Heterogeneity of Active Sites in the Polymer Chain Transfer Reactions at Olefin Polymerization over Multisite Supported Ziegler-Natta Catalysts
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
- chain transfer reactions with a cocatalyst (AlEt3) at ethylene and hexene-1 polymerization;
- chain transfer reaction with participation of α-olefins in the case of copolymerization of ethylene with α-olefins;
- chain transfer reaction with hydrogen in the polymerization of ethylene, propylene, and hexene-1, and copolymerization of ethylene with α-olefins.
3.1. Polymer Chain Transfer Reactions Involving Aluminum Trialkyls during Polymerization of Ethylene and Hexene-1 over Supported Titanium–Magnesium Catalysts
3.1.1. Chain Transfer Reactions Involving Triethylaluminum at Ethylene Polymerization
3.1.2. Chain Transfer Reactions Involving Triethylaluminum during Polymerization of Hexene-1
3.2. Chain Transfer Reaction Involving α-Olefins in the Case of Ethylene Copolymerization with α-Olefins over Supported Titanium–Magnesium Catalysts
R=CH3, C4H9
3.3. Chain Transfer Reaction with Hydrogen in the Polymerization of Ethylene, Propylene, and Hexene-1, and Copolymerization of Ethylene with α-Olefins over Supported Titanium–Magnesium Catalysts
3.3.1. The Effect of Hydrogen on the Molecular Weight and MWD of Polymers Produced during Polymerization of Ethylene, Propylene, and Hexene-1
3.3.2. The Effect of Hydrogen on the Molecular Weight and MWD of Copolymers Produced at Ethylene Copolymerization with Propylene and Hexene-1
R=CH3, C4H9; P, polymer chain
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zucchini, U.; Cecchin, G. Control of molecular-weight distribution in polyolefins synthesized with Ziegler-Natta catalytic systems. Adv. Polym. Sci. 1983, 51, 101–153. [Google Scholar]
- Karol, F.G.; Can, K.J.; Wagner, B.E. Developments with High-Activity Titanium, Vanadium, and Chromium Catalysts in Ethylene Polymerization. In Transitional Metals and Organometallics as Catalysts for Olefin Polymerizations, Proceedings of the International Symposium, Hamburg, Germany, 21–24 September 1987; Kaminsky, W., Sinn, H., Eds.; Springer: Berlin/Heidelberg, Germany, 1988; pp. 149–162. [Google Scholar]
- Spitz, R.; Pasquet, V.; Patin, M.; Guyot, A. The Activation of Supported Vanadium Catalysts in Ethylene Polymerization. In Ziegler Catalysts; Fink, G., Mulhaupt, R., Eds.; Springer: Berlin/Heidelberg, Germany, 1995; pp. 401–411. [Google Scholar]
- Soares, J.B.P.; Hamielec, A.E. Deconvolution of chain-length distributions of linear polymers made by multiple-site-type catalysts. Polymer 1995, 36, 2257–2263. [Google Scholar] [CrossRef]
- Keii, T. Theory of time-dependent log-normal molecular weight distriburion of polyolefins in heterogeneous Ziegler polymerization. Macromol. Theory Simul. 1995, 4, 947–952. [Google Scholar] [CrossRef]
- Kissin, Y.V. Molecular weight distributin of linear polymers. Detailed analysis from GPC data. J. Polym. Sci. Part A Polym. Chem. 1995, 33, 113–123. [Google Scholar] [CrossRef]
- Fan, Z.Q.; Feng, L.X.; Yang, S.L. Distribution of active centers on TiCl4/MgCl2 catalyst for olefin polymerization. J. Polym. Sci. Part A Polym. Chem. 1996, 34, 3329–3335. [Google Scholar] [CrossRef]
