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Abstract: Staudinger taught us that macromolecules were made up of covalently bonded monomer
repeat units chaining up as polymer chains. This paradigm is not challenged in this paper. The
main question raised in polymer physics remains: how do these long chains interact and move as
a group when submitted to shear deformation at high temperature when they are viscous liquids?
The current consensus is that we need to distinguish two cases: the deformation of “un-entangled
chains” for macromolecules with molecular weight, M, smaller than Me, “the entanglement molecular
weight”, and the deformation of “entangled” chains for M > Me. The current paradigm stipulates
that the properties of polymers derive from the statistical characteristics of the macromolecule itself,
the designated statistical system that defines the thermodynamic state of the polymer. The current
paradigm claims that the viscoelasticity of un-entangled melts is well described by the Rouse model
and that the entanglement issues raised when M > Me, are well understood by the reptation model
introduced by de Gennes and colleagues. Both models can be classified in the category of “chain
dynamics statistics”. In this paper, we examine in detail the failures and the current challenges facing
the current paradigm of polymer rheology: the Rouse model for un-entangled melts, the reptation
model for entangled melts, the time–temperature superposition principle, the strain-induced time
dependence of viscosity, shear-refinement and sustained-orientation. The basic failure of the current
paradigm and its inherent inability to fully describe the experimental reality is documented in this
paper. In the discussion and conclusion sections of the paper, we suggest that a different solution to
explain the viscoelasticity of polymer chains and of their “entanglement” is needed. This requires a
change in paradigm to describe the dynamics of the interactions within the chains and across the
chains. A brief description of our currently proposed open dissipative statistical approach, “the
Grain-Field Statistics”, is presented.

Keywords: viscoelasticity; polymer physics; paradigm of polymer rheology; entanglements; Rouse
model; reptation model; dual-phase model; grain-field statistics; sustained-orientation; shear-refinement

1. Introduction

Staudinger [1] taught us that macromolecules were made up of covalently bonded
monomer repeat units chaining up as polymer chains. The chemical nature of the monomer
directed the type of covalent bonds conferring most of the specific properties of the polymer.
The greater the number of repeat units the longer the chains and the greater the possibility
for the chains to assume a variety of shapes, from an extended elongated one to a more
compact coiled one. Also, the chemical process that resulted in the synthesis of macro-
molecules produced many chains, often not with the same shape or size. The properties of
the polymers improved when the chains became longer but it was more difficult to process
them: their viscosity increased with molecular weight; viscosity was no longer an intensive
property like it was for small liquids.

The main question raised in polymer physics was: how do these long chains interact
and move as a group when submitted to shear deformation at high temperature when they
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are viscous liquids? This question is debated in a field of polymer physics called rheology,
whose purpose is to understand the viscoelastic aspects of polymer melts deformation [2].

The current consensus is that we need to distinguish two cases: the deformation of
“un-entangled chains” for macromolecules with molecular weight, M, smaller than Me, “the
entanglement molecular weight”, and the deformation of “entangled” chains for M > Me.

Several eminent scientists have extensively studied these two cases over the last
70 years. Paul J. Flory, in 1974, and Pierre-Gilles de Gennes, in 1991, were awarded the
Nobel prize in Chemistry and Physics, respectively, for their significant theoretical contri-
bution to the understanding of these challenging problems [3,4]. For both these authors,
the properties of polymers derive from the statistical characteristics of the macromolecule
itself, the designated statistical system that defines the thermodynamic state of the poly-
mer [5,6]. The molecular weight between entanglements, Me, is defined from the rubber
elasticity theory and known to be equal to Mc/2 where Mc is the molecular weight for
the entanglements when viscosity measurements are carried out. The current paradigm
is that the viscoelasticity of un-entangled melts (M < Mc) is well described by the Rouse
model [7] and the entanglement issues raised by the impact of the increase in length of
the macromolecules on the melt viscoelasticity, when M > Mc, are well understood by the
reptation model introduced by de Gennes in 1971 [8]. Both models can be classified in the
category of “chain dynamics statistics” [9–12].

In this paper, we examine in detail the failures and the current challenges facing
the current paradigm of polymer rheology: the Rouse model [7] for M < Mc, the rep-
tation model [4,6,8] for M > Mc, the time–temperature superposition principle [13], the
strain-induced time dependence of viscosity [14], shear-refinement [15] and sustained-
orientation [16]. The basic failure of the current paradigm and its inherent inability to fully
describe the experimental reality [17] is reviewed in this paper.

We focus on re-examining some experimental facts, the most damaging, for these
two models based on chain dynamics statistics, being their inability to explain the time
dependence of viscosity under small shear strain conditions [14] and the observation of
“Sustained-Orientation”, i.e., the reversible triggering of the instability of the network of
entanglement [2,16].

In the discussion and conclusion of the paper, we suggest that new concepts are
needed to explain the viscoelasticity of polymer chains and of their “entanglement”, also
answering a question raised a long time ago [18] regarding their relaxation and thermal
analysis behavior. These concepts represent a change of paradigm to describe the dynamics
of the interactions within the chains and across the chains. A brief description of our
currently proposed open dissipative statistical approach, “the Grain-Field Statistics of Open
Dissipative Systems” [19–21], is introduced in the conclusion.

2. Development
2.1. The Great Myth of the Rouse Model: Its Failure to Describe the Rheology of Unentangled
Melts (M < Mc)
2.1.1. (In)validation of the Rouse Model Using Dynamic Data G′(ω), G′′(ω)

A classical misconception, already emphasized in other instances ([13], ch. 3 of Ref. [2]),
is the statement that polymer melts below Mc follow the predictions of the Rouse model [7].
The myth is so well established that the majority of the authors make this statement without
fully verifying the accuracy of the allegation using their own data to validate it.

We give two examples of authors claiming that their data can be fitted by the Rouse
model, and present good reasons to dispute such validation. The data both concern dynamic
rheological results obtained on a series of monodispersed polystyrene (PS) samples [22,23].
The first set of dynamic data is from Matsumiya and Watanabe (The data were kindly pro-
vided by Prof. Watanabe, who also clarified some of the experimental issues by email) [22].
It applies to a monodispersed PS with M = 27,000 obtained at four temperatures T = 115 ◦C,
120 ◦C, 130 ◦C and 140 ◦C. The second set of dynamic data is from Majeste who studied
in his thesis a series of monodispersed PS samples both unentangled and entangled [23].
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Note that for Matsumiya and Watanabe’s results the temperatures are all located below the
TLL temperature for this molecular weight (164.1 ◦C, see Equation (18) in [24]), whereas
the temperature of T = 160 ◦C is the reference temperature chosen by Majeste to shift the
other frequency sweep isotherms and obtain the mastercurves for eight unentangled PS
samples. As we learn in [24], TLL varies with M for PS like Tg(M) + 70.44 ◦C, so the choice
of T= 160 ◦C for the mastercurves in Majeste’s data at various M positions the analysis
of the data very near below or above TLL for all the molecular weights below Mc. This
contrasts with Matsumiya and Watanabe’s data analysis.

The Rouse model is very simple to apply to a set of data: one needs the longest
relaxation time, τR, at a given temperature, and the melt modulus GN. The melt modulus,
GN = ρRT/M, is calculated using the well-known modulus formula taken from rubber
elastic theory, where ρ is the melt density, M the molecular weight, and T the value of
the temperature (R is the gas constant). In other words, when the molecular weight and
the temperature are given, the Rouse model only depends on one parameter, τR. The
value of τR is linearly correlated to the Newtonian viscosity at that temperature, η*o; it
is also the inverse of the cross-over frequency of G′(ω) and G′′(ω), ωx, also at the same
temperature. The secondary relaxation times, τp are found from τR: τp= τR/p2 with p= 1
to N= M/Mo where Mo is the mer molecular weight (For PS and M = 27,000 N = 257). A
simple spreadsheet permits the calculation of G′(ω) and G′′(ω) according to the following
Equation.

G∗ROUSE (ω) = ρRT
M

N
∑

p=1

ω2τ2
p+jωτp

1+ω2τ2
p

withτp = τR
p2 gives:

G′(ω) = ρRT
M

N
∑

p=1

ω2τ2
p

1+ω2τ2
p

G′′ (ω) = ρRT
M

N
∑

p=1

ωτp

1+ω2τ2
p

. (1)

The density ρ of the PS melts is given by Fox–Flory (Ref. 36 of [23]):

1
ρ
= 0.767 + 5.510−4T +

6.4310−2T
M

(2)

The Rouse time τR is given by:

τR =
6ηo

π2
M

ρRT
(3)

The Newtonian viscosity ηo is determined at each temperature using the empirical
Cole–Cole equation [25] to fit the data log(η*(ω)) vs. logω and extrapolate to ω → 0.
For PS M = 27,000, the temperature dependence of the Newtonian viscosity varies with
temperature following the Vogel–Fulcher equation [26]:

log(η0(T)) = A + B
T−T∞

with A = −3.20583, B = 703.5571, T∞ = 44.78◦C = 317.93◦K
(4)

As already mentioned, the Rouse time can also be determined, τR = 1/ωx, from the
cross-over of the Maxwell straight lines passing through the lowω data points of logG′(ω)
and logG′′(ω) vs. log(ω), by forcing their respective slopes to be two and one in the lowω

line regressions, respectively, and calculating the coordinates of the intercepting straight
lines.

Let us look at the match between the experimental results of Matsumiya and Watanabe,
and the Rouse Equation (1). Figures 1–4 compare the results for T = 130 ◦C.
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Figure 1 displays the dynamic moduli G′(ω) and G′′(ω) for the data (symbols) and
the Rouse Equation (1) (red and blue lines). At first glance, one may say that the fit is
remarkably good if one realizes that there is just one fitting constant involved, τR, the
Rouse model providing a theoretical basis to determine the other constants GN and τp. The
fit is especially good for G′′(ω) in the lower frequency region, explaining why the Rouse
equation is often validated in the Newtonian range using the viscosity as the variable
(G′′/ω→η*o at lowω). But, as we have expressed many times ([13], Ch. 3 of [2]), a close
examination of the plot makes visible all the objective reasons to reject such a model, which
turns out to provide an unacceptable fit of the data. Figure 2 provides the proof.

One of the reasons the apparent fitness of the Rouse model to the data in Figure 1
looked “good”, is that we used log scales on both axes, which clearly compresses the
resolution in order to display the overview picture. The log compression of the ω axis
covers only three decades of variation of ω, from 0.1 to 100 rad/s. When the curves are
mastercurves obtained by horizontal shifting, the log compression extends one-to-three
more decades, which makes the appearance of a good fit even better because of the further
data compression. Such is the case in the figures presented in Majeste’s thesis, for instance,
when they compare the data to the Rouse equation projections [23]. Even in Figure 1, which
is not a mastercurve, one can see unacceptable discrepancies when comparing the results:
the G′(ω) curves never seem to overlap, a fact proven in the next figure that shows that
the residuals for the errors are totally curved when they should be random (i.e., with the
points of the residual plot randomly disposed on both sides of the zero horizontal line).
Figure 2 provides the % error between the data and its corresponding Rouse prediction.
The verdict is crystal clear: there is no range where the fit can be considered acceptable, not
even in the low frequency zone, in the terminal region, where Figure 1 gives the illusion of
some relative success, especially for G′′(ω) as we mentioned earlier. For all the values ofω
the residuals are badly curved, the error is two-to-five times the accuracy for measuring
the modulus: the Rouse model fails to fit the dynamic behavior for this M < Mc melt. This
is true for T = 130 ◦C in Figure 2, as well as for the three other temperatures chosen by
Matsumiya and Watanabe (Data not shown). In fact, the errors become much worse for
T = 120 and 115 ◦C. Only T = 140 ◦C shows a decrease in the magnitude of the errors, yet
the residuals are still badly curved.

Figure 3 compares the data and the Rouse dynamic viscosity η*(ω). As in Figure 1,
the illusion of a good fit is what is apparent at first, perhaps even more so for the viscosity
than for the moduli. All the features of shear-thinning are displayed by the Rouse model:
the Newtonian plateau and the decrease in viscosity with strain rate at higher frequency.
Yet, these are the same data that produced the unacceptable errors in the determination of
G′(ω) and G′′(ω) in Figure 2. One sees how the choice of the variables and the use of the
log scale can easily mislead the conclusion.

As we said, the elegance of the Rouse model is its lack of fitting constants, being based
on a molecular understanding of the motion of a macromolecule to produce flow. The
Rouse equation that we have written above can even be further tuned down to include the
expression of the radius of gyration of a single macromolecule, RG, which can be measured
by light or neutron scattering. However, if we desire to optimize the fit between the Rouse’s
predictions and the experimental data, we need to make “loose” the value of τR or GN
in Equation (1) and introduce them as regression parameters. The regression fits at low
ω become much improved as we do that, yet it is at the expense of the physical Rouse
reality: the value of τR and GN values found by regression become 2000 to 5000% different
from their respective values pursuant to the Rouse model (GN = ρRT/M). For instance, if
the value of GN is made different for the G′(ω) than for the G′′(ω) equation in the Rouse
formula (Equation (1)), the fits are considerably improved but the molecular explanation of
the model goes down the drain. See below.

Figure 4 is a graph that displays an important apparent discrepancy between the
prediction of the Rouse model and the data in the non-Newtonian range ofω. The graph
compares the value of χ = (G′/G*)2 at various ω either measured experimentally by
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Matsumiya and Watanabe [22], the black squares, or calculated from the Rouse model
(the red dots). What we mean by “discrepancy” is that the large departure between the
Rouse model and the data seen in Figure 4 can be demonstrated (as shown below) to not be
caused by a transitional high-frequency relaxation process that needs to be introduced to
correct the data, it is the demonstration of the failure of the Rouse model to describe shear-
thinning correctly. The range of the data investigated in Figure 4 is the lower and middle
ω range for shear-thinning, a phenomenon expressing the shear dependence of viscosity,
classically exhibited as a departure from the Newtonian range, itself only observed at very
low frequency (ω < 100 = 1 rad/s). The reason we bring this up is to differentiate our
conclusions about the origin of the differences (observed at higher frequency in Figure 4) as
a failure of the Rouse model, from the explanations by many other authors, such as Majeste
in his thesis, who have claimed, that the Rouse model basic equations can be corrected to
include the influence of the transitional high frequency relaxation terms on the dynamics
of flow, thus would have attributed the differences in Figure 4 to the lack of corrections
pursuant to the transitional high-frequency relaxation terms. We dedicate the following
section to disprove the applicability of these authors’ argument.

