Relation of Crown Failure Load to Flexural Strength for Three Contemporary Dental Polymers
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
- The flexural strengths determined via three-point bending did not correlate with the corresponding failure load of the crowns.
- The TRI specimens presented higher mean failure load and flexural strength as compared to JUV and PEK, likely due to the presence of woven glass fiber reinforcement (63 wt%).
- The JUV specimens failed due to deformation only, while the TRI specimens failed due to deformation and cracks. The PEK specimens failed due to fracture.
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, F.; Guo, J.; Li, K.; Sun, J.; Zeng, Y.; Ning, C. High strength polymer/silicon nitride composites for dental restorations. Dent. Mater. 2019, 35, 1254–1259. [Google Scholar] [CrossRef] [PubMed]
- Mayinger, F.; Eichberger, M.; Schönhoff, L.M.; Stawarczyk, B. Fracture load of veneered and monolithic single-unit fixed dental prostheses made from the high-performance thermoplastic polyphenylene sulfone. Int. J. Prosthodont. 2021, 36, 343–353. [Google Scholar] [CrossRef]
- Karci, M.; Demir, N.; Yazman, S. Evaluation of flexural strength of different denture base materials reinforced with different nanoparticles. J. Prosthodont. 2019, 28, 572–577. [Google Scholar] [CrossRef] [PubMed]
- Psarri, C.; Kourtis, S. Effect of fiber-reinforcement on the strength of polymer materials for provisional restorations: An in vitro study. J. Esthet. Restor. Dent. 2020, 32, 433–437. [Google Scholar] [CrossRef] [PubMed]
- Li, G.H.; Chen, S.; Grymak, A.; Waddell, J.N.; Kim, J.J.; Choi, J.J.E. Fibre-reinforced and repaired PMMA denture base resin: Effect of placement on the flexural strength and load-bearing capacity. J. Mech. Behav. Biomed. Mater. 2021, 124, 104828. [Google Scholar] [CrossRef]
- Alander, P.; Perea-Lowery, L.; Vesterinen, K.; Suominen, A.; SÄilynoja, E.; Vallittu, P.K. Layer structure and load-bearing properties of fibre reinforced composite beam used in cantilever fixed dental prostheses. Dent. Mater. J. 2021, 40, 165–167. [Google Scholar] [CrossRef]
- Suzaki, N.; Yamaguchi, S.; Hirose, N.; Tanaka, R.; Takahashi, Y.; Imazato, S.; Hayashi, M. Evaluation of physical properties of fiber-reinforced composite resin. Dent. Mater. 2020, 36, 987–989. [Google Scholar] [CrossRef]
- Maruo, Y.; Nishigawa, G.; Irie, M.; Yoshihara, K.; Minagi, S. Flexural properties of polyethylene, glass and carbon fiber-reinforced resin composites for prosthetic frameworks. Acta Odontol. Scand. 2015, 73, 581–587. [Google Scholar] [CrossRef]
- Dawson, J.H.; Hyde, B.; Hurst, M.; Harris, B.T.; Lin, W.S. Polyetherketoneketone (PEKK), a framework material for complete fixed and removable dental prostheses: A clinical report. J. Prosthet. Dent. 2018, 119, 867–872. [Google Scholar] [CrossRef]
- Rodríguez, V.; Tobar, C.; López-Suárez, C.; Peláez, J.; Suárez, M.J. Fracture load of metal, zirconia and polyetheretherketone posterior CAD-CAM milled fixed partial denture frameworks. Materials 2021, 14, 959. [Google Scholar] [CrossRef]
- Raj, D.A.; Chander, N.G.; Reddy, J.R.; Balasubramaniam, M. Clinical acceptability of PEEK fixed dental prosthesis in partially edentulous patient—A one year single arm pilot study. J. Oral Biol. Craniofac. Res. 2020, 10, 523–525. [Google Scholar] [CrossRef] [PubMed]