- Soares, J.B.P. A Second Look at Modeling the Multiplicity of Active Site Types of Ziegler-Natta Catalysts with Flory’s and Stockmayer’s Distributions. Polym. React. Eng. 1998, 6, 225–241. [Google Scholar] [CrossRef]
- Kissin, Y.V.; Mink, R.I.; Nowlin, T.E. Ethylene polymerization reactions with Ziegler–Natta catalysts. I. Ethylene polymerization kinetics and kinetic mechanism. J. Polym. Sci. Part A Polym. Chem. 1999, 37, 4255–4272. [Google Scholar] [CrossRef]
- Silva Filho, A.A.; Soares, J.B.P.; Galland, G.B. Measurement and mathematical modeling of molecular weight and chemical composition distributions of ethylene/α-olefin copolymers synthesized with a heterogeneous Ziegler-Natta catalyst. Macromol. Chem. Phys. 2000, 201, 1226–1234. [Google Scholar] [CrossRef]
- Czaja, K.; Bailek, M. Effect of hydrogen on the ethylene polymerization process over Ziegler-Natta catalysts supported on MgCl2(THF)2. I. Studies of the chain-transfer reaction. J. Appl. Polym. Sci. 2001, 79, 356–360. [Google Scholar] [CrossRef]
- Kissin, Y.V. Main kinetic features of ethylene polymerization reactions with heterogeneous Ziegler–Natta catalysts in the light of a multicenter reaction mechanism. J. Polym. Sci. Part A Polym. Chem. 2001, 39, 1681–1695. [Google Scholar] [CrossRef]
- Chen, Y.P.; Fan, Z.Q.; Liao, J.H.; Liao, S.Q. Molecular weight distribution of polyethylene catalyzed by Ziegler–Natta catalyst supported on MgCl2 doped with AlCl3. J. Appl. Polym. Sci. 2006, 102, 1768–1772. [Google Scholar] [CrossRef]
- Thompson, D.E.; Mcauley, K.B.; Mc Lellan, P. Exploring Reaction Kinetics of a Multi-Site Ziegler-Natta Catalyst Using Deconvolution of Molecular Weight Distributions for Ethylene-Hexene Copolymers. J. Macromol. React. Eng. 2007, 1, 264–274. [Google Scholar] [CrossRef]
- Liu, B.; Matsuoka, H.; Terano, M. Stopped-Flow Techniques in Ziegler Catalysis. Macromol. Rapid Commun. 2001, 22, 1–24. [Google Scholar] [CrossRef]
- Matsuoka, H.; Liu, B.; Nakatani, H.; Terano, M. Variation in the Isospecific Active Sites of Internal Donor-Free MgCl2-Supported Ziegler Catalysts: Effect of External Electron Donors. Macromol. Rapid Commun. 2001, 22, 326–328. [Google Scholar] [CrossRef]
- Liu, B.; Nitta, T.; Nakatani, H.; Terano, M. Specific Roles of Al-Alkyl Cocatalyst in the Origin of Isospecificity of Active Sites on Donor-Free TiCl4/MgCl2 Ziegler-Natta Catalyst. Macromol. Chem. Phys. 2002, 203, 2412–2421. [Google Scholar] [CrossRef]
- Echevskaya, L.G.; Matsko, M.A.; Mikenas, T.B.; Nikitin, V.E.; Zakharov, V.A. Supported titanium–magnesium catalysts with different titanium content: Kinetic peculiarities at ethylene homopolymerization and copolymerization and molecular weight characteristics of polyethylene. J. Appl. Polym. Sci. 2006, 102, 5436–5442. [Google Scholar] [CrossRef]
- Nikolaeva, M.I.; Mikenas, T.B.; Matsko, M.A.; Echevskaya, L.G.; Zakharov, V.A. Heterogeneity of Active Sites of Ziegler–Natta Catalysts: The Effect of Catalyst Composition on the MWD of Polyethylene. J. Appl. Polym. Sci. 2010, 115, 2432–2439. [Google Scholar] [CrossRef]
- Wen, X.; Ji, M.; Yi, Q.; Niu, H.; Dong, J.-Y. Magnesium Chloride Supported Ziegler-Natta Catalysts Containing Succinate Internal Electron Donors for the Polymerization of Propylene. J. Appl. Polym. Sci. 2010, 118, 1853–1858. [Google Scholar] [CrossRef]