We have expressed in several previous publications [2,14,27] our interest in the variable
χ = (G′/G*)2, equal to cos2δ, also equal to 1/(1 + tan2δ), where δ is the phase angle between
stress and strain. This parameter χ, we have suggested, is more appropriate than other
traditional rheological variables (such as G′′ or tan δ) to describe the viscoelastic character of
the melt, especially when it is formulated in terms of the Dual-Phase and Cross-Dual-Phase
parameters [20]. The maximum of χ(ω), visible in Figure 4, corresponding to a minimum
of tan δ, is known to occur for entangled (M > Mc) melts, and its frequency occurrence
is attributed to the beginning of the rubbery plateau. In the case of unentangled melts,
however, such as is the case for the sample of Watanabe and colleagues in Figure 4, the
current paradigm understanding is that there is no rubbery plateau and therefore the
phenomenon giving rise to the maximum in Figure 4 must have a different origin than the
onset of entanglements. Since the absence of the rubbery plateau implies the juxtaposition
of the terminal region and the Tα transitional region, many authors were led to attribute
the departure they saw in their higher frequency data to the presence of the transitional
high-frequency relaxation terms, the so-called Tα terms. Note that the Rouse model is not
capable, on its own and without correction, of making χ exhibit a maximum (or a minimum
of tan δ). The simple reason is that, in the Rouse mathematical formulation limited to
τR, χ is equal to G′/GN, (see Equation (16) of Ref. [13]). Since its G′(ω) never exhibits a
maximum for all molecular weights and all values of the frequency ω, the Rouse model is
doomed to fail to explain the maximum in Figure 4 without adding at least an extra term.

This failure is, indeed, recognized by the molecular models of the unentangled state
which have considered correcting the Rouse modulus to include an extra term due to these
high-frequency relaxations. Likewise, earlier models than the dynamic molecular Rouse’s
model that tackle viscoelastic network deformation by expressing the moduli in terms
of a spectrum of relaxations have shown the need to correct the high-frequency terms.
For instance, Gray, Harrison and Lamb [28] considered a continuous and dissymmetric
distribution of the relaxation times of the type Davidson and Cole [29] resulting in the
modification of the complex compliance to include three terms. This manipulation of the
spectrum of relaxation did result in a very good fit between the data and the corrected de-
formation model, such as applied to Rouse [25], but amounts to modify-to-fit the spectrum
of relaxation without a sound physical foundation to justify it. The use of mathematical
patches to make failing models fit the results may be useful if they point to the right
direction to what needs to be done theoretically to modify the initial assumptions of the
model. In the case of models based on the spectrum of relaxation profile, the Gray et al.’s
corrections of the spectrum of relaxation represents a real success. In the case of the Rouse
model, we have quoted in Ref. [13] (Equation (18)) an expression due to Allal [30] that has
been claimed to extend the range of fitness of the Rouse expression of G′(ω) and G′′(ω)
to higher frequencies. Majeste used Allal’s method to correct his data and claimed that it
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improved the fits to the Rouse model [23]. We evaluate in detail below the merit of such
improvements and its relevance to explain the discrepancy in Figure 4.

Equation (5) explains the Allal’s high-frequency correction which adds a new term,
G*HF, to the complex modulus.

Modulus according to Rouse :

G∗ROUSE(ω) = ρRT
M

N
∑

p=1

ω2τ2
p+jωτp

1+ω2τ2
p

τp = τR
p2

G∗(ω) = G′(ω) + jG′′ (ω)
For the High Frequency terms :

G∗HF(ω) = G∞

[
1− 1√

1+jωτ′o

]
τ′o = 1

π2
ξob′2

kT
Total Modulus :
G∗(ω) = G∗ROUSE(ω) + G∗HF(ω)

(5)

In this equation, G∞ is the glass modulus, ξo the monomeric friction coefficient, b’
the monomeric length, j the imaginary unity number (j2 = −1) and k is the Boltzmann’s
constant (1.38065 × 10−23). We have found two sets of values for the molecular parameters
introduced in Equation (5): ξo, b′ and G∞. Leonardi (Table II-1 of Ref. [31]) studied a PS
with Mw = 326,000 and polydispersity I = 3.4 and gives the following values: ξo = 6.3 ×
10−8 Kg/s, b′ = 7.4 × 10−10 m and G∞ = 6 × 109 Pa. This PS sample is entangled and poly-
dispersed. For T = 130 ◦C (i.e., 403 ◦K in Equation (5)), the value of τ′o is: 6.2823 × 10−7 s.
Majeste [23] studied 8 monodispersed unentangled PS samples and provides for those
grades the following values: ξo = 2.7× 10−14 Kg/s, b′ = 3.7× 10−10 m and G∞ = 1 × 109 Pa.
For T = 130 ◦C we now find τ′o = 6.7310 × 10−14 s. This high-frequency relaxation time
is one million times smaller than that found for the Leonardi’s entangled PS. It is unclear
why the fundamental molecular parameters entering the Allal’s high-frequency relaxation
correcting term would make τ′o vary significantly with the length and the polydispersity
of the chain. Could it be a new characteristic of entanglements? The physical reason for
such a huge variation of τ′o appears doubtful because the high-frequency component is
supposed to represent the local relaxation at the monomeric level and should not depend,
at least approximately, on the length of the chain, whether it is entangled or not. Such large
differences in the values of ξo and b′ between the two PS samples of Majeste and Leonardi
do not make sense. Additionally, assuming that the value of ξo and b′ tabulated by either
Majeste or Leonardi are acceptable, we have found another reason to be concerned with
the Allal’s formulation of the Rouse’s correction and it is exposed below.

G*HF is a complex number in Equation (5) that can be decomposed into an elastic and
viscous component by way of the de Moivre’s formula to remove the square root:

G′HF = G∞
(
1−√ρHFcos(θHF/2)

)
G′′HF = −G∞

√
ρHFsin(θHF/2)

with :

ρHF = 1√
1+ω2τ′2o

tan(θHF) = −ωτ′o

(6)

Figure 5 is a graph of G′HF(ω) and G′′HF(ω) versus logω for T = 130 ◦C using the
ξo, b′ and G∞ constants of Leonardi plugged into Equations (5) and (6). The data range
region covers the ω range between 0.1 and 100. The higher values of ω are added to
show how Allal’s formula works. In this figure, in the data range region, the magnitude
of the value found for G′′HF(ω) is greater than its G′HF(ω) counterpart by more than five
decades! When we add these high-frequency correction moduli, G′HF(ω) and G′′HF(ω), to
the Rouse modulus G′(ω) and G′′(ω), respectively, using the PS M = 27,000 sample, we
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observe that G′(ω) remains unchanged because G′HF(ω) is irrelevantly small, and that the
corrected G′′(ω) is worse than the uncorrected G′′(ω) Rouse modulus in the low ω region,
the very region where the fit to the real data was not so bad. This is shown in Figure 6, a
plot of G′′(ω) = G′′ROUSE(ω) + G′′HF(ω) , using the Leonardi’s parameters, versus G′′(ω)
data. The Rouse modulus corresponds to the red dots, the corrected Rouse modulus is
represented by the black square, the perfect fit is the straight line y = x. One sees that
the black squares are further away from the perfect fit. The conclusion is that the Allal’s
high-frequency correction appears to render the fit worse than the pure Rouse equation:
the Rouse correction cannot be applied to the PS 27,000 data using Leonardi’s PS molecular
parameters. The other possibility is that only the molecular constants of a monodispersed
unentangled PS should be used in the Allal’s equations when applied to PS 27,000 which
is also unentangled and monodispersed. Figure 7 is the same graph as Figure 5 but uses
the molecular parameters assumed by Majeste, everything else being the same. One sees
that the correction moduli, G′HF(ω) and G′′HF(ω), are now both too small to add anything
relevant to the values of the uncorrected Rouse moduli in the data range used to analyze
this polymer. This is confirmed in Figure 8, similar to Figure 6 but now using the Majeste’s
constants in the Allal’s equation. In Figure 8, the graphs before and after correction are
identical and still very poorly fitting the data.
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Figure 5. Calculated high frequency (HF) moduli, G′HF(ω), G′′HF (ω) vs. logω, pursuant to Allal [30],
Equations (5) and (6), using the molecular parameters provided by Leonardi in [31] for a PS specified
in the graph.

In conclusion, the Allal’s high-frequency terms added to the Rouse terms does not
improve fitting the data. The use of the Rouse formulation should be limited to the
Newtonian (terminal) region and is not adequate to describe shear-thinning of unentangled
polymer melts.
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Figure 6. Plot of simulated G′′(ω) using Rouse and the HF corrections from Figure 5 against G′′(ω)
for the data of Matsumiya and Watanabe, in Figure 1. The red dots apply to the uncorrected Rouse
Equations (1)–(4) and the black squares to the corrected G′′(ω) after adding G′′HF(ω) calculated from
Equations (5) and (6). The straight line is Y = X, assuming a perfect fit.
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Figure 7. Calculated high frequency (HF) moduli, G′HF(ω), G′′HF (ω) vs. logω, pursuant to Allal [30],
Equations (5) and (6), using the molecular parameters provided by Majeste in [23] for a PS with the
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Figure 8. Plot of simulated G′′(ω) using Rouse and the HF corrections from Figure 7 against G′′(ω)
for the data of Matsumiya and Watanabe. in Figure 1 The red dots apply to the uncorrected Rouse
Equations (1)–(4) and the black squares to the corrected G′′(ω) after adding G′′HF(ω) calculated from
Equations (5) and (6). The straight line is Y = X, assuming a perfect fit.

Note that Majeste applied the Allal’s corrections to the mastercurves obtained after
shifting the isotherms to T = 160 ◦C. This shifting expands by a couple of decades the span
of frequency toward the higher frequency region. Yet, looking at Figure 7 and expanding
the data range to the right by two or three decades will not increase the values of G′HF(ω)
and G′′HF(ω) sufficiently to explain the large residuals observed in Figure 2. In addition,
the time–temperature superposition principle needs to be validated over the data range
analyzed in order to apply it with confidence, and, as will be shown below, the time–
temperature shifting validity is limited for the Matsumiya and Watanabe’s PS to the low ω

range, below the maximum of χ vs. logω in Figure 3.
The reason we conclude that the Allal’s high-frequency term has nothing to do with

the maximum of χ observed in Figure 3, which occurs aroundω = 10 rad/s, is the value of
τ′o in the expression of G*HF in Equation (5). With the values provided by Leonardi, τ′o is
around 10−6 to 10−7, which, we agree, is “big enough” to start to have an impact in theω
= 0.1 to 100 rad/s range. However, we saw that the parameters provided for the Leonardi’s
PS made the Allal’s corrections worse, not better. For the other option, with τ′o~10−14 to
10−13, the values provided by Majeste, corresponding to the vibrational motions in the
glassy state, it is clear that Allal’s correction G*HF(ω) will practically remain equal to 0 until
the frequency is near resonance, i.e., untilω~1/τ′o.

In conclusion, although the basic idea of adding a “glassy component” to the behavior
in the terminal region makes sense to try to complement the Rouse’s basic molecular
dynamic contribution, it does not appear to be correctly addressed by Allal’s formula. In
addition, as we will show using the data of Matsumiya and Watanabe, the time–temperature
superposition principle only applies satisfactorily within a limited range of temperature,
which raises some questions regarding the accuracy of the shifted data at high frequency in
the case of the Majeste’s data.

In conclusion, the “satisfying improvement of the fitting of the data” claimed by Ma-
jeste to be the result of adding the high-frequency Allal’s correction is definitely overstated,
to say the least. For instance, Figure 1.88 (M = 8500) of Majeste’s thesis (not reproduced
here) clearly shows that the improvement is not satisfactory, according to our standards:
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all the calculated G′(ω) values calculated after corrections are systematically off the data
values, even in the terminal region, and using log–log axes. This seems to be the same type
of fitting failure observed for G′(ω) in Figure 1 for the M = 27,000 PS.

2.1.2. (In)validity of the Rouse Formula to Predict the Molecular Dependency of τR
below Mc

We said that the Rouse model was not capable of describing well the dynamics of
shear-thinning for unentangled melts, but also added that its use could be limited to the
Newtonian region. Does this mean that the Rouse model is correct/useful in the terminal
regime of viscoelasticity? This is what we want to examine in this section.

Equation (3) is often used to validate the Rouse model. There are two ways to verify
this formula, one at T constant, M variable, i.e., using the Majeste’s data at T = 160 ◦C, and
by working at M constant and varying T, i.e., using Matsumiya and Watanabe’s data at M
= 27,000 and T variable between 115 and 140 ◦C.

As we already mentioned before, the Maxwell lines cross-over, ωx, can easily been
found from fitting the low ω region where G′(ω) and G′′(ω) can be forced to verify the
Maxwell’s slopes of 2 and 1 when plotted against ω on log–log axes. This provides an
accurate way to determine τR=1/ωx.

Molecular Weight Dependence of the Rouse Time, τR from the M < Mc Majeste Data

The Rouse theory implies that τR is proportional to M2, which is equivalent to predict-
ing that ηo is proportional to M.

Figure 9 is a plot of log ωx vs. logM for the 8 unentangled samples of Majeste at
T = 160 ◦C. We expect to see a slope of −2 if the Rouse formula is validated.
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Figure 9. Logωx vs. log M for un-entangled PS samples [23].

The graph in Figure 9 is better described by two straight lines than by just one. The
crossing of these two lines occurs for log M~3.67 (M = 4700) that we have designated M′c.
The regression line passing through the points M > M′c has a (forced) slope of −3.0 ± 0 and
an intercept equal to 15.92 ± 0.033 (r2 = 0.987, χ2/DoF = 0.0067). This regression straight
line is the red line drawn in Figure 9 passing randomly through six data points including
M′c. The unconstrained slope, −2.92 ± 0.16 (r2 = 0.994), also points towards a slope of −3.

