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Abstract: In this review, we summarize and discuss our experimental data published in a number of
papers on the transfer reactions of polymer chains in the polymerization of ethylene, propylene, and
hexene-1, and the copolymerization of ethylene with α-olefins over multisite supported titanium–
magnesium catalysts (TMC). Three groups of transfer reactions are discussed in the review: (1) transfer
reactions with AlEt3 cocatalyst, (2) transfer reactions with hydrogen, and (3) transfer reactions with
participation of α-olefins in the case of ethylene copolymerization with α-olefins. We have found
polymerization conditions where it is possible to observe heterogeneity of active sites of TMC for all
three groups of the indicated reactions. It is shown that (1) the transfer reaction with AlEt3 proceeds
with higher reactivity on the active sites that produce polymers with low molecular weight; (2) the
transfer reaction with hydrogen, in the case of α-olefin polymerization and copolymerization of
ethylene with α-olefins, proceeds with higher reactivity on the active sites which produce polymers
with high molecular weight; (3) the transfer reaction with α-olefins proceed with higher reactivity on
the active sites that produce high molecular weight polymers.

Keywords: olefin polymerization; chain transfer reaction; polyethylene; polypropylene; polyolefins;
polyhexene-1; active sites; molecular weight; molecular weight distribution titanium–magnesium
catalysts; copolymerization

1. Introduction

Transfer reactions of a growing polymer chain can largely determine the molecular
weight and molecular weight distribution of the polymers formed during polymerization.
Polymers with broad molecular weight distribution (MWD) and different polydispersity
values (Mw/Mn = 3–25) are formed in the case of olefin polymerization over various com-
mercial catalysts (e.g., supported Ziegler–Natta catalysts, chromium oxide catalysts with
silica support) due to heterogeneity of the active sites of these catalysts in the reactions of
polymer chain propagation and transfer of polymer chain (multisite catalysts). In the case
of polymerization of olefins on supported Ziegler–Natta catalysts, it is assumed that the
heterogeneity of the active centers of these catalysts is associated with the heterogeneous
composition and structure of the active centers and the influence of a number of additional
components introduced into the composition. These active centers include a titanium
compound and some additives fixed on the surface of the support (magnesium dichloride).
As a result of heterogeneity of active sites TMC produce polyethylene (PE) with a broad
molecular weight distribution (MWD) (Mw/Mn = 5–8). Some data on the MWD of polyethy-
lene produced over Ti-based catalysts are presented in the review [1] and in refs. [2–14].
Varying the composition of supported Ziegler–Natta catalysts makes it possible to control
the heterogeneity of the active centers of these catalysts in the reactions of polymer chain
growth and transfer and to obtain polyolefins with different polydispersity [15–30].

The analysis of the molecular weight distribution of polyolefins with a broadened
MWD (polydispersity Mw/Mn ≥ 3) produced over multisite catalysts is performed by the

Polymers 2023, 15, 4316. https://doi.org/10.3390/polym15214316 https://www.mdpi.com/journal/polymers

https://doi.org/10.3390/polym15214316
https://doi.org/10.3390/polym15214316
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0002-5340-9577
https://doi.org/10.3390/polym15214316
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym15214316?type=check_update&version=1


Polymers 2023, 15, 4316 2 of 17

deconvolution of MWD curves into individual components with polydispersity Mw/Mn = 2
(Flory components), which correspond to the polymer formed on the single site catalysts
that contain only one type of active sites [4–6,9,10,31,32]. In this case, the number of Flory
components corresponds to the number of individual types of active sites that are present
in multisite catalysts and exhibit different reactivity in the polymer chain propagation and
transfer reactions. By way of example, Figure 1 shows the data reported in refs. [19,33] on
the deconvolution of MWD curves into Flory components for three polyethylene samples
obtained over the multisite supported Ziegler-type catalysts with different compositions of
the active component. It is seen that ethylene polymerization over the titanium–magnesium
catalyst (TMC) with a very low titanium content results in the formation of polyethylene
with quite a narrow MWD (Mw/Mn = 3.3). The MWD curve for this polymer can be
represented by three Flory components corresponding to three groups of active sites in
this catalyst. On the TMC with an increased titanium content (3.5 wt.%), the polymer
with a broader MWD (Mw/Mn = 5.0) is formed. The MWD curve for this polymer can
be represented by four Flory components corresponding to four groups of active sites
in this catalyst. Polyethylene with the most broad and bimodal MWD is produced over
the supported vanadium–magnesium catalyst (Mw/Mn = 16). The MWD curve for this
polymer can be represented by five Flory components corresponding to the presence of
five groups of active sites in the catalyst.
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magnesium catalyst (3 wt.% of Ti, Mw/Mn = 5.0), (c) vanadium–magnesium catalyst (3.2 wt.% of V, 
Mw/Mn = 16). 