- Zhang, H.-X.; Lee, Y.-J.; Park, J.-R.; Lee, D.-H.; Yoon, K.-B. Control of Molecular Weight Distribution for Polypropylene Obtained by Commercial Ziegler-Natta Catalyst: Effect of Electron Donor. Macromol. Res. 2011, 19, 622–628. [Google Scholar] [CrossRef]
- Zhang, H.-X.; Shin, Y.; Lee, D.-H.; Yoon, K.-B. Preparation of ultra high molecular weight polyethylene with MgCl2/TiCl4 catalyst: Effect of internal and external donor on molecular weight and molecular weight distribution. Polym. Bull. 2011, 66, 627–635. [Google Scholar] [CrossRef]
- Nikolaeva, M.I.; Matsko, M.A.; Mikenas, T.B.; Echevskaya, L.G.; Zakharov, V.A. Copolymerization of Ethylene with α-Olefins over Supported Titanium–Magnesium Catalysts. I. Effect of Polymerization Duration on Comonomer Content and the Molecular Weight Distribution of Copolymers. J. Appl. Polym. Sci. 2012, 125, 2034–2041. [Google Scholar] [CrossRef]
- Nikolaeva, M.I.; Matsko, M.A.; Mikenas, T.B.; Echevskaya, L.G.; Zakharov, V.A. Copolymerization of Ethylene with α-Olefins over Supported Titanium–Magnesium Catalysts. II. Comonomer as a Chain Transfer Agent. J. Appl. Polym. Sci. 2012, 125, 2042–2049. [Google Scholar] [CrossRef]
- Echevskaya, L.G.; Matsko, M.A.; Nikolaeva, M.I.; Sergeev, S.A.; Zakharov, V.A. Kinetic Features of Hexene-1 Polymerization over Supported Titanium–Magnesium Catalyst. Macromol. React. 2014, 8, 666–672. [Google Scholar] [CrossRef]
- Dang, X.; Li, Q.; Li, H.; Yang, Y.; Zhang, L.; Hu, Y. Ziegler-Natta catalysts with novel internal electron donors for propylene polymerization. J. Polym. Res. 2014, 21, 619. [Google Scholar] [CrossRef]
- Matsko, M.A.; Zakharov, V.A.; Nikolaeva, M.I.; Mikenas, T.B. Kinetics of Ethylene Polymerization over Titanium magnesium Catalysts: The Reasons for the Observed Second Order of Polymerization Rate with Respect to Ethylene. Polyolefins J. 2015, 2, 27–38. [Google Scholar]
- Echevskaya, L.G.; Matsko, M.A.; Zakharov, V.A. Kinetic Study of Chain Transfer Reactions upon 1-Hexene Polymerization on Highly Active Supported Titanium-Magnesium Catalysts. Catal. Ind. 2019, 11, 224–233. [Google Scholar] [CrossRef]
- Matsko, M.A.; Nikolaeva, M.I.; Zakharov, V.A. Hydrogen Effect on the Molecular Weight Distribution of Polymers Obtained by Polymerization of Ethylene and α-Olefins over Supported Titanium-Magnesium Catalysts. J. Appl. Polym. Sci. 2020, 138, 50256. [Google Scholar] [CrossRef]
- Matsko, M.A.; Echevskaya, L.G.; Zakharov, V.A. Polymerization of hexene-1 and propylene over supported titanium-magnesium catalyst: Comparative data on the polymerization kinetics and molecular weight characteristics of polymers. Polymers 2023, 15, 87. [Google Scholar] [CrossRef]
- Flory, P.J. Principles of Polymer Chemistry; Cornell University Press: Ithaca, NY, USA, 1953. [Google Scholar]
- Thompson, D.E.; McAuley, K.B.; McLellan, P.J. A Simplified Model for Prediction of Molecular Weight Distributions in Ethylene-Hexene Copolymerization Using Ziegler–Natta Catalysts. Macromol. React. Eng. 2007, 1, 523–536. [Google Scholar] [CrossRef]
- Matsko, M.A.; Echevskaya, L.G.; Zakharov, V.A.; Nikolaeva, M.I.; Mikenas, T.B.; Vanina, M.P. Study of Multi-Site Nature of Supported Ziegler–Natta Catalysts in Ethylene-Hexene-1 Copolymerization. Macromol. Symp. 2009, 282, 157–166. [Google Scholar] [CrossRef]