The conclusion is that the slope is not equal to −2 as it should be if the Rouse formula
had been validated. It is clear that a slope of −3, although unexpected, is closer to what
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is measured (−2.92). In such a case, ηo would vary against M2 instead of M. The other
observation concerns M′c that we find at approximately M = Mc/8 (4375). This same M′c
“transition” in the log viscosity–logM curve is observed using viscometry data on the same
monodispersed PS, but this is not the subject of this presentation. Needless to say, the Rouse
model does not predict the presence of M′c. We let the reader know, in that regard, that in
our Dual-Phase model of polymer interactions to describe viscoelasticity [20], the transition
M′c is predicted and represents the molecular weight for the formation of stable macrocoils,
the first rheological manifestation of the macromolecular aspect of the interactive systems
of mers.

Temperature Dependence of τR at M Constant

Equation (3) involves the Newtonian viscosity, ηo, the shear elastic modulus of the
melt, GN = ρRT/M, and τR computed from the cross-over frequency: ωx = 1/τR. GN is
calculated by Equation (2) and the Newtonian viscosity by Equation (4). All these variables
are temperature dependent and known. We can test its validity by plotting the product GN
τx(T) versus η*o(T). The Rouse equation is validated if the slope is equal to 6/π2 = 0.608

A linear regression applied to the 3 upper isotherms, T = 140 to 120 ◦C, is represented
by the red segment in Figure 10. It is a quasi-perfect linear fit with r2 = 1.0; the slope, 0.6151,
is almost exactly what is projected by the Rouse model (0.60935). The extrapolation is
slightly off the T = 115 ◦C data point at the top of the figure, but this offset is expected and
will be explained in the next section.
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Figure 10. Validation of Rouse Equation (3) between GN, τx and n*o in the Newtonian region using
the data of Matsumiya and Watanabe [22] for PS with M = 27,000.

In other words, the Rouse model correctly describes the relationship between ηo(T)
and τR(T) at M constant and correctly assigns the ratio of the viscosity to the relaxation time
(G*/τR) to the melt modulus: (6/π2) GN. This result is not a minor achievement of the
Rouse model. This correct prediction of GN(T) may explain its popularity at a time when
the relaxation processes in polymers were mainly described by networks of spring and
dashpots placed in series (Maxwell network) or in parallel (Voigt network). In these
networks, the relaxation time was equal to the ratio of the spring modulus to the dashpot
viscosity (τ = G/η).
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Yet, the validation of Equation (3) provided by Figure 10 corresponds to validating
GN from G′′(ω) in Equation (1) since η*o = lim (G′′/ω) whenω→ 0. Equation (1) assumes
that G′(ω) and G′′(ω) have both the same terminal relaxation time, τR, and the same
normalization modulus, GN. Equation (3) can easily be derived from the G′′(ω)/GN side of
the Rouse formula:

G′′ ROUSE(ω) = GN

N

∑
p=1

ωτp

1 + ω2τ2
p

when ω → 0 the G′′Rouse (ω) simplifies to :

G
′′
ROUSE (ω) = GN

N

∑
p=1

ωτp

1
= ωGNτR

N

∑
p=1

1
p2

from which we derive :

G′′

ω
= ηo = GNτR

N

∑
p=1

1
p2

For M = 27, 000 g/ mole and Mo = 105 g/ mole N = 259

1 +
1
4
+

1
9
+

1
16

+ . . . +
1

2592 = 1.6410805

For N → ∞ , the sum equals π2/6 = 1.644926 = 0.60793−1

Hence :

τR =
ηo

GN

1

∑N
p=1

1
p2

= 0.60935
η0

GN
∼ 0.61

η0
ρRT
M

(7a)

The last line of Equation (7a) is Equation (3) verified by Figure 10. In other words,
G′′(ω) is correctly normalized by the rubber elasticity theory modulus GN whenω is in the
Newtonian range.

We now need to check that the G′(ω)/GN part of the Rouse formula in Equation (1) is
also validated in the Newtonian range atω→ 0.

G′ROUSE(ω) = GN

N

∑
p=1

ω2τ2
p

1 + ω2τ2
p
= ω2τ2

R

[
N

∑
p=1

1
p2 + ω2τ2

R

]

with GN =
ρRT
M

when ω → 0
N

∑
p=1

1
p2 + ω2τ2

R
→ 1.64108

and :
G′ROUSE (ω, T)

GN
= 1.64108ω2τR

2

Hence, in the Newtonian regime:

log
(
G′
)
= 0.21513 + 2log(τR) + log(GN) + 2log(ω)

Intercept of Maxwell straight line relative to G′, I′M :

I′M = 0.21513 + 2log(τR) + log(GN)

so: log(GN)exp = I′M − 0.21513 + 2log(ωX)

(7b)

The testing of the Rouse equation in the Newtonian regime conducted from a G′(ω)
point of view can be done by plotting first log G′(ω) vs. logω and fitting the lowω range
with a Maxwell’s straight line of slope 2. This is shown in Figure 11 for the M = 27,000 PS
of Matsumiya and Watanabe. at T = 130 ◦C. The intercept is I’M = 4.6973. The value ofωx
to calculate τR, ωx = 1/τR, imposes itself because τR is the same for G′(ω) and G′′(ω) in
the Rouse equation and thus ωx must be at the cross-over point where G′(ωx) = G′′(ωx).



Polymers 2023, 15, 4309 15 of 47

Whenωx and I’M are known, Equation (7b) provides the value of GNexp calculated from
G′(ω). We repeat the same operation for the other temperatures that show a Maxwell’s
behavior at lowω, i.e., for T = 120 ◦C and 140 ◦C. The T = 115 ◦C plot, similarly to what we
saw in Figure 11, does not present a range of data points that could be fitted by a straight
line with slope 2 in the lowω data range). For the Rouse model to be validated we should
have GNexp = GN = ρRT/M: so, if we plot GNexp(T) vs. GN(T), we should find all the points
on the line Y = X. The values ofωx, GN, I′M and GNexp are confined in Table 1.
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Figure 11. Testing the Rouse equation in the Newtonian regime from a G′(ω) point of view pursuant
to Equation (7a): A plot of log G′(ω) vs. logω is fitted in the lowω range with a Maxwell’s straight
line of slope 2. The value of GN is derived from the fit.

Table 1. Working variables to test the Rouse model (see text): “Rau” = ρ; “tau” = τ.

T oC Log τx
τx =1/ωx

Log η*o
Pa-s

(Eq. (4))

ρ (g/cc)
melt

density

GN (Pa)
PS 27,000
ρRT/M

GN x τx
η*O
Pa-s

I′M
See text

GN
calc. from

G′(ω)

1 115 1.52824 6.8135 1.01854 121,744.4 4.11 × 106 6.51 × 106 -

2 120 0.84678 6.14749 1.01568 122,966.2 864,105.4 1.40 × 106 6.78861 75,843.4

3 130 −0.27389 5.04994 1.01 125,389.1 66,736.86 112,187.5 4.6973 107,141.6

4 140 −1.15712 4.18292 1.00439 127,785.1 8899.472 15,237.84 3.02546 133,217.8

Figure 12 demonstrates the clear failure of the Rouse model to predict in the Newtonian
region the correct GN value that normalizes the G′(ω) moduli data of Matsumiya and
Watanabe. We can draw a straight line passing through the three data points in Figure 12
and a linear regression gives: GNexp = (−1.39× 106 + 11.9 GNRouse) with r2 = 0.999. One sees
that GN calculated from G′(ω) is not equal to GN calculated from G′′(ω) and, therefore, the
validation of the Rouse model that emerged from Figure 10 based on the G′′(ω) Newtonian
branch of the Rouse Equation (1) is contradicted without ambiguity by Figure 12. The
only temperature at which the two GN values coincide is at the crossing of the Y = X and
the red line in Figure 12, occurring for GN = 127,500, which, according to GN(T) occurs at
T = 137.5 ◦C. We cannot predict, without the necessary experimental data to test it, whether
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the invalidation of the Rouse model persists at higher temperature, for instance above
TLL~164 ◦C for this polymer.
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Figure 12. Invalidation of Rouse Equations (1)–(4) in the Newtonian regime from a G′(ω) point of
view pursuant to Equation (7a): the value of GN is totally different from the Rouse value determined
from G′′(ω).

We saw in Figure 9 that the Rouse model failed to describe the molecular dependence
ofωx when Equation (3) was applied to the Majeste data at T = 160 ◦C. This meant to say
that the Rouse modulus, GN, although good to predict GN(T) when calculated from G′′(ω),
was not good to predict GN(M). What about the value of GN(M) found from G′(ω): does it
match the Rouse model molecular modulus, GN = ρRT/M with ρ(M) given by Equation
(2)?

Comparing the Calculations of GN from the G′(ω) or G′′(ω) Sides of the Rouse Equations
and Invalidating the Rouse Approach

In order to proceed with this new (in)validation step, we find for each unentangled PS
sample of Majeste’s thesis the value of I’M given by Equation (7b) by plotting log G′(ω) vs.
logω. This is illustrated in Figure 13 for M = 13,000. We already know the values ofωx for
all these samples (Table 2) and thus can calculate the value of log GNexp (M) for each M and
compare it with the corresponding value of GN from the Rouse equation. This comparison
is done in Figure 14. Finally, Figure 15 compares the log GN vs. log M at T = 160 ◦C for
the Majeste PS unentangled samples with GN coming from three sources: from the Rouse
Equation (black squares), from Equation (7a), i.e., the G′′(ω) data based on ωx and ηo (blue
triangles), and from Equation (7b), i.e., the G′(ω) data based onωx and I′M (red dots).
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Table 2. Working variables to test the Rouse model (see text): “Rau” = ρ; “tau” = τ.

M
g/mole

ρ

g/cm3

Log GN
calc from
ρRT/M

I’M
(see text)

ωx(M)
Maxwell

rad/s

Log GN
calc from

G′(ω)

Log η*o
(Pa-s)
[23]

Log GN calc from
G′′(ω)

1 2000 0.98129 6.24709 −6 7.73 × 106 7.56106 −3.03205 3.6399

2 4000 0.98803 5.94903 −3.38286 238404.6 7.15664 −1.88678 3.27439

3 5050 0.98945 5.84842 −3.19938 56491.44 6.08946 −0.6361 3.89974

4 8500 0.99164 5.62326 −1.35373 14874.16 6.77601 −0.17089 3.78539

5 11600 0.99251 5.4886 −1.20429 4096.45 5.8054 0.36388 3.76014

6 13000 0.99276 5.43922 −0.23375 4769.655 6.90809 0.83051 4.29285

7 17500 0.9933 5.31037 0.53143 1815.841 6.83446 1.6037 4.64663

8 25000 0.99378 5.15567 1.42833 501.593 6.6139 2.38771 4.87192

2.1.3. Conclusion Regarding the Myth of the Applicability of the Rouse Equation to the
Rheology of Unentangled Polymer Melts

The results of our investigation regarding the applicability of the Rouse model are pro-
vided in Tables 1 and 2. These results and the figures drawn from them are devastating for
the Rouse model’s validation to describe polymer melts. Its failure to describe experimental
data is so flagrant and demonstrated in so many ways that it is almost incomprehensible
that both authors of the data which we re-analyzed concluded that the Rouse model satis-
factorily described their data. Take Figure 15 for instance, the black squares on the straight
line are the points given by the Rouse formula for GN, the melt modulus. The red dots and
the blue triangles are calculated from the Rouse equation (Equation (1)) taking either the
G′(ω) or the G′′(ω) expressions in the Newtonian range to find GN, respectively. These red
dots and blue triangles should all be disposed on the black line if the Rouse theory was
applicable to these data. What we observe, instead, is unambiguously different: the red
dots are all located above the black line, shifted vertically by almost a decade and a half
and the blue triangles are all scattered below the black line, almost forming a straight line
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pattern. The myth of the Rouse model applicability to unentangled polymer melts is so
anchored in the current paradigm that even the most reliable polymer scientists fail to test
it fully on their own data.

Polymers 2023, 15, x FOR PEER REVIEW 20 of 51 
 

 

 
Figure 14. Comparison of the GN values calculated from G′(ω) and G″(ω) in the Newtonian region 
using the Rouse Equations (1)–(6). The points should be on the Y = X line for validation of the Rouse 
model. 

 
Figure 15. Comparing the value of GN calculated from G′(ω), G″(ω) and from the Rouse�s formula 
based on the rubber elastic theory. 

Figure 14. Comparison of the GN values calculated from G′(ω) and G′′(ω) in the Newtonian region
using the Rouse Equations (1)–(6). The points should be on the Y = X line for validation of the Rouse
model.

Polymers 2023, 15, x FOR PEER REVIEW 20 of 51 
 

 

 
Figure 14. Comparison of the GN values calculated from G′(ω) and G″(ω) in the Newtonian region 
using the Rouse Equations (1)–(6). The points should be on the Y = X line for validation of the Rouse 
model. 

 
Figure 15. Comparing the value of GN calculated from G′(ω), G″(ω) and from the Rouse�s formula 
based on the rubber elastic theory. 

Figure 15. Comparing the value of GN calculated from G′(ω), G′′(ω) and from the Rouse’s formula
based on the rubber elastic theory.



Polymers 2023, 15, 4309 19 of 47

An important conclusion of the failure of the Rouse model to satisfactorily describe
rheological data for unentangled polymer melts is that the normalizing melt modulus, GN,
is different for the elastic and the viscous components, G′(ω) and G′′(ω) of the complex
modulus, G* = G′ + jG′′. We can call them G′N and G′′N, respectively. We could also push
this exercise one step further and consider that the elastic and viscous components of G*
have different terminal times, say τ′R and τ′′R, respectively. The Rouse equation remains
the same, formerly, but we have made the real and the imaginary terms of the complex
function G* “independent”. These two terms might still be coupled but in a way different
than what is implied by the un-modified Rouse equation. We have already mentioned
above that making the GN and τR constants “loose” in the non-linear regression of the
Rouse formula improved the fit of the data a great deal. We also added, however, that
this bifurcation from the Rouse basic formula inevitably took us away from the Rouse
molecular reality. But what is the real molecular reality? Is the modulus of the melt truly a
complex entity with elastic and dissipative coordinates? The Rouse equation establishes
very simply the viscoelastic nature of the melt by considering the formula of two functions
G′(ω,T) and G′′(ω,T) and stating that they are the real and imaginary coordinates of a
complex function. This mathematical foundation—based on the coupling between a spring
and a dashpot in a mechanical system—correctly led to the observed Maxwell slopes of 2
and 1 for the log G′(ω) or log G′′(ω) when plotted against logω in the Newtonian region.
The true appeal of the Rouse model is to have found a molecular basis for the “spring
and dashpot” mathematical parameters, GN and τR. The problem of the Rouse model is
illustrated in Figure 15 that shows that beautiful and simple mathematics might be enough
to create a myth but not enough to be validated through its confrontation with the data. We
show in Chapter I.5 of Ref. [20] (simulation of the Dual-Phase model) that the attribution of
the Maxwell slopes 2 and 1 is not necessarily derived from a Rouse type of mathematical
formalism, and that the origin of and the coupling between G′(ω), that force proportional
toω2, and G′′(ω), that force proportional toω, may be understood in a way fundamentally
different than a complex dependence of the type: G* = G′ + jG′′.

