci. 2015, 132, 42580. [Google Scholar] [CrossRef]
- Masa, A.; Saito, R.; Saito, H.; Sakai, T.; Kaesaman, A.; Lopattananon, N. Phenolic resin-crosslinked natural rubber/clay nanocomposites: Influence of clay loading and interfacial adhesion on strain-induced crystallization behavior. J. Appl. Polym. Sci. 2016, 133, 43214. [Google Scholar] [CrossRef]
Ingredient | Grade | Supplier |
---|---|---|
NR | HA | Yala Latex Co., Ltd., Yala, Thailand |
NC (Na-MMT) | Kunipia-F® | Kunimine Industries Co., Ltd., Tokyo, Japan |
CNF | Nanoforest-S | Chuetsu Pulp and Paper Co., Ltd. Tokyo, Japan |
ZnO | White seal | Univentures Public Co. Ltd., Bangkok, Thailand |
Strearic acid | Strearic acid | Imperial Chemical Co. Ltd., Bangkok, Thailand |
Paraffinic oil | White oil grade A, no. 15 | China Petrochemical International Co., Ltd., Shanghai, China |
TMQ | NAUGARD® Q | AddivantTM, Latina, Italy |
ADC | AC3000F | Innovation Co. Ltd., Bangkok, Thailand |
DCP | GP grade | Wuzhou International Co., Ltd., Shenzhen, China |
Ingredients | Parts per Hundred Rubber (phr) | ||
---|---|---|---|
NR | NC/NR | CNF/NR | |
NR | 100 | 100 | 100 |
NC (Na-MMT) | - | 5 | - |
CNF | - | - | 5 |
ZnO | 3 | 3 | 3 |
Strearic acid | 1 | 1 | 1 |
Paraffinic oil | 20 | 20 | 20 |
TMQ | 2 | 2 | 2 |
ADC | 10 | 10 | 10 |
DCP | 1 | 1 | 1 |
Sample | Cell Properties | ||
---|---|---|---|
Cell Size Distribution (µm) | Average Cell Size (µm) | 3D Cell Density (cells/cm3) | |
NR foam | 15–153 | 60.85 ± 24.38 | 8.99 × 105 ± 0.27 × 105 |
NC/NR foam | 4–87 | 28.86 ± 12.02 | 2.44 × 107 ± 0.35 × 107 |
CNF/NR foam | 11–108 | 41.79 ± 16.83 | 3.68 × 106 ± 0.23 × 106 |
Samples | Foam Properties | |||
---|---|---|---|---|
Density (g/cm3) | Volume Expansion Ratio | Shrinkage (%) | ||
Before Foaming | After Foaming | |||
NR foam | 0.913 ± 0.002 | 0.501 ± 0.013 | 1.823 ± 0.048 | 58.87 ± 3.83 |
NC/NR foam | 0.943 ± 0.003 | 0.356 ± 0.023 | 2.660 ± 0.164 | 18.10 ± 6.65 |
CNF/NR foam | 0.931 ± 0.007 | 0.393 ± 0.034 | 2.383 ± 0.203 | 35.89 ± 5.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wongvasana, B.; Thongnuanchan, B.; Masa, A.; Saito, H.; Sakai, T.; Lopattananon, N. Structure–Property Correlation in Natural Rubber Nanocomposite Foams: A Comparison between Nanoclay and Cellulose Nanofiber Used as Nanofillers. Polymers 2023, 15, 4223. https://doi.org/10.3390/polym15214223
Wongvasana B, Thongnuanchan B, Masa A, Saito H, Sakai T, Lopattananon N. Structure–Property Correlation in Natural Rubber Nanocomposite Foams: A Comparison between Nanoclay and Cellulose Nanofiber Used as Nanofillers. Polymers. 2023; 15(21):4223. https://doi.org/10.3390/polym15214223
Chicago/Turabian StyleWongvasana, Bunsita, Bencha Thongnuanchan, Abdulhakim Masa, Hiromu Saito, Tadamoto Sakai, and Natinee Lopattananon. 2023. "Structure–Property Correlation in Natural Rubber Nanocomposite Foams: A Comparison between Nanoclay and Cellulose Nanofiber Used as Nanofillers" Polymers 15, no. 21: 4223. https://doi.org/10.3390/polym15214223
APA StyleWongvasana, B., Thongnuanchan, B., Masa, A., Saito, H., Sakai, T., & Lopattananon, N. (2023). Structure–Property Correlation in Natural Rubber Nanocomposite Foams: A Comparison between Nanoclay and Cellulose Nanofiber Used as Nanofillers. Polymers, 15(21), 4223. https://doi.org/10.3390/polym15214223