- Credendino, R.; Liguori, D.; Fan, Z.; Morini, G.; Cavallo, L. Toward a Unified Model Explaining Heterogeneous Ziegler–Natta Catalysis. ACS Catal. 2015, 5, 5431–5435. [Google Scholar] [CrossRef]
- Breuza, E.; Antinucci, G.; Budzelaar, P.H.M.; Busico, V.; Correa, A.; Ehm, C. MgCl2-Supported Ziegler-Natta Catalysts: A DFT-D “Flexible-Cluster” Approach to Internal Donor Adducts. J. Phys Chem. 2018, 122, 9046–9053. [Google Scholar] [CrossRef]
- Piovano, A.; D’Amore, M.; Wada, T.; Cleto-Bruzzese, P.; Takasao, G.; Thakur, A.; Chammingkwan, P.; Terano, M.; Civalleri, B.; Bordiga, S.; et al. Revisiting the identity of δ-MgCl2: Part II. Morphology and exposed surfaces studied by vibrational spectroscopies and DFT calculation. J. Catal. 2020, 387, 1–11. [Google Scholar]
- Ashuiev, A.; Humbert, M.; Norsic, S.; Blahut, J.; Gajan, D.; Searles, K.; Klose, D.; Lesage, A.; Pintacuda, G.; Raynaud, J.; et al. Spectroscopic Signature and Structure of the Active Sites in Ziegler–Natta Polymerization Catalysts Revealed by Electron Paramagnetic Resonance. J. Am. Chem. Soc. 2021, 143, 9791–9797. [Google Scholar] [CrossRef]
- Novokshonova, L.A.; Zakharov, V.A. Kinetics of Olefin Polymerization and Active Sites of Heterogeneous Ziegler–Natta Catalysts. Polyolefins: 50 Years after Ziegler and Natta I. Advances in Polymer Science; Kaminsky, W., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 99–134. [Google Scholar]
- Natta, G.I.; Pasquon, I. The Kinetics of the Stereospecific Polymerization of α-Olefins. Adv. Catal. 1959, 11, 1–66. [Google Scholar]
- Keii, T. Kinetics of Ziegler-Natta Polymerization; Kodansha: Tokyo, Japan, 1972; p. 262. [Google Scholar]
- Tait, P.J.T. A Kinetic Model for Heterogeneous Ziegler-Natta Polymerization Coordination Polymerization; Academic: London, UK, 1975. [Google Scholar]
- Kissin, Y.V. Isospecific Polymerization of Olefins; Springer: New York, NY, USA, 1985; p. 429. [Google Scholar]
- Barbé, P.C.; Cecchin, G.; Noristi, L. The Catalytic System Ti-Complex/MgCl2 Catalytical and Radical Polymerization. Adv. Polym. Sci. 1986, 81, 1–81. [Google Scholar]
- Böhm, L.L. Reaction model for Ziegler–Natta polymerization processes. Polymer 1978, 19, 545–552. [Google Scholar] [CrossRef]
- Gemoets, F.; Hagen, H. A Mathematical Model for the Longest Ethylene Sequence Distribution of Random Ethylene Copolymers. Macromol. Theory Simul. 2005, 14, 158–163. [Google Scholar] [CrossRef]
- Gemoets, F.; Zhang, M.; Karjala, T.W.; Kolthammer, B.W.S. Kinetic Study of Ethylene Homopolymerization in Slurry Using a Ziegler-Natta Catalyst. Macromol. React. Eng. 2010, 4, 109–122. [Google Scholar] [CrossRef]
- Chen, K.; Mehdiabadi, S.; Liu, D.; Soares, J.B.P. Estimation of apparent kinetic constants of individual site types for the polymerization of ethylene and α-olefins with Ziegler-Natta catalysts. Macromol. React. Eng. 2016, 10, 215–232. [Google Scholar] [CrossRef]
- Chen, K.; Mehdiabadi, S.; Liu, B.; Soares, J.B.P. Analysis of ethylene/1-olefin copolymers made with Ziegler-Natta catalysts by deconvolution of molecular weight and average short chain branching distributions. Macromol. React. Eng. 2016, 10, 206–214. [Google Scholar] [CrossRef]