According to the numerous physicochemical studies and theoretical calculations (see 
as example refs. [34–37]), different types of the surface titanium species are formed in ti-
tanium–magnesium catalysts firstly at the interaction of TiCl4 with the support—MgCl2, 
and then after interaction of these surface species with AlR3 cocatalysts. In particular, 
mononuclear Ti3+ species and binuclear [Ti3+]2 are formed on the different local surface 
centers of MgCl2. The addition of the stereoregulating electron donor organic compounds 
into the titanium–magnesium catalysts leads to the formation of a new surface species. It 
is known (see [38]) that only a small part of the surface titanium species (less than 10%) 
appears as active centers; therefore, until now, questions on the composition and structure 
of active sites of TMC have still been open for discussion. 

At the same time, in our works [19,23–25,27–30,33] it was found that in some cases, 
when using a catalyst of the same composition, the introduction of polymer chain transfer 
agents into the reaction medium also leads to a change in the polydispersity of the ob-
tained polyolefins. We believe these results are related to the additional heterogeneity of 

Figure 1. Deconvolution of MWD curves of polyethylene, produced over supported catalysts of
different composition: (a) titanium–magnesium catalyst (0.07 wt.% of Ti, Mw/Mn = 3.3), (b) titanium–
magnesium catalyst (3 wt.% of Ti, Mw/Mn = 5.0), (c) vanadium–magnesium catalyst (3.2 wt.% of V,
Mw/Mn = 16).

According to the numerous physicochemical studies and theoretical calculations (see
as example refs. [34–37]), different types of the surface titanium species are formed in
titanium–magnesium catalysts firstly at the interaction of TiCl4 with the support—MgCl2,
and then after interaction of these surface species with AlR3 cocatalysts. In particular,
mononuclear Ti3+ species and binuclear [Ti3+]2 are formed on the different local surface
centers of MgCl2. The addition of the stereoregulating electron donor organic compounds
into the titanium–magnesium catalysts leads to the formation of a new surface species. It
is known (see [38]) that only a small part of the surface titanium species (less than 10%)
appears as active centers; therefore, until now, questions on the composition and structure
of active sites of TMC have still been open for discussion.

At the same time, in our works [19,23–25,27–30,33] it was found that in some cases,
when using a catalyst of the same composition, the introduction of polymer chain transfer
agents into the reaction medium also leads to a change in the polydispersity of the obtained
polyolefins. We believe these results are related to the additional heterogeneity of the
active sites of supported Ziegler–Natta catalysts in polymer chain transfer reactions, as the
composition of the reaction medium changes during polymerization.
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It is necessary to note the results presented in [19,23–25,28–30,33] were obtained at
different times (2009–2023) for various polyolefins (polyethylene, polypropylene, polyhex-
ene, and ethylene-α-olefin copolymers) using supported catalysts Ziegler–Natta of various
compositions. The generalization of these results, in the form of a short review, makes
it possible to more reasonably formulate a new approach to control the polydispersity
of polyolefins obtained over these catalysts by varying the composition of the reaction
medium (polymerization conditions).

The indicated heterogeneity of active sites manifests itself upon changes in the reac-
tion medium composition during polymerization and makes an additional contribution
to the polymer polydispersity, which is determined primarily by the composition and
structure of the catalyst active component and also by the structural characteristics of
supported catalysts.

2. Materials and Methods

Data on the preparation procedures and composition of TMC used for ethylene poly-
merization and copolymerization of ethylene with α-olefins are presented in refs. [19,29].
Data on the preparation procedure and composition of TMC, which contains the stereo-
regulating electron donor compound (dibutylphthalate) used for the polymerization of
propylene and hexaene-1, are presented in ref. [29]. Procedures for ethylene polymerization
and copolymerization of ethylene with α-olefins are described in refs. [23,24]. Procedures
for propylene and hexene-1 polymerization are presented in refs. [29]. Additional data on
the polymerization conditions are reported in the corresponding Tables.

The polymer MWD determination is described in [29]. Deconvolution of MWD curves
was performed according to procedures described elsewhere [19,33].