In conclusion, there is no merit to the Rouse model, in our opinion, in its present
formulation, Equation (1). The Rouse model fails to describe the viscoelastic behavior of
unentangled polymeric melts. The introduction of GN = ρRT/M, borrowed from the rubber
elasticity theory, permits to normalize the dynamic moduli, G′(T,ω) and G′′(T,ω), but it has
no molecular meaning in the Rouse’s physical reality (or if it does, the theory of rubber elas-
ticity must be reconsidered). The introduction of τR, the Rouse time, since it is the inverse
of the cross-over frequency, τR = 1/ωx, is useful, practically: it permits the introduction
of a “marker” of the state of the melt, more or less correlated to the end of the Newtonian
range for ω. Of course we do not need a theoretical meaning to use τR, and there is
none. The physical molecular modelization of flow proposed by the Rouse model is wrong:
like any molecular model that considers the single chain as the system to explain the flow
behavior it cannot predict the existence of any transition in the melt, neither the Tg + 23 ◦C
transition [18,19] nor TLL (see next section). The temperature and molecular weight de-
pendence of τR = 1/ωx also provide useful information. However, τR is totally useless
(theoretically) to quantify the “dynamics” of the viscoelastic behavior, i.e., shear-thinning,
the effect of rate and temperature on the kinetics of molecular motion. The spectrum of
relaxation generated by τp= τR/p2 is simple but useless to correctly describe shear-thinning
or to understand why χ(ω) = (G′/G*)2 presents a maximum. Likewise, we find the various
attempts to modify the Rouse equation by either “truncating-to-fit” the spectrum of relax-
ation or by adding a high frequency term to the Rouse modulus (the Allal’s approach) to
be either empirical or not working according to the claims (despite of our best efforts to
make these attempts work).

2.2. The Myth of the Extended Applicability of the Time–Temperature Superposition Principle

The “time–temperature superposition” principle is an extrapolation method that
permits to extend the range of measurement of an experiment, in time or in frequency, by
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operating at other temperatures and shifting the multi-T data to obtain a mastercurve, at a
given chosen temperature, with the extended time/frequency range. This extrapolation
method has been extensively used, for instance, to present the full view of the elastic
modulus from the molten state temperature region to the glassy state region, a complete
picture that no single instrument can provide. It is, therefore, of the utmost importance to
trust the method of extrapolation in question, namely the validity of the Time–Temperature
superposition claims.

The current paradigm of polymer physics teaches that the validity of the “time-
temperature superposition principle” (tts) covers the range Tg to Tg + 100 ◦C, i.e., works
approximately over a 100 degrees range above Tg [32]. The tts is also applicable to dynamic
data obtained by frequency sweeps at constant temperature, i.e., under oscillation at various
frequenciesω under given temperatures. The tts expresses the following: the rheological
variables found at temperature T1, using frequencyω1, are the same as those found at T
using frequency ω provided the time scale (here the frequency) is changed by a shift factor,
log aT =log(ω/ω1), which varies with temperature only; the Vogel-Fulcher equation (see
Equation (4) can be re-arranged to describe log aT as a function of T and T1 (WLF equation,
Ch. 11 of Ref. [32]). The moduli to superpose must be normalized by the Rouse modulus,
GN = ρRT/M, before superposition. This amounts to say that there is a vertical shift factor
bT = ρ1T1/ρT to be applied to the modulus variables to superpose in order to optimize the
superposition. The data set at T1, ω1 is called the reference data set; the other data sets
at T, ω are shifted by bT on the vertical axis and aT on the horizontal axis to produce a
mastercurve at T1. We have discussed the limitations of the tts and its status as a myth in
Ch. 3, pp. 59–73 of Ref. [2] and we refer to that writing for more details. To summarize our
findings:

• The superposition of curves by horizontal shifting on the log time or log frequency is
a good approximation over a rather short temperature interval. There are 3 ranges of
temperature within which the tts works well for polymer melts: the Tg to (Tg + 23 ± 2)
region, the (Tg + 23) to TLL region and the T > TLL region. For each temperature
region a new set of WLF constants (or Vogel Fulcher constants) must be established.
Superposition across regions is physically improper according to the Dual-Phase
model [20].

• The use of bT pursuant to the normalization of the moduli by the Rouse modulus
GN is incorrect. The reason has been implicitly given in the previous section which
showed the inadequacy of using GN except for G′′(ω) and thus viscosity (Figure 10).
To find the correct value of bT, a double-shifting regression is always required [33]. It
has been shown, for instance, that the vertical shift factor, log bT, when it is obtained
by regression-double-shifting, is not as predicted by the Rouse modulus GN/GN1,
yet that its variation with T permits to detect the presence of transitions, such as the
transition at Tg + 23 ◦C also visible from thermal stimulated depolarization data [19]
or the TLL transition [24,34].

• The temperature range of applicability of the tts varies with the strain imposed during
the frequency sweeps ([2] “Effect of Strain” (Section 5.8, p. 322) and with the thermal-
mechanical history of the melt prior to the frequency sweep ([2] “Thermal-Mechanical
History to create out-of-equilibrium melt properties”, Section 4.3.5.2 p. 206).

• The tts might be valid for a limited frequency range only or it might be valid on two or
successive frequency ranges with different constants to express the 2 shift factors, log
aT and log bT. It is the case for the 3 temperature ranges delimited by Tg + 23 and TLL.

In this section we want to illustrate the difficulty encountered applying the frequency-
temperature superposition to the data of Matsumiya and Watanabe. already introduced in
the previous section. These data on a well characterized monodispersed PS are within the
range of temperature above Tg (Tg = 93.78 ◦C for M = 27,000) where the time–temperature
superposition is claimed to apply, and, the range of temperature analyzed is only 25 ◦C
(from T = 115 ◦C to 140 ◦C). The melt is located below its TLL evaluated at 161.4 ◦C for
M = 27,000. Also note that Tg + 23 ◦C = 116.78 ◦C, which positions T = 115 ◦C inside the
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Tg + 23 range (barely though) and T = 120, 130 and 140 in a different range, the (Tg + 23)
to TLL range. Our intention is to show that the principle of superposition does not work
well for these data because it needs to be perfected based on a better understanding of
its origin and its limitations. The possible reasons for the need to modify and limit the
time–temperature superposition naturally shift the light on the necessity to reconsider our
understanding of the physics of the interactions in polymers. A quantitative explanation
of the rheological results of Matsumiya and Watanabe. based on the concepts of the new
paradigm is described in another publication (Ch. II.7 of Ref. [20]) and not in this paper.

The time–temperature principle is illustrated in Figures 16–25 using the data of Mat-
sumiya and Watanabe which are obtained by dynamic rheometry. These authors have
described their experimental procedure as follows: the frequency sweeps were “DOWN
sweeps”, from high to low frequency (100 to 0.1 rad/s). The temperature for the 1st sweep
was 140 ◦C, followed by the other frequency sweeps done at the lower temperatures (130,
120, 115 ◦C in this order) using the same sample. The strain was chosen to keep the results
in the linear viscoelastic region (2%). This procedure is not unusual but is different from
the one used most often that consists of UP sweeps and changing the sample after each
frequency sweep to avoid the slightest possibility of inducing a thermal-mechanical history
in the sample when operating sequentially on the same sample even in the linear range.
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Figure 25. Plot of ω′ = ω/χ against log G* at the 4 temperatures of the Matsumiya and Watanabe.
data [22] demonstrates the presence of the Tg + 23 ◦C transition at T~115 ◦C. See text.

Figures 16 and 17 are plotted from the original data of Matsumiya and Watanabe which
were kindly provided to this author. The black squares represent the “reduced” modulus
values, i.e., G′ and G′′ corrected by T1/T where T1 = 115 is the reference temperature
and T is the temperature of the frequency sweep to shift, both converted to ◦K. This
correction is induced by the adherence to the Rouse model for which the dynamic moduli
are proportional to GN = ρRT/M (Equation (1). The round red dots (reduced in size to
avoid overlapping the black squares) are the data without any temperature correction.
The difference between the red dots and the black squares is hardly visible. The small
temperature interval (25◦) renders the Rouse correction of the moduli negligible.

The complex viscosity, η*(ω) = G*/ω, is calculated from the values of G′(ω) and G′′(ω)
in Figures 16 and 17, with G* = (G′2 + G′′2)0.5, and plotted in Figure 18 against the log
of frequency ω. The tts can be used to superpose these curves into a mastercurve. We
followed Matsumiya and Watanabe’s choice of T1 = 115 for the reference mastercurve to
check that our values of the shift factors, log aT, matched theirs [22]. Table 3 provides those
values which were validated by us. Retrospectively, though, the choice of T1 = 115 ◦C
for the mastercurve was not the best one since this temperature is right on the transition
between ranges mentioned earlier, the (T < Tg + 25) range and the ((Tg + 25) < T < TLL)
range (see Figure 25 above).

Table 3. Horizontal and vertical shift factors, aT and bT, respectively, for the superposition of the
rheological data of Matsumiya and Watanabe [22].

Temperature ◦C Log aT
T Ref = 115

Log bT (from χ)
T Ref = 115

115 0 0

120 −0.7 −0.03617

130 −1.81 −0.08049

140 −2.69 −0.10672
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Figure 19 is the “viscosity mastercurve” at T= 115 ◦C obtained after shifting horizon-
tally and vertically the data of Figure 18 by an amount log aT and −log aT, respectively.
The shift factors log aT are given in Table 3. The shift by −log aT on the viscosity axis is
due to the definition of the viscosity: η*(ω)= G*/ω, which becomes after superposition:
G*/(aTω), so the shifted viscosity using the log scale is: log(G*/ω) −log aT.

Our conclusion from Figure 19 is that the tts does not work, at least over the full range
of aTω. A closer observation permits to fine tune our conclusion. First, T = 115 ◦C seems
to behave differently than the other 3 frequency sweeps. This is visible at both frequency
ends. In the Newtonian region (the plateau region), although it is harder to see without
zooming in, the “T115” (T = 115 ◦C) is the only curve not really merging with the rest
(see later in Figure 25 for a more convincing perspective). Second, the overlapping of the
3 frequency sweeps, other than T115, is restricted to a range of frequency that extends from
the Newtonian region to the inflective point of the shear-thinning drop off line (at which
log η*(ω)~6.46). This restricted range is the only one where we can ascertain that the tts is
validated.

Figure 20 plots the temperature variation of log aT, the horizontal shift factor. As
expected, aT is equal to the ratio of the Newtonian viscosity at T and T1:

logaT = log
ηo(T)
ηo(T1)

(8)

The red curve in Figure 20 is calculated from Equation (8) using the values of log(η*o(T))
in Equation (4) with T1 = 115 ◦C.

Figure 21 displays the variation of χ vs. log ω with temperature for the PS27 of
Matsumiya and Watanabe. χ=(G′/G*)2 = cos2 δ was introduced in Section 1 (Figure 4).
Both the position and the magnitude of the maximum vary with temperature. (G′/G*) is
the stored elastic energy, which is expected to increase as T decreases, but we observe the
opposite trend: the peak maximum amplitude decreases as T decreases. One may think,
for a reason, the fact that the modulus is proportional to GN which increases with T. This
explanation cannot stand, however, since (G′/G*) is the ratio of two moduli, which cancels
out the vertical correction due to the proportionality of the modulus to GN according to the
classical tts. In other words, the usual correction on the vertical axis for the temperature
dependence of a modulus, T1/T, is not required in Figure 21. In addition, as we mentioned
before, the temperature span being small, the T1/T correction is negligible. According to
the current tts, based on the Rouse molecular background, one should not need a vertical
shift factor to superpose (G′/G*)2 vs. logω. Figure 21 visually contradicts such a statement:
shifting only horizontally will not superpose the data.

Figure 22 is the mastercurve at T = 115 ◦C obtained after shifting horizontally the data
of Figure 21 by the log aT values that were used to shift the viscosity curves of Figure 18 to
obtain the mastercurve of Figure 19. We already said that our log aT values matched the
values published by Matsumiya and Watanabe [22] for which these authors claimed that the
tts works. We see in Figure 22 that when the elastic component of the viscoelastic modulus
is used, the time–temperature superposition fails entirely, even in the restricted frequency
range it was validated to superpose viscosity in Figure 19. In other words, we face the same
dilemma as for the invalidation of the Rouse formula comparing the value of GN from
the viscosity side and the elastic side of G* to determine GN. In Figure 22 we have drawn
a dash straight line (green) joining the peak maxima that shows a tilt from the expected
verticality of such a line if the horizontal shifting of the curves the way the tts works had
been successful. In other words, if we want to be able to obtain a true mastercurve by
shifting the curves in Figure 21, not only do we need to use a vertical shift bT to address
the issue of a peak magnitude which varies with T, but we also need to modify aT on the
horizontal shifting axis.

The values of bT were found by plotting log(η*(aTω)) vs. χ(ω), not shown, for which
we saw that all the maxima at the 4 temperatures lined up horizontally for log(η*(ω)) = 6.46,
the value found for the inflection of log(η*(ωaT) vs. log(ωaT) in Figure 19; we then
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determined the value of χ at the maximum of χ(ω) from which we determined bT as the
ratio of the χ values found at T and T1, with T1 = 115 ◦C. The values found for bT are listed
in Table 3 and the variation of log bT with T is found in Figure 24. A couple of remarks
regarding the procedure to find bT: By plotting log(η*(aTω)) vs. χ(ω), the horizontality of
the maxima of χ(ω) with T made it not necessary to find a new aT, as suggested by the
tilt of the green dash line in Figure 22. The choice for bT to be the ratio of the values of χ
at the maximum for T and T1 was hinted by the considerations we expressed earlier on
the possibility to define G′N and G′′N in the section on the myth of the Rouse model. In
effect, the Rouse model is not capable to understand the need of bT to superpose the χ(ω)
at various T, the way the Rouse equations stand (Equation (1). Yet, if we accept to modify
the Rouse equations to have G′N and G′′N different (with still G′′N = GN = ρRT/M)), then
bT can be an affine function of χ.