- Brandão, A.L.T.; Alberton, A.L.; Pinto, J.C.; Soares, J.B.P. Copolymerization of ethylene with 1,9 decadiene. Part II—Prediction of molecular weight distributions. Macromol. Theory Simul. 2017, 26, 1700040. [Google Scholar] [CrossRef]
- Vichitlimaporn, C.; Anantawaraskul, S.; Soares, J.B.P. Molecular weight distribution of ethylene/1-oelfin copolymers: Generalized bimodality criterion. Macromol. Theory Simul. 2017, 26, 1600060. [Google Scholar] [CrossRef]
- Touloupidis, V.; Albretch, A.; Soares, J.B.P. A methodology for estimating kinetic parameters and reactivity ratios of multi-site type catalysts using polymerization, fractionation and spectroscopy techniques. Macromol. React. Eng. 2018, 3, 1700056. [Google Scholar] [CrossRef]
- Soares, J.B.P.; McKenna, T.F.L. A Conceptual Multilevel Approach to Polyolefin Reaction Engineering. Can. J. Chem. Eng. 2022, 100, 2432–2474. [Google Scholar] [CrossRef]
- Zarand, S.M.G.; Safinejad, A. Determination of kinetic parameters of ethylene polymerization with and without hydrogen by Ziegler- Natta catalyst. Polyolefins J. 2020, 7, 121–130. [Google Scholar]
- Nikolaeva, M.I.; Mikenas, T.B.; Matsko, M.A.; Echevskaya, L.G.; Zakharov, V.A. Ethylene Polymerization over Supported Titanium-Magnesium Catalysts: Effect of Polymerization Parameters on the Molecular Weight Distribution of Polyethylene. J. Appl. Polym. Sci. 2011, 122, 3092–3101. [Google Scholar] [CrossRef]
- Dusseault, J.J.A.; Hsu, C.C. MgCl2-Supported Ziegler-Natta Catalysts for Olefin Polymerization—Basic Structure, Mechanism, and Kinetic-Behavior. J. Macromol. Sci.-Rev. Macromol. Chem. Phys. 1993, 33, 103–145. [Google Scholar] [CrossRef]
- Chien, J.C.W.; Weber, S.; Hu, Y. Magnesium chloride supported catalysts for olefin polymerization. XIX. Titanium oxidation states, catalyst deactivation, and active site structure. J. Polym Sci. Part A Polym. Chem. 1989, 27, 1499–1514. [Google Scholar] [CrossRef]
- Chien, J.C.W.; Gong, B.M. Hexene-1 polymerization by homogeneous zirconocene and heterogeneous-supported TiCl3 catalysts. J. Polym. Sci. Part A Polym. Chem. 1993, 31, 1747–1754. [Google Scholar] [CrossRef]
- Vasilenko, I.V.; Kostjuk, S.V. The influence of cocatalysts on 1-hexene polymerization with various supported magnesium–titanium catalysts. Polym. Bull. 2006, 57, 129–138. [Google Scholar] [CrossRef]
- Kaur, S.; Naik, D.G.; Singh, G.; Patil, H.R.; Kothari, A.V.; Gupta, V.K. Poly(1-octene) synthesis using high performance supported titanium catalysts. J. Appl. Polym. Sci. 2010, 115, 229–236. [Google Scholar] [CrossRef]
- Fan, Z.; Zhang, L.; Xia, S.; Fu, Z. Effects of ethylene as comonomer on the active center distribution of 1-hexene polymerization with MgCl2-supported Ziegler–Natta catalysts. J. Mol. Catal. A Chem. 2011, 351, 93–99. [Google Scholar] [CrossRef]
- Rishina, L.A.; Lalayan, S.S.; Galashina, N.M.; Perepelitsina, E.O.; Medintseva, T.I.; Kissin, Y.V. Polymerization of linear higher α-olefins with a modified Ziegler catalyst. Polym. Sci. Ser. B 2014, 56, 25–30. [Google Scholar] [CrossRef]
- Ahmadjo, S. Preparation of ultra high molecular weight amorphous poly(1-hexene) by a Ziegler–Natta catalyst. Polym. Adv. Technol. 2016, 27, 1523–1529. [Google Scholar] [CrossRef]
- Ivchenko, P.V.; Nifant’ev, I.E.; Tavtorkin, A.V. Polyolefin drag reducing agents (Review). Pet. Chem. 2016, 56, 775–787. [Google Scholar] [CrossRef]