- Shetty, S.K.; Hasan, M.S.; Zahid, M.; Suhaim, K.S.; Mohammad, F.; Fayaz, T. Evaluation of fracture resistance and color stability of crowns obtained by layering composite Over zirconia and polyetheretherketone copings before and after thermocycling to simulate oral environment: An in vitro study. J. Pharm. Bioallied Sci. 2020, 12 (Suppl. S1), S523–S529. [Google Scholar] [PubMed]
- Shrivastava, S.P.; Dable, R.; Raj, A.P.N.; Mutneja, P.; Srivastava, S.B.; Haque, M. Comparison of mechanical properties of PEEK and PMMA: An In Vitro Study. J. Contemp. Dent. Pract. 2021, 22, 179–183. [Google Scholar] [PubMed]
- Al-Rabab’ah, M.; Hamadneh, W.; Alsalem, I.; Khraisat, A.; Abu Karaky, A. Use of high-performance polymers as dental implant abutments and frameworks: A case series report. J. Prosthodont. 2019, 28, 365–367. [Google Scholar] [CrossRef]
- Barbosa-Júnior, S.A.; Pereira, G.K.R.; Dapieve, K.S.; Machado, P.S.; Valandro, L.F.; Schuh, C.; Consani, R.L.X.; Bacchi, A. Mechanical fatigue analysis of PEEK as alternative to zirconia for definitive hybrid abutments supporting all-ceramic crowns. Int. J. Oral Maxillofac. Implants. 2020, 35, 1208–1209. [Google Scholar] [CrossRef]
- Papia, E.; Brodde, S.A.C.; Becktor, J.P. Deformation of polyetheretherketone, PEEK, with different thicknesses. J. Mech. Behav. Biomed. Mater. 2022, 125, 104928. [Google Scholar] [CrossRef]
- Özarslan, M.; Büyükkaplan, U.Ş.; Özarslan, M.M. Comparison of the fracture strength of endodontically treated teeth restored with polyether ether ketone, zirconia and glass-fibre post-core systems. Int. J. Clin. Pract. 2021, 75, e14440. [Google Scholar] [CrossRef]
- Abd El-Fattah, A.; Youssef, H.; Gepreel, M.A.H.; Abbas, R.; Kandil, S. Surface morphology and mechanical properties of Polyether Ether Ketone (PEEK) nanocomposites reinforced by nano-sized silica (SiO(2)) for prosthodontics and restorative dentistry. Polymers 2021, 13, 3006. [Google Scholar] [CrossRef]
- Villefort, R.F.; Diamantino, P.J.S.; von Zeidler, S.L.V.; Borges, A.L.S.; Silva-Concílio, L.R.; de Siqueira Ferreira Anzaloni Saavedra, G.; Tribst, J.P.M. Mechanical response of PEKK and PEEK as frameworks for implant-supported full-arch fixed dental prosthesis: 3D finite element analysis. Eur. J. Dent. 2021, 16, 115–121. [Google Scholar] [CrossRef]
- Klur, T.; Hasan, I.; Ottersbach, K.; Stark, H.; Fichte, M.; Dirk, C.; Bourauel, C. PEKK-made indirect temporary crowns and bridges: A clinical pilot study. Clin. Oral Investig. 2019, 23, 771–776. [Google Scholar] [CrossRef]
- Shams, A.; Sakrana, A.A.; Abo El-Farag, S.A.; Özcan, M. Assessment of biomechanical behavior of endodontically treated premolar teeth restored with novel endocrown system. Eur. J. Prosthodont. Restor. Dent. 2022, 30, 20–35. [Google Scholar] [PubMed]
- Rohr, N.; Märtin, S.; Fischer, J. Fracture load of zirconia implant supported CAD/CAM resin crowns and mechanical properties of restorative material and cement. J. Prosthodont. Res. 2021, 65, 502–506. [Google Scholar] [CrossRef] [PubMed]
- Prechtel, A.; Stawarczyk, B.; Hickel, R.; Edelhoff, D.; Reymus, M. Fracture load of 3D printed PEEK inlays compared with milled ones, direct resin composite fillings, and sound teeth. Clin. Oral Investig. 2020, 24, 3457–3459. [Google Scholar] [CrossRef] [PubMed]
- Mangoush, E.; Garoushi, S.; Vallittu, P.K.; Lassila, L. Influence of short fiber-reinforced composites on fracture resistance of single-structure restorations. Eur. J. Prosthodont. Restor. Dent. 2020, 28, 189. [Google Scholar] [PubMed]