The mastercurve at T = 115 ◦C obtained by “double-shiftinG
′′ on both the horizontal

and vertical axes by log aT and log bT, respectively, is shown in Figure 23. The y-axis scale
remains linear in this figure and, therefore, the y coordinate is (χ bT). The temperature
dependence of bT is in Figure 24.

We confirm in Figure 23 that the data of Figure 21 can be superposed, using two shift
factors, aT and bT, yet the superposition is only valid in the range of frequency up to the
maximum of χ(ω). This successful shifting of the data up to the maximum of χ matches
what we observed for the successful shifting of the log(η*(ω)) vs. log(ω) up to the inflection
point in the shear-thinning range. We know that the correspondence between the two
ranges matches because the bT data were obtained at log(η*(ω)) = 6.46, which was also the
value obtained at the inflection of log(η*(ω)) vs. log(ωaT) in Figure 19.

Figure 24 provides the temperature variation of log bT. It is remarkable that log bT vs.
T can be fitted by an hyperbolic function of the Vogel-Fulcher type: A + B/(T − C), with the
fitting constants A, B and C determined by non-linear regression: A =−0.19876; B = 4.26732;
C = 93.78 ◦C (r2 = 0.9999). The value of C was forced to equal the Tg of the M = 27,000
monodispersed PS. A loose regression, without forcing the value of C, provided a value
of C = 91.00, B = 5.0138 and A = −0.209. The r2 is not improved for the loose regression.
Let us consider here that C is truly equal to Tg for the variation of log bT. For the variation
of log aT (which can be expressed from the Vogel-Fulcher equation, Equation (4), where
C is designated T∞), we have shown in [35] how the value of Tg and T∞ correlate with
the isomeric state of the Dual-conformers and their dynamic free volume to determine the
value of the TLL transition of the melt. The value of TLL plays an important dynamic role in
the Dual-Phase theory of interactions ([2,19], Chs. I.4, II.7 of [20,34]); for our purpose in this
section, let’s just say that TLL determines the upper temperature end of the tts applicability
that starts at Tg + 23 ◦C, and the need to find a different set of shift factors log aT and log
bT when T > TLL to extrapolate the data correctly on the mastercurve for the data in that T
region. In addition, TLL also holds many important functions, for instance the end of the
dynamism of the dual-phase dissipative statistics, (Ch. 3 of Ref. [19]).

Conclusion Regarding the Myth of the Time–Temperature Superposition Principle

The classical claim, e.g., by J.D. Ferry [34], that the Time–Temperature Superposition
(tts) can be applied from T = Tg to T = Tg+100 ◦C to obtain the behavior over the full
range of frequency or relaxation times by data shifting extrapolation, is perhaps true for
certain polymers under certain circumstances, but we miss the original data to be able to
validate the generality of that claim. What we know for certain is that many limitations
and restrictions to the general sst must be added to establish it as a workable general
rule and that these restrictions are as fundamental or even more fundamental than the sst
principle itself to understand the behavior of polymer melts. The restrictions imply that
the sst should only be applied over delimited temperature and frequency (time) intervals
which depend on the chemical nature of the polymer and its thermal-mechanical history
(its processing and thermal history). We have used the specific example of the data of
Matsumiya and Watanabe on a classical polystyrene sample to prove the need for certain
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restrictions that, we claim, should be the ones to be generalized. Here are the specific
reservations concerning tts:

- The time–temperature superposition principle is not verified for the data we ana-
lyzed. Matsumiya and Watanabe recognized in their paper the shortcomings of the
superposition applied to G′(ω) and G′′(ω), yet they did not question why their data
showed such a flagrant discrepancy. We believe that questioning why the tts does not
work when performing super standard dynamic rheological experiments on a super
standard polymer (PS) was worth the subsequent dedicated analysis time and effort it
demands and triggers.

- Why do the rheological curves for a simple PS studied in the linear range of visco-
elasticity fail to superpose over a classical range of frequency (0.1 to 100 rad/s) using
a span of temperature of only 25 ◦C? Why do the users of the current paradigm of
polymer science avoid reporting the failures of a full superposition of their data? Why
is there the need to restrict the frequency range or the temperature range for the sst to
work? Is there no fundamental requirement for the prevailing theory of viscoelasticity
to answer the following questions:

- Why is the tts valid only for the low (left) frequency side of the peak of χ vs. logω?
- Why does log η*(ω) only needs one horizontal shift of the curves, log aT, whereas

the χ vs. logω requires two shift factors, log aT and log bT when applying the tts,
- Why are we systematically correcting vertically the rheological moduli by (ρT)−1

without checking if the Rouse modulus GN does normalize both G′(ω) and
G′′(ω)?

- Why is the value of χ at the maximum increased and not decreased as T increases?
This appears counter-intuitive with the explanation that glassy relaxation compo-
nents are causing the maximum in the χ vs. logω curve.

- Why is the rheological behavior at T = 115 ◦C different than at T = 120 to 140 ◦C?

Figure 25 is another way to plot the data to make appear the Tg + 25 transition
introduced earlier, explain that T = 115 ◦C is located at the Tg + 25 and thus belongs to a
different rheological range, with its own shift factor characteristics.

Figure 25 is a graph of ω/χ plotted against log G* as the frequency decreases from
left to right in the down sweep procedure used by Matsumiya and Watanabe [22]. As we
explain in Ch. 5.4 of Ref. [2], ω′ = ω/χ is the frequency of the elastic dissipative wave
that maintains the collective coherence of the melt despite of the local density fluctuation
due to the dual-phase interactions. The figure shows that theω/χ values of the frequency
sweeps at T = 140, 130 and 120 ◦C fuse and overlap at low ω, i.e., at lower values of G*,
merging into a single curve like data do in a mastercurve. This is not the case for T = 115 ◦C
which is singled out by showing a minimum and the curve starting to rise sharply at
lower ω. This distinct behavior separates out the two regions of viscoelastic across the
Tg + 23 transition. The presence of one of the isotherms very close to a transition made
it impossible to consolidate the tts curves into a mastercurve for this narrow range of
temperature interval explored by Matsumiya and Watanabe.

In conclusion, the myth of the time–temperature superposition is linked to the myth of
the Rouse model which, we suggested, is in no way descriptive of the rheology of unentan-
gled polymers. The use of the Rouse molecular model as the theoretical base to apply the tts
creates huge confusion on the precise way to superpose the data, single or double-shifting,
on what range of temperature and frequency, with what correction and depending on
which rheological function. In addition, even when the limitations to the superposition are
noted, the reason for the restrictions remain obscure and without explanation. As we will
see in the next section, the same clueless response to basic fundamental results faces the
reptation theory. The mathematical solutions proposed by the reptationist school follow
the steps of the Rouse molecular dynamic model to focus on modeling the variations of the
chain dimensions during deformation, which, as we have suggested, is the wrong statistical
system to model. This fundamental assumption that the dimensions of a single chain are
correlated to the macroscopic stresses can be tested experimentally using the Rheo-SANS
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technique (defined below). As a matter of fact, despite the mathematical brilliance of the
reptation work, some recent experimental results fail to agree with the predictions of the
reptation theory. This is presented in our next section.

2.3. The Great Myth of Reptation. The Failure of the Reptation Model to Correctly Describe and
Understand the Shear-Thinning Behavior of Entangled Polymeric Melts (M > Mc)
2.3.1. The Brilliance of the de Gennes’s Reptation Ideas

The Rouse model was created to describe the viscoelastic behavior of polymer solu-
tions, not polymer melts. The application of the Rouse model to unentangled polymer
melts was the initiative of J.D Ferry [32]. It was clear immediately to polymer scientists
that the Rouse model could not predict the distinct rheological behavior of entangled melts
(or entangled solutions). However, the natural tendency is to start from what is known
and to modify it, i.e., in the case of de Gennes, to keep certain basic assumptions of the
Rouse formalism while adapting it to the case of reptiles moving within fixed obstacles,
which is the title given by de Gennes when he published his first paper in 1971 [8]. De
Gennes, who was not a polymer scientist by training, learned from the context of the
thoughts on viscoelasticity established at the time. The theory of viscoelasticity of polymers
considered then, which still serves as the ground foundation for the current paradigm
describing viscoelastic interactions, assumed that the rheological deformation of polymer
melts resulted from the behavior of singular chains embedded in a sea of interactions with
other chains. In the existing theories of macromolecular physics, the emphasis is placed on
determining the shape of the individual macromolecules, often called their chain confor-
mation. The presence of neighboring and interpenetrating macromolecules is perceived
as a disturbance to the ideal conformation of the chain. In the traditional texts, the field
of interaction responsible for the disturbance is homogeneous. Therefore, de Gennes, like
all his predecessors before him, considered the behavior of the melt as the consequences
of what happens to a single chain after the effect of the interactions between the chains
had been established. De Gennes had the idea of considering the interactions between the
chains as a field of obstacles between which a single chain is oscillating through, the way
reptiles move, when the chain is requested to move pursuant to an external deformation.
De Gennes modeled the motion of the chain among the obstacles using the molecular
dynamic language already established in the Rouse model, thus defining the reptation time
of a single chain.

In the case of shear deformation, the Newtonian viscosity is classically considered to
describe the local internal friction between the bonds of interacting macromolecules which
assume a stable thermodynamics state, the equilibrium state at a given temperature and
pressure. The non-Newtonian behavior, shear-thinning, is due to a modification by the flow
of the dimensions of the macromolecules, i.e., of their conformation, which can be calculated
from the effect of the shear rate on the rms end-to-end distance of the macromolecule and
the amount of slippage (relax/retraction) occurring. Theoretical models predict that for a
shear rate strong enough to overpower the ability of the chain to relax—and this happens
at the reptation time—shear-thinning starts to be observed, corresponding to an increase
in the rms end-to-end distance of the chain, leading to its orientation. In the classical
formulas that describe the non-Newtonian dependence of viscosity with shear rate, the
amount of shear-thinning is only a function of two parameters (in addition to the strain
rate, of course): the Newtonian viscosity and the value of the reptation time. But these two
parameters can be correlated to each other, as in the Rouse’s formula , Equation (3), and to
the dimensions and interactions between the chains, which simplifies the description of the
flow deformation process to the description of the dependence of the reptation time with
temperature, pressure, and chain length (the interactions between the macromolecules,
defined by “their entanglement”, is already incorporated in the definition of the reptation
time).

In summary, the effect of strain rate, temperature, molecular weight, according to the
accepted reptation model, could all be related to a simple explanation: the deformation
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and relaxation of single macromolecular chains confined to move within the boundaries
of a tube, the entanglement tube, whose lifetime was the reptation time. The whole
process would continuously be happening, from very low strain rate to high shear-thinning
producing strain rate. Additionally, the reptation model provided a new understanding of
“entanglement” by quantifying the dimensions of the tube and correlating it to the reptation
time. The interactions between the macromolecules could be described topologically, the
tube serving as the new topological description of the environment of the bonds.

This was the brilliance, even the beauty, of the original reptation model of de Gennes [2],
who succeeded in scaling the effect of all variables into the description of a single parameter,
the reptation time. However, this extraordinary tour de force had to be refined over the
years to account for a better description of the experimental data, in particular to improve
the molecular weight dependence of the reptation time which did not follow the predicted
M3 variation by de Gennes [3]. The model of reptation in a tube has been significantly
improved over the years, by incorporating additional molecular mechanisms such as con-
tour length fluctuation [36–38], constraint release [9,39–42], and chain stretching [43–45].
Doi and Edwards [46] proposed to account for the nonlinear rheological behavior by as-
serting that the external deformation acted on the tube, instead of the polymer chain [47].
The non-affine evolution of chain conformation beyond the Rouse time would be caused
by chain retraction within the affinely deformed tube. Other essential improvements to
the tube reptation model were done by many contributors, notably Marrucci [9,10], Wag-
ner [11], McLeish [12] but the state-of-the-art version of the tube theory is the GLaMM
model (named after Graham, Likhtman, Milner, and McLeish) as it incorporates the effects
of reptation, convective constraint release and chain stretch on the microscopic level [45].

It is fair to recognize that the tube model revolutionized the field of polymer dynamics,
and stands at present on the highest step of the podium of the current paradigm for its
predictions of the linear and nonlinear viscoelastic properties of entangled polymers.

Small-angle neutron scattering (SANS) studies on polymer melts under steady-state
flow provide in situ information at a molecular scale on how the flow field is transmitted to
the melt. Such experiments, called “Rheo-SANS”, are difficult to set up and require special
equipment but their results are fundamental to test experimentally the accepted claim by
the reptation model [6,46] that the shear-thinning of entangled polymer chains is due to
significant orientation of the segments between entanglements under the shear flow. We
quote below two significant Rheo-SANS studies, one by Watanabe et al. in Japan, published
in 2007 [48], and the other one by Noirez et al. in France, published in 2009 [49].

Both studies concluded that the chains remained largely un-deformed under steady-
state shear flow conditions for which extensive shear-thinning was present. These results
represent a formidable challenge to the reptation model of melt deformation [9,36–47].

Recently, in 2017, there was the new Rheo-SANS evidence published by Zhe Wang
et al. [50], that demonstrates experimentally that the chain retraction step of the tube model
does not occur, which led these authors to conclude that our current understanding of the
flow and relaxation of entangled polymers, based on the reptation theoretical model of
motions pioneered by de Gennes (1971) and Doi-Edwards (1979) is fundamentally wrong:

“. . .This result calls for a fundamental revision of the current theoretical picture for
nonlinear rheological behavior of entangled polymeric liquids. . .the predictions by the
tube model are not experimentally observed in a well-entangled polystyrene melt after a
large uniaxial step deformation”.