- Yang, P.; Fu, Z.; Fan, Z. 1-Hexene polymerization with supported Ziegler-Natta catalyst: Correlation between catalyst particle fragmentation and active center distribution. Mol. Catal. 2018, 447, 13–20. [Google Scholar] [CrossRef]
- Echevskaya, L.G.; Matsko, M.A.; Nikolaeva, M.I.; Zakharov, V.A. 1-Hexene Polymerization over Supported Titanium–Magnesium Catalyst: The Effect of Composition of the Catalytic System and Polymerization Conditions on Temperature Dependence of the Polymerization Rate. Macromol. React. Eng. 2018, 12, 1700045. [Google Scholar] [CrossRef]
- Echevskaya, L.G.; Matsko, M.A.; Nikolaeva, M.I.; Zakharov, V.A. Regulation of Molecular Weight Characteristics and Microtacticity of Polyhexene Produced over Highly Active Supported Titanium–Magnesium Catalysts. Macromol. React. Eng. 2018, 12, 1700064. [Google Scholar] [CrossRef]
- Matsko, M.A.; Echevskaya, L.G.; Zakharov, V.A. 1-Hexene Polymerization on a Highly Active Titanium–Magnesium Catalyst. Kinet. Catal. 2020, 61, 40–57. [Google Scholar] [CrossRef]
- Matsko, M.A.; Echevskaya, L.G.; Vanina, M.P.; Nikolaeva, M.I.; Mikenas, T.B.; Zakharov, V.A. Study of the Compositional Heterogeneity of Ethylene/1-Hexene Copolymers Produced over Supported Catalysts of Different Composition. J. Appl. Polym. Sci. 2012, 126, 2017–2023. [Google Scholar] [CrossRef]
- Guastalla, G.; Giannini, U. The influence of hydrogen on the polymerization of propylene and ethylene with an MgCl2 supported catalyst. Makromol. Rapid Commun. 1983, 4, 519–527. [Google Scholar] [CrossRef]
- Kim, I.; Kim, J.H.; Woo, S.I. Kinetic study of ethylene polymerization by highly active silica supported TiCL4/MgCl2 catalysts. J. Appl. Polym. Sci. 1990, 39, 837–854. [Google Scholar] [CrossRef]
- Busico, V.; Cipullo, R.; Corradini, P. Hydrooligomerization of propene: A “fingerprint” of a Ziegler-Natta catalyst, 1. Preliminary results for MgCl2-supported systems. Makromol. Rapid Commun. 1992, 13, 15–20. [Google Scholar] [CrossRef]
- Marques, M.M.V.; Nunes, C.P.; Tait, P.J.T.; Dias, A.R. Polymerization of ethylene using a high-activity Ziegler–Natta catalyst. I. Kinetic studies. J. Polym. Sci. Part A Polym. Chem. 1993, 31, 209–218. [Google Scholar] [CrossRef]
- Marques, M.M.V.; Nunes, C.P.; Tait, P.J.T.; Dias, A.R. Polymerization of ethylene using a high-activity Ziegler–Natta catalyst. II. Molecular weight regulation. J. Polym. Sci. Part A Polym. Chem. 1993, 31, 219–225. [Google Scholar] [CrossRef]
- Chadwick, J.C.; Miedema, A.; Sudmeijer, O. Hydrogen activation in propene polymerization with MgCl2-supported Ziegler-Natta catalysts: The effect of the external donor. Macromol. Chem. Phys. 1994, 195, 167–172. [Google Scholar] [CrossRef]
- Chadwick, J.C.; Vankessel, G.M.M.; Sudmeijer, O. Regio- and stereospecificity in propene polymerization with MgCl2-supported Ziegler-Natta catalysts: Effects of hydrogen and the external donor. Macromol. Chem. Phys. 1995, 196, 1431–1437. [Google Scholar] [CrossRef]
- Huang, J.C.K.; Lacombe, Y.; Lynch, D.T.; Wanke, S.E. Effects of Hydrogen and 1-Butene Concentrations on the Molecular Properties of Polyethylene Produced by Catalytic Gas-Phase Polymerization. Ind. Eng. Chem. Res. 1997, 36, 1136–1143. [Google Scholar] [CrossRef]