- Zimmermann, M.; Ender, A.; Egli, G.; Özcan, M.; Mehl, A. Fracture load of CAD/CAM-fabricated and 3D-printed composite crowns as a function of material thickness. Clin. Oral Investig. 2019, 23, 2777–2784. [Google Scholar] [CrossRef]
- Rodrigues, S.A., Jr.; Ferracane, J.L.; Della Bona, A. Flexural strength and Weibull analysis of a microhybrid and a nanofill composite evaluated by 3- and 4-point bending tests. Dent. Mater. 2008, 24, 426–431. [Google Scholar]
- Miura, D.; Miyasaka, T.; Aoki, H.; Aoyagi, Y.; Ishida, Y. Correlations among bending test methods for dental hard resins. Dent. Mater. J. 2017, 36, 491–495. [Google Scholar] [CrossRef] [PubMed]
- Pick, B.; Meira, J.B.; Driemeier, L.; Braga, R.R. A critical view on biaxial and short-beam uniaxial flexural strength tests applied to resin composites using Weibull, fractographic and finite element analyses. Dent. Mater. 2010, 26, 83–87. [Google Scholar] [CrossRef]
- Winter, A.; Schurig, A.; Rasche, E.; Rösner, F.; Kanus, L.; Schmitter, M. The flexural strength of CAD/CAM polymer crowns and the effect of artificial ageing on the fracture resistance of CAD/CAM polymer and ceramic single crowns. J. Mater. Sci. Mater. Med. 2019, 31, 9. [Google Scholar] [CrossRef]
- Hibbeler, R.C. Mechanics of Materials, 10th ed.; Pearson: London, UK, 2016; pp. 1–896. [Google Scholar]
- Prechtel, A.; Reymus, M.; Edelhoff, D.; Hickel, R.; Stawarczyk, B. Comparison of various 3D printed and milled PAEK materials: Effect of printing direction and artificial aging on Martens parameters. Dent. Mater. 2020, 36, 197–209. [Google Scholar] [CrossRef]
- Hirose, H. Bias correction for the maximum likelihood estimates in the two-parameter Weibull distribution. IEEE Trans. Dielectr. Electr. Insul. 1999, 6, 66–68. [Google Scholar] [CrossRef]
- Alghazzawi, T.F.; Janowski, G.M.; Ning, H.; Eberhardt, A.W. Qualitative SEM analysis of fracture surfaces for dental ceramics and polymers broken by flexural strength testing and crown compression. J. Prosthodont. 2023, 32, 100–110. [Google Scholar] [CrossRef] [PubMed]
- Guenther, J.; Wong, M.; Sue, H.J.; Bremner, T.; Blümel, J. High-temperature steam-treatment of PBI, PEKK, and a PEKK-PBI Blend: A solid-state NMR and IR spectroscopic study. J. Appl. Polym. Sci. 2013, 128, 4395–4399. [Google Scholar] [CrossRef]
- Schriwer, C.; Skjold, A.; Gjerdet, N.R.; Øilo, M. Monolithic zirconia dental crowns. Internal fit, margin quality, fracture mode and load at fracture. Dent. Mater. 2017, 33, 1012–1020. [Google Scholar] [CrossRef]
- Hagino, R.; Mine, A.; Matsumoto, M.; Yumitate, M.; Ban, S.; Yamanaka, A.; Ishida, M.; Miura, J.; Meerbeek, B.V.; Yatani, H. Combination of a silane coupling agent and resin primer reinforces bonding effectiveness to a CAD/CAM indirect resin composite block. Dent. Mater. J. 2021, 40, 1445–1447. [Google Scholar] [CrossRef]
- Kimura, S.; Ihara, K.; Nohira, H.; Aizawa, D.; Sakaeda, N.; Hanabusa, M.; Ferracane, J.L.; Yamamoto, T. Changes of residual stresses on the surface of leucite-reinforced ceramic restoration luted with resin composite cements during aging in water. J. Mech. Behav. Biomed. Mater. 2021, 123, 104711. [Google Scholar] [CrossRef]
- ISO 20795-1; Dentistry-Base polymers-Part 1: Denture Base Polymers. ISO: Geneva, Switzerland, 2013.