2.3.2. Invalidation of Reptation by Rheo-SANS Results of Watanabe et al. (2007)

In order to examine the chain conformation changes under shear flow for a well-
characterized monodispersed entangled polymer and the orientation distribution along
the chain backbone, Watanabe et al. examined the Rheo-SANS behavior for an entangled
polybutadiene sample dissolved in a deuterated oligomeric butadiene at the volume frac-
tion of 0.28. The rheometer was a Couette apparatus, allowing high-flow shear rates at
constant temperature [48]. The shear rate, normalized by the reptation time, was between
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24 and 29 s−1and at these shear rates the viscosity of the systems was significantly smaller
than the zero-shear viscosity (by a factor of ~40). Despite this intense shear-thinning, Watan-
abe et al. observed that “the I(q) data just moderately deviate from the Debye function (describing
the data at equilibrium). . . These SANS data allow us to examine the current molecular picture
for the entangled chains under fast shear flow. This picture assumes that successive entanglement
segments are not orientationally correlated and behave as independent stress sustaining units even
under fast flow. . . Thus, the above assumption fails for the entangled chains under fast flow".

In other words, at a shear rate that reduced the Newtonian viscosity by a factor of 40,
i.e., under strong non-Newtonian conditions, the chain rms end-to-end distance hardly
varied from its value under static (equilibrium) conditions: this result, if verified, was in full
contradiction with the basic assumption of the reptation model regarding the deformation
mechanism involving the singular macromolecules. Yet, this catastrophic contradiction
was kept buried in the archives and was not brought forward by the authors; it remained
an isolated research report which was not confirmed.

2.3.3. Invalidation of Reptation by Rheo-SANS Results of Noirez et al. (2009)

Noirez et al., apparently unaware of the results of Watanabe et al. [48], probably
for the reasons evoked above, used a similar Quartz Couette rheometer set up and re-
ported on in situ observations of polymer melts under steady-state shear flow using
neutron scattering [49]. The amorphous melts studied by these authors were an en-
tangled polybutadiene (Tg = −110 ◦C, Mw = 29 Me) characterized by a reptation time
τd = 7 × 10−3 s (ωx = 143 rad/s) and a low-molecular-weight (unentangled) polybutylacry-
late (Tg = −64 ◦C, Mw~Me), characterized by τd = 10−3 s (ωx = 1000 rad/s). Both melts
were monodispersed and sheared at room temperature (i.e., far above their respective Tg).
The melts were sheared with a range of strain rates spanning the zone from far below the
reptation time to far above it (from 0.011 s−1 to 1000 s−1) to determine the variation of the
chain dimensions across the reptation time and test the admitted reptation theories claims
regarding the onset of shear-thinning and of chain orientation/disentanglement [6,46].

Figure 1 of Noirez et al. [49] clearly demonstrates that the two components, azimuthal
and longitudinal, of the radius of gyration (Rv and Rz) remained constant at 80 Ả as the
shear rate varied from the Newtonian range to a highly shear-thinned melt, and, besides,
that no change of the radius of gyration occurred as the melt crossed τd. The authors
concluded “that the chains remain largely undeformed under steady-state shear flow... These
observations are of prime importance; they reveal that the flow mechanism and its viscoelastic
signature reflect a collective effect and not properties of individual chains".

We emphasize the last sentence in the conclusion: “. . .the viscoelastic signature reflects
a collective effect and not properties of individuals chains”. This is the key sentence to re-
member from this experimental research. In summary, both Watanabe et al. and Noirez et al.
concluded that the macromolecular dimensions remain quasi-unchanged as the melt is
sheared in the non-Newtonian region, and this conflicts totally with the currently accepted
understanding of shear-thinning. The failure of the existing models to interpret such a
fundamental aspect of polymer rheology cannot remain unchallenged [13–21].

2.3.4. Invalidation of Reptation by Rheo-SANS Evidence That Chain Retraction Does Not
Occur by Zhe Wang et al., 2017

This paper by Zhe Wang and 11 other co-authors [50] solves the problem of critically
testing the chain retraction hypothesis of the tube theory for entangled polymers. In prin-
ciple, these authors explain in their paper, one should be able to critically test the chain
retraction hypothesis by performing SANS experiments on uniaxially stretched entangled
polymer melts and comparing the measured Rg with theoretical predictions. “In reality,
experimentalists have encountered tremendous difficulty in following this approach. . .it is practically
impossible to reliably determine the radius of gyration tensor through model independent Guinier
analysis, because of the limited Q range and flux of existing SANS instruments and the large molec-
ular size of entangled polymers”. These limitations of the analysis of the radius of gyration
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tensor in step-strain relaxation Rheo-SANS investigations may represent arguments to
question the results of Noirez et al. [49] or Watanabe et al. [48] above.

Zhe Wang et al. recently recognized the value of “spherical harmonic expansion”
as a general approach for characterizing Q-dependent deformation anisotropy and chain
conformation at different length scales. The idea of using spherical harmonic expansion
of the orientation distribution function of statistical segments in deformed polymer net-
works was conceived by Roe and Kribaum who discussed the potential application of
this technique to analyze the amorphous halo for stretched polymers [50]. A more formal
treatment of the measured scattering intensity by Legendre expansion was developed by
Mitchell [Refs. 84–86 of [50]] and applied to the tensile deformation mode. The originality
of Zhe Wang et al.’s work is to have applied the spherical expansion analysis to test directly
and unambiguously the chain retraction hypothesis, central to the theoretical picture of the
tube model.

The stretching of the rectangular samples of PS to orient them before their SANS
analysis was conducted by Zhe Wang et al. by uniaxial elongation at 130 ◦C to a stretch
ratio λ = 1.8, with a constant crosshead velocity v = 40 l0 /τR, where l0 is the initial length of
the sample, and τR the Rouse relaxation time (~600 s). The oriented samples were allowed
to relax for different amounts of time (from 0 to 20τR) at 130 ◦C and then were immediately
quenched by pumping cold air into the oven. The authors verified that they successfully
froze the conformation of the polymer chain with negligible stress relaxation during the
quenching procedure.

Zhe Wang et al unambiguously showed that:

“the two prominent spectral features associated with the chain retraction—peak shift of the
leading anisotropic spherical harmonic expansion coefficient and anisotropy inversion in
the intermediate wave number (Q) range around Rouse time—were not experimentally ob
served in a well-entangled polystyrene melt after a large uniaxial step deformation”.

They added:

“Unlike the previous investigations, there is no ambiguity associated with model fitting
and no room for human bias. Therefore, our critical test clearly demonstrates that the
chain retraction hypothesis of the tube model is not supported by small-angle neutron
scattering experiments.”

“This result calls for a fundamental revision of the current theoretical picture
for nonlinear rheological behavior of entangled polymeric liquids.”

“Therefore, without an alternative mechanism for molecular relaxation, the idea of non-
affine deformation alone does not seem to be able to explain the experimental observation.”

“Since the tube theory is of paramount importance for our current understanding of
the flow and deformation behavior of entangled polymers, the invalidation of the chain
retraction hypothesis has immense ramifications.”

2.3.5. Conclusion on the Great Myth of the Applicability of the Reptation Model to
Entangled Polymer Melts (M > Mc)

Despite all its elegance, mathematical sophistication and quasi-general acceptation
we conclude that the reptation model incorrectly describes the Rheo-SANS experiments of
Watanebe et al. [48], Noirez et al. [49], and of Zhe Wang et al. [50] and should be abandoned.
The reason for this radical proposition, in our view, is that the dynamics of the interactions
defining the melt properties should not be defined by statistical systems which are the
single macromolecules. The failure of the reptation model also implies re-considering the
concept of entanglement, the corner stone of polymer physics which, in our opinion, is not
understood by the current paradigm of polymer physics.
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2.4. Shear-Refinement and Sustained Orientation: The Lack of Understanding by the Current
Paradigm
2.4.1. Shear-Refinement

“Shear-Refinement” is the observed influence on subsequent viscoelastic behavior
(e.g., viscosity) of a pre-shearing treatment of a polymeric melt. Cogswell mentions the
influence of thermo-mechanical history on viscosity in his book [51], p. 53:

“Intense working, producing high shear, will usually lead to a reduction in viscosity and
also a decrease in the elastic response”.

Note that the viscosity reduction discussed by Cogswell is not due to a decrease in
molecular weight, which is known to occur concomitantly, to a variable degree depending
on the polymer and the experimental processing conditions.

Pre-Treatment on Branched Polymers

Most of the pioneering work was conducted 20 years ago on branched polymers
(PE,PP) by such authors as D. E. Hanson [52], M. Rokudai [53], B. Maxwell [54], J.-F.
Agassant [55], H. P. Schreiber [56] (who wrote a review of the subject up to 1966), G.
Ritzau [57,58], who provides details of a shear-refinement apparatus, J.R. Leblans and
Bastiaansen [59], Van Prooyen et al [60], Munstedt [61], who studied the effect of thermal
elongational history, and A. Ram and L. Izailov [62]. Hanson [52] showed that the Melt
Flow Index of a branched PE could be modified by shear-refinement from 0.28 to 0.66 and
that the MFI returned to the initial value 0.27 after solution and re-precipitation of the
pre-sheared sample. Cogswell [51] comments as follows on the results obtained by Hanson
and others [52–54]:

“The change is seen to be reversible by solution treatment. Molecular weight charac-
terization indicated that all these samples were identical. . . [Shear-refinement effects]

“might at first appear to be the result of degrading the polymer, are frequently reversed by
cooking the melt, though the time for which the melt may need to be cooked to achieve
reversion may be much longer than the natural time of the material (viscosity/modulus at
zero shear)”.

J.-F. Agassant et al. [55] show that the effects of shear-refinement are most obvious,
and most commonly exploited, in the case of PVC which is known to have a morphology
very sensitive to thermo-mechanical history.

No clear explanation was ever given to the origins of shear-refinement by these
authors, which remained empirical until Bourrigaud [39] published a possible reptation-
based interpretation in the case of branched polymers.

Bourrigaud [63], and Berger [64] have recently investigated the shear-refinement of
long-chain branched (“LCB”) polyolefins in their thesis. Bourrigaud focused on several
well-characterized low-density branched polyethylene grades and obtained proof of the
influence of the strain amplitude of shear deformation on the degree of viscosity reduction
during subsequent processing. Bourrigaud suggested that molecular topology is critical,
and his results support the view that molecules with very long-chain branches are highly
affected by shear refinement, whereas linear polyethylene seems to undergo much smaller
changes (if any), under the experimental shear refinement conditions he used. Bourrigaud
and co-workers [65] concluded that the degree of long-chain branching or ramification qual-
ifies or disqualifies, for the most part, the degree of viscosity reduction observed by shear
refinement. In other words, controlled alteration by branching of the molecular weight
distribution leads to the optimization of shear-refinement and of its benefits, according to
these authors. Furthermore, Bourrigaud et al. showed that refinement by elongation is
more effective than refinement by shear for the same flow strength [63,65]. Berger [64] and
Berger et al. [66], worked with a long-chain-branched polypropylene under very high shear
strain rates and found similar results. Additionally, Berger and coworkers [66] confirmed
that the MFI of branched PP, collected as pellets, could be increased by shear-refinement,
and that solvent dissolution would reverse the effect; after evaporation of the solvent, the
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MFI returning to its original value. These authors concluded that disentanglement was
responsible for the decrease of viscosity and die swell [66]:

The pre-treatment of the LCB-PP in the capillary rheometer at the highest shear stress
applied causes a significant reduction of the tensile stress, which can be referred to the
reduction of the mass-average molar mass. However, the significant decrease of the
extrudate swell after the pre-treatment cannot be explained by the change of the molar
mass, as the elastic behavior of polymer melts is known to be independent of the mass-
average molar mass. Therefore, the reduction of the extrudate swell is an indication of a
change of the entanglement network during the pre-treatment.

Pre-Treatment on Linear Polymers

We published a series of papers and patents during the last two decades [67–69] to
explain how the combination of shear rate and controlled strain mechanical treatments
applied prior to or during processing of linear polymers (not branched) could result in
substantial viscosity reduction benefits that allow, for instance, to work in extrusion at
lower temperatures or under lower pressures at the same throughput. We invented,
designed and ran “Rheo-Fluidizers”, processing equipment making use of vibrational
methods during melt extrusion to induce shear-refinement by shear strain energy coupled
with extensional flow [67–69]. The emphasis of this “dynamic shear strain refinement”
process was on the improved processability of linear high-molecular-weight polymer
melts, such as polycarbonate and Plexiglas (PMMA), i.e., polymers without branches. We
showed [68,69] that to induce the shear refinement benefits, a combination of shear stress
and superposed oscillation could raise the elasticity of the melt to a level identical or
perhaps even superior to what branching could do. In other words, we proposed that, at
least under dynamic conditions, both linear polymers and branched polymers could qualify
for “disentanglement” by shear strain refinement. Furthermore, we drew attention to the
requirement of rheological criteria to be fulfilled for shear refinement to occur [Ref. [2] pp.
100, 110, 229], and pointed out the importance of the shear strain amplitude of the oscillation
to operate the melt in the non-linear time-dependent viscoelastic range. We suggested
that the combination of shear-thinning and strain softening during the pre-treatment,
which we designated “Rheo-Fluidification”, could produce either shear-refinement benefits
[Ref. [2] Section 4.6], or Sustained-Orientation (“disentanglement”) depending on certain
conditions [67–69]. Sustained-Orientation is explained in the next Section 2.4.2.

Shear-refinement work has remained largely empirical because of the lack of its un-
derstanding by the current models. The viscosity reduction is temporary and rheologi-
cal properties can be restored, which can occur in various ways and was not very well
understood until now. Most of the comprehension necessary for its generalization and
extrapolation to all macromolecules was lacking because the current models remained
speechless about the shear-refinement results. For instance, for linear polymers, the current
paradigm could not understand how it could be possible that shear-refinement effects could
happen since the chains were linear and not branched. In addition, the Rheo-Fluidified
melts had relaxation times calculated from their cross-over frequency much shorter than
those with the same molecular weight without treatment, and this was as if they had
been “disentangled”, sometimes by a factor of 1000 or even 10 times that. The claim by
Munstedt [70] that shear-refinement can only exist for branched polymer structures and
not for linear chains is debated in Section 2.4.3 below and in [15].