- Bukatov, G.D.; Zakharov, V.A. Propylene Ziegler-Natta Polymerization: Numbers and Propagation Rate Constants for Stereospecific and Non-Stereospecific Zenters. Macromol. Chem. Phys. 2001, 202, 2003–2009. [Google Scholar] [CrossRef]
- Chadwick, J.C.; Van der Burgt, F.P.T.J.; Rastogi, S.; Busico, V.; Cipullo, R.; Talarico, G.; Heere, J.J.R. Influence of Ziegler−Natta Catalyst Regioselectivity on Polypropylene Molecular Weight Distribution and Rheological and Crystallization Behavior. Macromolecules 2004, 37, 9722–9727. [Google Scholar] [CrossRef]
- Jamjah, R.; Zohuri, G.H.; Javaheri, M.; Nekoomanesh, M.; Ahmadjo, S.; Farhadi, A. Synthesizing UHMWPE Using Ziegler-Natta Catalyst System of MgCl2(ethoxide type)/TiCl4/tri-isobutylaluminum. Macromol. Symp. 2008, 274, 148–153. [Google Scholar] [CrossRef]
- Sukulova, V.V.; Barabanov, A.A.; Mikenas, T.B.; Matsko, M.A.; Zakharov, V.A. The Kinetic Study of Ethylene Polymerization over Titanium–Magnesium Catalysts in the Presence of Hydrogen: The Number and Reactivity of Active Centers. Polym. Sci. Ser. B 2020, 62, 14–21. [Google Scholar] [CrossRef]
- Kissin, Y.V.; Mink, R.I.; Nowlin, T.E.; Brandolini, A.J. Kinetics and mechanism of ethylene homopolymerization and copolymerization reactions with heterogeneous Ti-based Ziegler–Natta catalysts. Top. Catal. 1999, 7, 69–88. [Google Scholar] [CrossRef]
- Mikenas, T.B.; Koshevoy, E.I.; Cherepanova, S.V.; Zakharov, V.A. Study of the Composition and Morphology of New Modifications of Titanium-Magnesium Catalysts with Improved Properties in Ethylene Polymerization. J. Polym. Sci. Part A Polym. Chem. 2016, 54, 2545–2558. [Google Scholar] [CrossRef]
- Barabanov, A.A.; Vereykina, V.V.; Matsko, M.A.; Zakharov, V.A. Propylene Polymerization over Titanium–Magnesium Catalysts: The Effect of Internal and External Stereoregulating Donors on the Number of Active Centers with Different Stereospecificity and Their Reactivity in Propagation Reaction. J. Catal. 2021, 404, 187–197. [Google Scholar] [CrossRef]
- Chadwick, J.C.; Morini, G.; Albizzati, E.; Balbontin, G.; Mingozzi, I.; Cristofori, A.; Sudmeijer, O.; Van Kessel, G.M.M. Aspects of hydrogen activation in propene polymerization using MgCl2/TiCl4/diether catalysts. Macromol. Chem. Phys. 1996, 197, 2501–2510. [Google Scholar] [CrossRef]
Exp. No. | P C2H4, bar | (TEA), mmol/L | Polymer Yield 1, kgPE/g cat | Mn, kg/mol | Mw, kg/mol | Mw/Mn |
---|---|---|---|---|---|---|
1 | 1 | 2.4 | 0.4 | 39 | 430 | 11.0 |
2 | 2 | 2.4 | 1.2 | 76 | 690 | 9.1 |
3 | 4 | 2.4 | 6.1 | 145 | 690 | 4.8 |
4 | 4 | 1.2 | 6.5 | 250 | 910 | 3.6 |
5 | 4 | 4.8 | 4.7 | 93 | 580 | 6.2 |
P (C2H4), bar | 4 | 1 | |||
---|---|---|---|---|---|
Flory Component | Contribution, % | Mw, kg/mol | Contribution, % | Mw, kg/mol | |
I | 9.0 | 3000 | 6.4 | 2100 | |
II | 28.5 | 860 | 23.2 | 690 | |
III | 40.0 | 330 | 27.2 | 275 | |
IV | 21.8 | 100 | 26.7 | 100 | |
V | - | - | 12.9 | 30 | |
VI | - | - | 3.2 | 6.8 | |
Sum of components | Mw, kg/mol | 645 | 410 | ||
Mw/Mn | 4.6 | 9.2 |
(AlEt3), mmol/L | 1.2 | 4.8 | |||
---|---|---|---|---|---|
Flory Component | Contribution, % | Mw, kg/mol | Contribution, % | Mw, kg/mol | |
I | 8.9 | 3170 | 6.6 | 3500 | |
II | 34.6 | 1100 | 18.8 | 1070 | |
III | 42.5 | 470 | 38.6 | 390 | |
IV | 14.2 | 135 | 28.3 | 120 | |
V | 7.7 | 39 | |||
Sum of components | Mw, kg/mol | 905 | 590 |
Cocatalyst | |||||