- Rangasamy, V.S.; Thayumanasundaram, S.; Seo, J.W.; Locquet, J.P. Vibrational spectroscopic study of pure and silica-doped sulfonated poly (ether ether ketone) membranes. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 138, 693–696. [Google Scholar] [CrossRef]
- Elmougy, A.; Schiemann, A.M.; Wood, D.; Pollington, S.; Martin, N. Characterization of machinable structural polymers in restorative dentistry. Dent Mater. 2018, 34, 1509–1517. [Google Scholar] [CrossRef]
- Keilig, L.; Stark, H.; Bourauel, C. Does the material stiffness of novel high-performance polymers for fixed partial dentures influence their biomechanical behavior? Int. J. Prosthodont. 2016, 30, 595–597. [Google Scholar] [CrossRef]
- Alghazzawi, T.F.; Janowski, G.M.; Eberhardt, A.W. An experimental study of flexural strength and hardness of zirconia and their relation to crown failure loads. J. Prosthet. Dent. 2022, S0022-3913(22)00219-0. [Google Scholar] [CrossRef]
- Alghazzawi, T.F. Flexural strengths, failure load, and hardness of glass-ceramics for dental applications. J. Prosthet. Dent. 2022, 128, 512.e1–512.e9. [Google Scholar] [CrossRef] [PubMed]
- Hidaka, O.; Iwasaki, M.; Saito, M.; Morimoto, T. Influence of clenching intensity on bite force balance, occlusal contact area, and average bite pressure. J. Dent. Res. 1999, 78, 1336–1344. [Google Scholar] [CrossRef] [PubMed]
- Tamrakar, S.K.; Mishra, S.K.; Chowdhary, R.; Rao, S. Comparative analysis of stress distribution around CFR-PEEK implants and titanium implants with different prosthetic crowns: A finite element analysis. Dent. Med. Probl. 2021, 58, 359–367. [Google Scholar] [CrossRef] [PubMed]
Test Materials | Abbreviation | Manufacturer | Young Modulus (GPa) | Poisson Ratio |
---|---|---|---|---|
Trilor | TRI | Bioloren S.r.l., Saronno (Varese), Italy | 26 | 0.25 |
Juvora | JUV | JUVORA Dental, Lancashire, UK | 4 | 0.36 |
Pekkton | PEK | Cendres + Métaux SA, Biel-Bienne, Switzerland | 5 | 0.38 |
Epoxy Resin | Epoxy | American Dental Supply, Inc. Allentown, PA, USA | 4 | 0.30 |
Structural/Mechanical Property | Specimen Geometry | Type of Test | Description | Number of Specimens |
---|---|---|---|---|
Crown failure load (N) | Crown on resin abutment | Crunch-the-crown (CTC) | Maxillary right 1st molar with a thickness of 0.8 mm at the central fossa | 10 |
Three-point flexural strength (MPa) | Bar | Three-point bending (3PB) | Width = 2.0 mm ± 0.2 mm, thickness = 2.0 mm ± 0.2 mm, length = 25.0 mm | 10 |
Test Configuration (Specimen Geometry) | Mean Flexural Strength/Failure Load | SD | Min | Max | Median | |
---|---|---|---|---|---|---|
3PB test (bar) | TRI | 468 MPa a,* | 97 | 378 | 693 | 445 |
JUV | 197 MPa b,* | 10 | 183 | 216 | 195 | |
PEK | 192 MPa b,* | 15 | 164 | 217 | 191 | |
CTC test (crown) | TRI | 7033 N a,* | 794 | 4542 | 8224 | 6581 |
JUV | 5217 N b,* | 169 | 4894 | 5417 | 5239 | |
PEK | 3023 N c,* | 418 | 2199 | 3676 | 3162 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alghazzawi, T.F. Relation of Crown Failure Load to Flexural Strength for Three Contemporary Dental Polymers. Polymers 2023, 15, 4312. https://doi.org/10.3390/polym15214312
Alghazzawi TF. Relation of Crown Failure Load to Flexural Strength for Three Contemporary Dental Polymers. Polymers. 2023; 15(21):4312. https://doi.org/10.3390/polym15214312
Chicago/Turabian StyleAlghazzawi, Tariq F. 2023. "Relation of Crown Failure Load to Flexural Strength for Three Contemporary Dental Polymers" Polymers 15, no. 21: 4312. https://doi.org/10.3390/polym15214312
APA StyleAlghazzawi, T. F. (2023). Relation of Crown Failure Load to Flexural Strength for Three Contemporary Dental Polymers. Polymers, 15(21), 4312. https://doi.org/10.3390/polym15214312