It is clear that the lack of comprehension of shear-refinement for linear polymers by
the current models poses a threat to the whole foundation of the existing paradigm in
polymer science. The situation is different for branched polymers for which Bourrigaud’s
theoretical explanation has the merit to search for a classical interpretation [63]. Bourrigaud
modified the McLeish and Larson’s pom-pom model [12] to account for the increase, due
to branching, in value of the tube renewal relaxation time and explained, at least partially,
some of the shear-refinement results for its branched PE samples. For linear polymers,
however, “disentangled” polymers present a real challenge to existing models of flow.
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The positioning of the science community with respect to the “disentanglement”
results remains confused and hesitant based on the claim of the reptationists’ gate keepers
that those results must be artifacts since they disprove their theory. Properties of melts
brought out of equilibrium are largely ignored. Yet, many plastic industries are directly
concerned and will benefit from the fundamental understanding of what causes shear
refinement viscosity drops in linear or branched polymer, and how this can be applied to
processing of polymer resins, branched or not. The ability to process plastic melt at much
lower temperatures (50–80 ◦C below normal), because of reduced viscosity due to shear-
refinement or disentanglement, opens up new boundaries not just in processing but also
in blending, such as in nanoparticle dispersion, or for the processing of high-temperature
sensitive additives (wood flour, instable additives such as peroxides, etc.). Details are given
elsewhere [Ch. 8 of Ref. [2]].

2.4.2. Sustained Orientation

Shear-refinement can occur with unentangled polymers, linear or branched, and
therefore shear-refinement should not always be called “disentanglement”, like we did
in our early publications (when we were not even aware of the work of others on shear-
refinement). It is true that we only applied our Rheo-Fluidification pre-treatments on
entangled melts, because of the commercial applications of reducing their viscosity, and this
was one of the reasons to designate the results “disentanglement”. When entangled polymer
melts are submitted to Rheo-Fluidification treatments, the result produced is at least shear-
refinement, at best Sustained-Orientation, and the distinction means that the Sustained-
Orientation is more difficult to achieve, requiring a dual-phase model understanding of the
differences between unentangled and entangled melts, in particular their stability under
stress.

In simple terms, by manipulation of the stability of entanglements, it is possible to
create and maintain quasi-stable at high temperatures in an amorphous polymeric melt (say
120 ◦C above Tg) a certain state of orientation that was induced by a mechanical deformation.
The manipulation of entanglements was achieved by coupling two Rheo-Fluidification
processors Section 2.2, Figures 2.1–2.4 in Ref. [2]. The “sustained-orientation” discovery
describes the possibility to obtain non-equilibrium entanglement states for polymeric
melts which can be preserved in a pellet formed after the treatment. This pellet displays
a melt flow index (MFI) that can be 100% larger than the original (virgin) pellet before
the treatment, after correction for any molecular degradation present due to the process.
This new state of polymer matter challenges the current established models of polymer
physics, because such “oriented” melts can remain oriented for hours at temperatures below
their TLL transition temperature, yet can slowly recover in time their initial un-oriented
equilibrium state (the MFI of the treated pellet then slowly reverses to its original MFI).
This esoteric behavior can be understood by the Dual-Phase model of the interactions that
explains entanglements as a split of the statistical system of interactions yielding a set of
cross-dual-phases [20].

The experiments of “sustained-orientation” could be interpreted qualitatively using the
classical terminology by a change in Me, the molecular weight between entanglement
(thus the wording which was used, “disentanglement” or “re-entanglement”), except that
there is no classical explanation to why Me could vary so slowly in time, Me(t), inde-
pendently of the terminal relaxation time, and be increased or decreased by relatively
low shear forces. For instance, using the classical language, sustained-orientation would
produce a melt with an Me value twice as big as the virgin pellet, Meo. That value can
be frozen in the new pellet and stay stable as the pellet is reheated above the Tg, say at
T = Tg + 120 ◦C, at least for a certain time that could be equal to a million times the value
of the reptation time. The Me(t) can then start to decrease towards its original equilib-
rium value Meo, the time to control the return to equilibrium being controlled by pressure.
There is no explanation in the current theories for an unstable entanglement network res
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ulting in an unstable liquid state for polymers, and on how the instability dynamics could
be correlated to non-linear viscoelastic effects.

What sustained-orientation suggests is that the classical concept of Me to describe
entanglements is overly simplistic and its usefulness is, at best, limited to the linear range
of viscoelasticity. The whole foundation of polymer physics, based on its understanding
of entanglements, appears to be challenged, perhaps even overhauled, by the type of
experimental results resulting in Sustained-Orientation.

Figure 26 below (similar to Figures 4–9 for PC and Figure 4.74 for PMMA in Ref. [2])
demonstrates the benefits of Sustained-Orientation, sometimes designated “disentan-
glement in a pellet” in contrast to “disentanglement in-line” which refers to the shear-
refinement reductions in viscosity and melt elasticity while the melt is being processed
after the pre-treatment.
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prepared by Rheo-Fluidification treatment are linearly correlated to the value of viscosity measured
by the in-line viscometer at the exit of the Rheo-Fluidizer.

Figure 26 applies to a linear PC grade. One compares the MFI value found for pellets
made from a melt prepared by the twin Rheo-Fluidification treatment stations of Figure 5a,b
of Ref. [2] with the value of viscosity measured by the in-line viscometer (shown in Figure
4.8 of [2]) at the exit of the strand die. Although the two temperatures are different (300 ◦C
for the MFI measurement, 275 ◦C for the in-line measurement), the correlation is validated:
when the in-line viscosity drops, the pellet has a higher MFI than the reference pellet (11.3).
In other words, the viscosity benefits obtained from the manipulation of the melt stability
can be frozen into a state in a pellet that will survive subsequent heating periods, about
20,000 times its terminal relaxation time value at 150 ◦C above its Tg. This “Sustained-
Orientation” behavior shambles completely the current understanding of viscoelasticity in
polymer melts.

Ever since we were able to produce hundreds of pounds of linear polymers (PC,
PMMA, LLDPE) exhibiting the Sustained-Orientation behavior and understood that this
new property contradicted the current paradigm of polymer physics, we knew that a
different explanation of “entanglements” was required and that polymer physics had to be
reconstructed from a different understanding of the coupling between the covalent and
inter-molecular interactions.

We conclude this section by claiming that the reptation tube model, as it stands now,
cannot explain the challenging results obtained by “shear-refinement”, and by “Sustained-
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Orientation”. If a model cannot comprehend a phenomenon that we can reproduce to
produce batches of hundreds of pounds of pellets demonstrating the benefits of the phe-
nomenon at a time, then this model should be abandoned. This is the way science works.

2.4.3. The Munstedt’s Exclusive Requisite That the Polymer Must Be an LCB (with Long
Chain Branches) to Be Able to Obtain Shear-Refinement

Munstedt [70] recently claimed that only branched polymers could demonstrate shear-
refinement benefits, not linear polymers. According to him, linear polymers could only
show artifacts or unreported degradation [70]. We offered a rebuttal to Munstedt’s paper
and his allegations [15]. These two publications should be read to illustrate how the
gate keepers of an existing paradigm practice their censorship power to eliminate any
possible existential threat. The rebuttal, for instance, was rejected by the Journal which
published the paper by Munstedt (Journal of Rheology). Also, Munstedt misquoted and
mischaracterized—intentionally or not is debatable—some parts of Ref. [2] to denigrate the
results. Let us stay on course and only concentrate on excerpts from Ref. [15] relevant to
the present discussion.

Münstedt’s Critical Condition That Branching Must Be Present to Observe
Shear-Refinement Is Wrong

In Ref. [2], we introduce new equations to analyze the rheology of melts (shear-
thinning, strain-softening) in terms of the Dual-Phase model and show that they also
explain the origin of the rheological instability. The long-term retention of the lower
viscosity in the Rheo-fluidified pellets when re-heated to a melt state, sometimes for
times several hundred thousand times greater than the reptation time at that temperature,
represents an immense challenge to the currently admitted models of chain dynamics such
as reptation. This challenge is not acknowledged by the community of rheologists, except
swept away as artifact, such as in the paper by Münstedt [70]. However, how could this be
an artifact when produced several lots of 150 lbs of sustained-oriented pellets, the product
of the “artifact”, which could regain in time their original viscosity after re-melting!

We concluded in [2] that this “Sustained Orientation” paradox is linked to a new
concept: the instability of the Dual-Phase of the interactions. A first degree instability can
be induced by a combination of shear-thinning and strain softening that may result in
shear-refinement effects. Sustained-Orientation requires certain conditions in addition to
the 1st degree instability criteria to trigger an instability of the 2nd kind: the instability of
the Cross-Dual-Phase entanglement structure.

There are two types of sources to trigger the rheological instabilities of polymer melts:
one is controlled by the recoverable dynamic free volume variations, the other by the
modification of the entanglement network structure, by entropic dissipation (orientation
of the network). This competition between these 2 mechanisms of instability is different
for a given polymer and represents the true debate to have regarding the shear-refinement
results, as we emphasized to Münstedt, during our intensive discussions [15]. For instance,
the Dual-Phase model of the interactions that we have introduced in Ch. 1 of Ref. [2], a
book reviewed by Munstedt, explains the dynamic source of the free volume, which is
also influenced by the topology of the chains, in particular whether long chain branching,
short chain branching or no branching is present. Both the amount and the structure of
the dynamic free volume are influenced by branching. However, and this is missing in
Munstedt’s analysis, they are also influenced by other rheological factors, the orientation
of the chains, the frequency and the amplitude of a vibration of the coherent interactive
medium, the pressure in the melt, etc., all these parameters influence the local density
of the melt and the frequency of the elastic dissipative wave that compensates for the
local packing density inhomogeneity. In turn, they also influence the melt modulus (the
famous GN = ρ RT/M correlation), and thus influence shear-thinning and strain softening.
Münstedt focused on the presence of the long chain branches to determine a criterion
for shear-refinement [70]. We argued that to understand why shear-refinement can oc-
cur in both branched and linear polymers one needed crucial information that are never
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provided by the molecular models: 1. the determination of the local packing density
and of the localization of the free volume in the structure, and 2. the influence of branch-
ing on these two variables. The Dual-Phase model is easily applicable to this situation [2]
because of the local cross-duality between the F/b dissipative states and the conformational
states (trans ,cis, gauche). This (F/b↔ (c,g,t)) local cross-duality also predicts the influence
of vibration, shear rate and shear strain on the free volume amount and its distribution, in
particular how to increase it, whether the basic polymer is branched or linear. Therefore, the
topological criteria by Münstedt that branching must be present to observe the conditions
for shear-refinement is simply wrong.

2.5. Strain-Induced Time Dependence of Rheological Functions

The conditions to achieve linear viscoelasticity are obtained at low strain amplitude
for dynamic rheological experiments, where an oscillating strain is applied to a molten melt
with frequency ω at temperature T. Under such conditions, the elastic and loss moduli,
G′(ω,T) and G′′(ω,T), respectively, are independent of the value of the strain, that could
be 1%, 3%, 5%, etc., up to the limit of linear viscoelasticity. The limit of linear rheology is
reached when the value of the moduli become strain dependent, i.e., when the stress is no
longer proportional to the strain (non-affine deformation). The determination of this limit is
compulsory before running any other tests in the linear region of viscoelasticity; it is done by
running a strain sweep at given T andω. The value of the strain is increased continuously
and slowly until a deviation from the horizontality of the modulus appears that marks
the beginning of non-linearity. In the following we are interested in the “stability” of the
non-linear solution, meaning once we have reached the value of strain for non-linearity are
the moduli values stable in time or starting to drift to make them time dependent?

1. Does a non-linear state obtained by increasing strain become immediately instable:
time dependency starts as soon as its modulus differs from its linear value?

2. Is the strain value for the end of linear viscoelasticity different from the strain value
for the start of the time dependency of the non-linear modulus?

3. Is the rate of the time dependency of modulus a function of the strain?

The general affirmative response for polymer melts answers question #2, adding in
complement that the response is function of the chemical nature of the polymer, the value
ofω, of (T − Tg) and of the strain.

In other publications (Ch. I.7 and II.9 of [20]), we address the issue of determining the
critical strain at which the instability of the non-linear rheology is triggered (question #2)
and the influence of strain on the rate of the moduli decay (question #3).

When we say “instable”, we are not talking about a chemical instability of some sort
(degradation, esterification, cross-linking) or a surface instability (cracks, edge fracture,
surface contact loss) that would alter the measurement, we are talking about the possibility
to re-organize the interactions inside the material under stress that results in the time
dependency of the moduli. For instance, using the language of the Dual-Phase model,
we want to know if the dynamic free volume restructures (i.e., the (b/F↔ (c,g,t) kinetics
evolves), or, for entangled melts, whether there is an enthalpic or entropic modification of
the compensation between the two dual-phases, when the strain brings the system in the
time-dependent non-linear range (“disentanglement”).

It is clear that we need to ensure that the chemical instabilities or surface instabilities
are not responsible for the time dependency observations. This point is crucial to consider in
detail (see [71] section 4.4.2 “Challenging Interpretations”: 4.4.2.1 “Viscous Heating. 4.4.2.2
“Shear Degradation. 4.4.2.3 “Drooling of the Melt outside the Rheometer Plates. 4.4.2.4
“Plastification Due to the Monomer Concentration Increase by the Shear Stress. 4.4.2.5
“Shear-Thinning. 4.4.2.6 “Edge Fracture Explanation. 4.4.2.6.1 “Melt Fracture Initiation:
Vinogradov’s Criteria. 4.4.2.6.2 “Simultaneous Dielectric and Dynamic Mechasnical Mea-
surements in the Molten State. 4.4.2.6.3 “Effect of the Nature of the Surface Melt Contact”),
because certain testing configurations are more inclined to create artifacts than others and
we need to cross-reference those doubtful results with results that can be trusted 100%.
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This dedication to scrutinize each experiment details to eliminate any potential artifact
pitfalls is the absolute norm when dealing with the experiments exhibiting a strain induced
time dependence of the rheological functions. This takes extra dedicated time [15,71] but is
necessary to counter the artifact reflex of the deniers of such results by the gate keepers of
the existing paradigm [70].