---|---|---|---|---|---|
TIBA | TEA | ||||
Mw, 1 kg/mol | 2100 | 290 | |||
Mw/Mn 1 | 3.1 | 17 | |||
Flory Component | Contribution, % | Mw, kg/mol | Contribution, % | Mw, kg/mol | |
I | 25.4 | 4700 | 10 | 1650 | |
II | 60.1 | 1400 | 26.4 | 410 | |
III | 14.2 | 490 | 34.8 | 115 | |
IV | - | - | 24.7 | 28 | |
V | - | - | 10.4 | 6 | |
Sum of components | Mw, kg/mol | 2100 | 300 | ||
Mw/Mn | 3.1 | 16 |
Exp. No. | Comonomer | (Cα/C2), molar | Polymer Yield 1, kg/g cat | Mn, kg/mol | Mw, kg/mol | Mw/Mn | Cα 2, mol. % | Content of Double Bonds 3 | ||
---|---|---|---|---|---|---|---|---|---|---|
CH2=CHR | R1CH=CHR2 | |||||||||
1 | ─ | 0 | 1.2 | 76 | 690 | 9.1 | ─ | 0.20 | 0.06 | ─ |
2 | C3H6 | 0.18 | 4.7 | 50 | 420 | 8.4 | 2.0 | 0.14 | 0.08 | 0.04 |
3 | 0.51 | 5.5 | 57 | 360 | 6.3 | 4.9 | 0.23 | 0.14 | 0.10 | |
4 | C6H12 | 2.3 | 12.5 | 59 | 540 | 9.2 | 1.0 | 0.24 | ─ | 0.04 |
5 | 4.6 | 8.7 | 49 | 430 | 8.8 | 2.3 | 0.24 | ─ | 0.07 |
Exp. No. | H2 | Polymer Yield, kg/(gcat) | Mn, kg/mol | Mw, kg/mol | Mw/Mn |
---|---|---|---|---|---|
PP 1 1 | - | 7.1 | 34 | 310 | 9.1 |
PP 2 1 | + 3 | 17.8 | 29 | 150 | 5.2 |
PH 1 2 | - | 0.5 | 14 | 230 | 16 |
PH 2 2 | + 4 | 2.1 | 9.4 | 63 | 6.7 |
Sample 1 | PP 1 | PP 2 | |||
---|---|---|---|---|---|
H2, vol. % | ─ | 2.3 | |||
Flory Component | Contribution, % | Mw, kg/mol | Contribution, % | Mw, kg/mol | |
I | 5.5 | 7 | 11.7 | 19 | |
II | 21.6 | 32 | 37.1 | 57 | |
III | 40.3 | 110 | 37.8 | 155 | |
IV | 29.2 | 390 | 13.5 | 510 | |
V | 10.2 | 1700 | |||
Sum of components | Mw, kg/mol | 320 | 145 | ||
Mw/Mn | 12 | 4.2 |
Exp. No | Cα Content, mol % | P (H2), bar | Polymer Yield 1, Kg/gcat | Mn, kg/mol | Mw, kg/mol | Mw/Mn |
---|---|---|---|---|---|---|
EPC 1 1 | 25 | - | 1 | 23 | 190 | 8.3 |
EPC 2 2 | 21 | 0.1 | 1.4 | 17 | 99 | 5.8 |
EHC 1 3 | 2.1 | - | 3.3 | 20 | 280 | 14.0 |
EHC 2 3 | 2.1 | 0.25 | 2.0 | 24 | 110 | 4.6 |
Sample 1 | EPC 1 | EPC 2 | |||
---|---|---|---|---|---|
P (H2),bar | ─ | 0.1 | |||
Flory Component | Contribution, % | Mw, kg/mol | Contribution, % | Mw, kg/mol | |
I | 11.6 | 9 | 8.3 | 5.9 | |
II | 32.1 | 32 | 35.5 | 26 | |
III | 34.2 | 100 | 42.3 | 81 | |
IV | 21.5 | 380 | 18.3 | 300 | |
V | 6.7 | 1600 | |||
Sum of components | Mw,kg/mol | 180 | 95 | ||
Mw/Mn | 7.8 | 5.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsko, M.; Zakharov, V. Heterogeneity of Active Sites in the Polymer Chain Transfer Reactions at Olefin Polymerization over Multisite Supported Ziegler-Natta Catalysts. Polymers 2023, 15, 4316. https://doi.org/10.3390/polym15214316
Matsko M, Zakharov V. Heterogeneity of Active Sites in the Polymer Chain Transfer Reactions at Olefin Polymerization over Multisite Supported Ziegler-Natta Catalysts. Polymers. 2023; 15(21):4316. https://doi.org/10.3390/polym15214316
Chicago/Turabian StyleMatsko, Mikhail, and Vladimir Zakharov. 2023. "Heterogeneity of Active Sites in the Polymer Chain Transfer Reactions at Olefin Polymerization over Multisite Supported Ziegler-Natta Catalysts" Polymers 15, no. 21: 4316. https://doi.org/10.3390/polym15214316
APA StyleMatsko, M., & Zakharov, V. (2023). Heterogeneity of Active Sites in the Polymer Chain Transfer Reactions at Olefin Polymerization over Multisite Supported Ziegler-Natta Catalysts. Polymers, 15(21), 4316. https://doi.org/10.3390/polym15214316