2.5.1. First Example of Strain Induced Transient of Viscosity (Inducement)

Figure 27a,b concern a PS melt studied with a dynamic rheometer (AR 2000, TA
Instruments) in the time-sweep mode. The temperature is 165 ◦C (65◦ above the Tg of PS)
and the frequency remains equal to 20 Hz (ω = 125 rad/s). The cross-over frequency for
this PS at that temperature is 0.1 rad/s, so the Rouse time is 10 s. The initial strain is 5%,
known to be in the linear viscoelastic range. The strain remains constant to this value for
3 min, then it is automatically increased to a new value, 10%, where it stays constant for
3 min; this action is repeated until the final strain is 23%. In other words, the strain varies
step wisely every 3 min from 5% to 23%, the sample undergoing time-sweep steps lasting
3 min between each increase of the strain. Figure 27a displays the viscosity η*(ω) vs. Time
for each time sweep for strain equal to: 5%, 10%, 15.2%, 17.5%, 20% and 23%. We record
the value of G′ and G′′ during each of the 3 min steps. Figure 27b provides the variation of
G′(t) and G′′(t) for the last step, corresponding to 23% of strain (ω is still 125 rad/s).
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Figure 27. (a) Viscosity (Pa-s) vs. Time (s) during successive time sweep sequences of 3 min each
at 165 ◦C, 20 Hz for a PS sample in a dynamic rheometer. The strain is increased at the beginning
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It is apparent in Figure 27a that a time dependent (transient) behavior is triggered by
the increase of strain at 15.2%. For 5% and 10% strain, the viscosity remains constant, but at
15.2% in Figure 27a, the viscosity starts to decay. The magnitude of the effect increases with
strain, the rate of the decay does too (compare the viscosity curves for 15.2% strain (green
triangles up) and 17.5% (green triangles down): the increase of the slope is proportional
to the rate increase. As the strain increases, the apparent straight line decay becomes an
exponential decay visible by the convex curvature. This is particularly visible for the 23%
strain time sweep. Note that the decay of the moduli in Figure 27b is not over and has not
reached a plateau after 3 min, which contrasts with a terminal relaxation time of 10 s for this
melt. The time scale involved in the transient decay is very different from the molecular
time scale. There is a classical “engineer” description of this phenomenon in terms of
shear-thinning and strain softening: at ω = 125 rad/s T = 165 ◦C, the melt shear-thins,
i.e., its viscosity drops from the Newtonian value at that temperature to a lower value,
1075 Pa-s in Figure 27a (@ 5% strain). The effect of strain on the modulus, a non-linear
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effect, is called “strain-softening”, which is quantified by the ratio, h, of the non-linear
modulus to the linear modulus (h < 1). Shear-thinning is controlled by the value of ω,
strain-softening by the value of the strain, γ, so it is expected that the strain rate maximum
per cycle,ωγ, play a role to determine the onset of the time dependence behavior which
we can designate by either “the instability of strain softening by the frequencyω” or “the
instability of shear-thinning by the strain γ”. Criteria of melt instability based on the value
of the strain rate and/or the strain have been used to study non-linear effects such as melt
fracture or melt flow non laminar decohesion [72,73]. It is important to verify [71] that none
of these critical values for melt inhomogeneity is reached to explain the triggering, at such
a low γ (15%), of the transient behavior observed in Figure 27a,b.

Wang [73] has established that two criteria must be met simultaneously to trigger
a non-laminar structure of the melt in a gap: one of these criteria relates to the strain
rate, the other to the strain. The strain criterion of Wang (γ > 100%) is not met, by far,
in Figure 27 since the transient occurs for γ = 15.2%. The possibility that melt fracture
occurred at the edge of the sample to explain the stress and viscosity decay in Figure 27 has
also been considered and contradicted [72]. A simple experimental way to eliminate such
an explanation for the strain induced triggering of a rheological transient is to consider if
the phenomenon is reversible. This is shown in the next example on another polymer, a
linear low density PE.

2.5.2. Second Example of Strain Induced Transient of Viscosity (Inducement and Recovery)

Figure 28a,b summarize schematically the frequency and strain experimental profile
to create a transient with a laboratory dynamic rheometer, and demonstrate that the
phenomenon is reversible upon cessation of the cause of the effect.
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The data were obtained with a dynamic rheometer, the ARES from Rheometrics, using
a parallel plate configuration, but a cone and plate combination was also used, providing
essentially the same results. The resin was a LLDPE from Dupont-Dow Elastomers (Engage
8180), the temperature was 155 ◦C, and the gap was chosen between 1.2 and 2 mm.

Figure 28a,b describe the frequency and % strain history. Figure 29 plots dynamic vis-
cosity against time. The first and last segment, called “initial” and “recovery” in Figure 28a,b
represent the baseline, the value of viscosity under linear viscoelastic conditions, i.e., under
very low frequency and amplitude (here 1 rad/s, 1% strain). The so-called «treatment zone»
in Figures 28 and 29 was initiated by a jump of the frequency, from 1 to 47 rad/s, which
created, in Figure 29, an “instantaneous” drop of viscosity from 57,000 Pa-s to 10,000 Pa-s,
due to shear-thinning. The jump was then followed by a gradual stepwise increase of the
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strain amplitude, from 1% to 25%. Figure 29 shows that for the first 2 steps of increase of
strain, the viscosity held constant at 10,000 Pa-s, its shear-thinned value at that temperature
and frequency, but that starting at strain = 13%, the viscosity started to become transient
declining from 10,000 to a steady state value of 3100 Pa-s. The decay of the viscosity took
about 25 min. The frequency and strain amplitude were then changed back to their low
values of the linear range (1%, 1 rad/s), and one observes an “instantaneous” partial loss of
the effect of shear-thinning combined with strain softening, i.e., the viscosity jumped back
to 38,000 Pa-s. Further recovery of viscosity occurred over the following 20 min, viscosity
increasing slowly and finally regaining its original Newtonian value, 57,000 Pa-s. In other
words, the state of the melt produced by the transient treatment was unstable when the
energy that produced the transient behavior was released: this is why viscosity slowly
increased in time and returned back to the original value for the melt. Nevertheless, it
took 20 min for recovery, and this time is 60 times longer than the terminal time at that
temperature, making it possible to exploit the benefits of a smaller viscosity during recovery
if the melt were to be processed at that stage. One can define the viscosity benefit by com-
paring the initial Newtonian viscosity (57,000) and the Newtonian viscosity before recovery
after the shear-thinning elastic loss (38,000), a ratio of 1.5 in this treatment («50% viscosity
drop»). Notice that a processor could still benefit from shear-thinning of the treated resin
(Figure 28), and work under much greater viscosity reduction (3100 Pa-s versus 57,000 Pa-s,
an improvement of over 1700% !).
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The experimental procedure described in Figure 28 has many variations: the time
duration between strain amplitude step-ups can vary, the strain amplitude increment itself
can be changed as can the temperature of the melt and the frequency of operation during
treatment. The treatment could also be done differently, by increasing at low frequency the
strain to 25%, say, and step wisely increasing the frequency from 1 rad/s to 47 rad/s. All
these changes contribute to the final % viscosity reduction, which can be as small as 20%,
to as large as 3000%. The wrong procedure can also produce artifacts or surface effects, as
is explained in [71].
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2.5.3. Conclusions on the Strain-Induced Time Dependence of Rheological Variables
The “Process Engineer” Interpretation of the Results

Strain softening, known to decrease the modulus at higher strain, combines with
shear-thinning due to the effect of frequency to render the melt unstable in its original
entanglement network configuration; thus the transient behavior occurs. In a step strain ex-
periment conducted in the molten state, a softening factor is defined, h = G(strain)/G(LVE),
where G(strain) is the melt modulus for a given strain and G(LVE) refers to the strain
independent Linear Viscoelastic Value (h < 1). At low strain, the modulus is only time
dependent, and an increase of strain produces an increase of stress proportionally. Pure
viscometry experiments have demonstrated that above certain strain rates, correspond-
ing to a certain stress level, a transient decay towards steady state released the elastic
energy stored during initialization. It was suggested in earlier publications dedicated to
more engineering audiences [12,67–76] that the dynamics of this process could be viewed
as a recursive effect of the stress on relaxation times. As stress continues to grow, due
to increased strain, strain softening is the first revealing sign of the modification of the
structure due to the stress dependence of the relaxation time. Figure 29 reveals that under
dynamic conditions, the softening factor h can become time dependent, which translates
into a transient behavior. The advantage of producing transient behavior with a dynamic
viscometer is that G′ and G′′ become time dependent, so it is possible to analyze these
curves individually and also follow how (G′/G*)2 varies during transient stress decay. The
transient decay can be produced in-situ in the rheometer, and a frequency sweep performed
before the transient and after it, allowing an easy way to analyze the differences due to the
stay in the non-linear regime. This type of experiments allows us to analyze the influence
of strain and frequency during time sweep (“the treatment”). Additionally, the fact that
a frequency sweep in the linear regime can be performed on the sample after it has been
treated non-linearly, proves the integrity of the sample and its surfaces, in contradiction to
the claims by Munstedt [70] that the treatment conditions degraded the sample integrity.

The Theoretical Physicist Interpretation of the Results

We have studied many curves like those in Figures 27 and 29, obtained using a parallel
plate configuration, a cone and plate and a Couette configuration, using many different
polymers, using different temperatures, different molecular weights, under pressure in a
confined environment with no edges, superposed to extrusion flow, under cross-lateral
vibration etc.(Ref. [2] is dedicated to report in details those experiments and results), and
the same conclusion imposes itself: the rheological phenomenon observed that is triggered
by strain has a kinetic origin which makes it vary with frequency and temperature but
does not work at the same scale as the terminal time, τp = 1/ωx: it refers to a different
phenomenon that is not accounted for in any previous model of viscoelasticity: the dissipa-
tive aspect of the interactions. In our theoretical work on the Grain-Field Statistics of open
dissipative systems [21], this concept is embedded in the equations regulating the interac-
tions between the dual-conformers, and these assumptions are applied to polymers in [19].
The “dissipative aspect” means, in essence, that beyond enthalpic and entropic changes
occurring to constrained systems brought out of equilibrium, the size of the systems may
restructure, rendering the statistical frame definition to become part of the dynamics. This
fundamentally different statistical approach is what fuels the new paradigm of the inter-
actions that we introduce which, in many ways, explains the shortcomings of the current
paradigm to be able to correctly address the experimental results presented in this paper.
One could say, to simplify, that the new paradigm fuses with the current paradigm, which
may then regain some merit, when the system of interactions is in a state above the TLL
transition, a typical “dissipative transition” resulting from the dissipative nature of the
interactions [19,24,34].
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3. Conclusions

The deformation of a polymer melt in shear mode represents the main subject of
interest in the science of rheology of such materials. It is a crucial topic for successfully
processing these materials. In the above examples that dealt with linear viscoelastic rheo-
logical conditions with no effect of strain, in Sections 1–3, we saw that even in these simple
conditions the Rouse model failed to satisfactorily describe the data of unentangled melts
when carefully comparing experiments and theoretical predictions. The same failure of
the reptation model was also demonstrated when comparing the calculated projections
of the affine and non-affine hypotheses suggested by the reptation model of entangled
melts with the experimental results obtained by Rheo-SANS. In summary, even in the
linear range of viscoelasticity the acclaimed Rouse and de Gennes models are challenged by
experimental evidence. In the non-linear range, at a high strain rate and strain, the subject
of the other examples presented in this paper (Sections 2.4 and 2.5), it is generally admitted
that the current theoretical developments that successfully predict the main characteristics
of polymer melts in the linear range fall short, but merely need improving and tweaking of
the parameters. The extrapolation to the non-linear behavior generally consist of adding
some terms to the mathematical formulation of the linear viscoelastic model. As we stated
at the beginning of this paper, all the current models in polymer physics are based on
“chain dynamics statistics” [6–12]. The aura these polymer dynamic models have reached
among the polymer scientific community makes them the current standard references that
control the field of plastic engineering that relies on the understanding of viscoelasticity
and rubber elasticity. Yet, as we suggest, it is possible that the experiments described in
this work challenge the current paradigm to its limits, to the edge of its usefulness.

The present understanding of the physics of macromolecules is based on an analysis
of the properties of a single chain. The presence of the other chains is perceived as a mean
field influence on the properties of that chain. The reptation school considers that this mean
field can be looked at as a topology, a homogeneous field of obstacles restricting the motion
of the single chain, which is claimed to explain the extra molecular weight dependence of
viscosity at Mc and beyond. We explain in this paper that, in our opinion, this assumption
(which is also present in Rouse) is the origin of the failures of these models to describe the
data correctly. The irony is that de Gennes [6] used the term “scaling concepts” in the title
of his book on polymer physics [6], which resonates, but in a different context, with our
definition of a scale of the basic unit that participates in the deformation process in our
dissipative statistical approach. The difference is that our model not only defines the scale,
in fact several “dynamic scales”, but also determines the coupling and the modulation
between these cooperative scales [20]. For instance, in our Cross-Dual-Phase explanation
of entanglements, we make reference to a “network of strands” to describe the cooperative
interactive process resulting in the “entanglement phase”. We refer to a basic unit of
deformation, the Dual-conformer, that participates in the evolving cooperative motion of
a phase-wave responding to deformation as an open dissipative system [20]. We must
define mathematically what “evolving cooperation” means, how many dual-conformers
dynamically cooperate in an active strand at any instant, how many strands are active and
how many relax, and where the cooperative dual-conformers are located: on a single chain
or on several chains. The physics of dealing with all the chains at once in the statistics,
redefining the coupling between the covalent and the inter-molecular interactions, is the
model that we have adopted to describe the deformation of polymer melts and solids,
above Tg and below Tg [2,19,20]. The theory not only addresses the interaction between the
conformers of a single chain to assume the shape of a macro-coil (which can be deformed),
but also defines why entangled macro-coils exhibit the response of a network of active
strands when all the chains participate cooperatively in the deformation process. The
dissipative dynamic coupling between the deformation of a conformer, of a macro-coil, and
of a network of strands is quantitatively described. The new model explains the influence of
chain molecular weight to predict a change in behavior below and above a critical molecular
weight (Me), in other words it proposes a new understanding of “entanglements” and their
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influence on the dynamic melt properties G′(ω,T) and G′′(ω,T) and the normal stresses.
It predicts shear-thinning and strain softening in shear mode, and strain-hardening in
extensional mode. It also successfully describes the transitional behavior at Tg, from a
solid-like to a liquid-like behavior, also predicting the existence and the characteristics of
the Boyer’s TLL upper melt transition temperature (the end of dissipative modulation).
Finally, the theory addresses the stability (or the strain-induced lack of stability) of the
Cross-Dual Phase entanglement network [20].

The theoretical assumptions of the new model and the quantitative descriptions it
generates constitute a whole new understanding of the viscoelastic properties of polymers
that could be considered the premises of a new paradigm in that field of physics. We would
like to close by quoting Buckminster Fuller who once said:

“In order to change an existing paradigm you do not struggle to try and change the
problematic model. You create a new model and make the old one obsolete.”

—Richard Buckminster Fuller
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