Comonomer content in copolymers of ethylene with α-olefins and content of vinyl,
vinylidene, and trans vinylene groups was measured by FTIR according to [23,24].

3. Results and Discussion

The general kinetic scheme proposed by G. Natta [39] for the propylene polymerization
over Ziegler–Natta catalysts (Scheme 1) is usually used for the kinetic analysis of catalytic
polymerization of olefins. This scheme has been discussed in many papers [39–53].

Scheme 1 includes the initiation reaction, the polymer chain propagation reaction, and
four polymer chain transfer reactions, which together determine the molecular weight of
the produced polymers:
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Scheme 1. The polymer chain propagation and transfer reactions occurring during polymerization of
olefins, using ethylene as an example.

After chain transfer reactions, the active species ClxTi-R and ClxTi-H can react with
ethylene, and the process of formation of a new polymer chain is started again (re-initiation
of active sites). In some cases, polymerization can be terminated (for example, via reactions
with impurities, etc.). We do not discuss the termination processes in this review.

In ref. [54] it was shown that for supported Ziegler–Natta catalysts, the ktr
β/ktr

M

value was close to zero, and this reaction virtually did not occur under the conditions of
suspension and gas-phase polymerization of ethylene.

This review summarizes data obtained in our studies [19,23–25,28–30,33] on the het-
erogeneity of active sites in multisite supported titanium–magnesium catalysts under the
polymerization of olefins for three groups of polymer chain transfer reactions:

1. chain transfer reactions with a cocatalyst (AlEt3) at ethylene and hexene-1 polymer-
ization;

2. chain transfer reaction with participation of α-olefins in the case of copolymerization
of ethylene with α-olefins;

3. chain transfer reaction with hydrogen in the polymerization of ethylene, propylene,
and hexene-1, and copolymerization of ethylene with α-olefins.

3.1. Polymer Chain Transfer Reactions Involving Aluminum Trialkyls during Polymerization of
Ethylene and Hexene-1 over Supported Titanium–Magnesium Catalysts

It is generally accepted that the formation of active centers of a titanium–magnesium
catalyst occurs as a result of the interaction of TiCl4, adsorbed on the surface of the MgCl2
support, with the organoaluminum cocatalyst [43,55]. The result of this interaction is the
reduction of Ti4+ to Ti3+ and further alkylation of TiCl3, with the formation of a Ti-C bond.

Experimental data on the heterogeneity of active sites of TMC in the chain transfer
reactions with triethylaluminum (TEA), during the polymerization of ethylene and hexene-
1 on these catalysts, are presented in refs. [19,25,28]. These data were obtained during
polymerization in the absence of hydrogen, under conditions when the transfer reaction of
the polymer chain with TEA was the predominant transfer reaction.

3.1.1. Chain Transfer Reactions Involving Triethylaluminum at Ethylene Polymerization

In ref. [19], it was demonstrated that in the case of polymerization of ethylene in the
absence of hydrogen and at a low pressure of ethylene (lower than 4 bar), the transfer
reaction of the polymer chain with TEA is the predominant transfer reaction. In these
conditions, a decrease in the pressure of ethylene leads to a decrease in the molecular
weight of polyethylene, as well as to an increase in the polydispersity of the resulting
polymer (an increase in the Mw/Mn values from 4.8 up to 9–11, experiments 1–3 in Table 1).
In the case of ethylene polymerization under higher pressure of ethylene (4 bar), an increase
in the concentration of TEA from 1.2 to 4.8 mmol/L also leads to a decrease in the molecular
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weight of polyethylene and an increase in polydispersity (an increase in Mw/Mn values,
experiments 4 and 5 in Table 1).

Table 1. Data on the effect of ethylene pressure and TEA concentration on the molecular weight and
polydispersity of polyethylene.

Exp. No. P C2H4,
bar

(TEA),
mmol/L

Polymer
Yield 1,

kgPE/g cat

Mn,
kg/mol

Mw,
kg/mol Mw/Mn

1 1 2.4 0.4 39 430 11.0
2 2 2.4 1.2 76 690 9.1
3 4 2.4 6.1 145 690 4.8
4 4 1.2 6.5 250 910 3.6
5 4 4.8 4.7 93 580 6.2

1 Polymerization at 80 ◦C for 1 h.

Tables 2 and 3 show the results of the deconvolution into Flory components for the
MWD curves of the polyethylene samples from the experiments listed in Table 1. It was
seen that with a decrease in the ethylene pressure and increase in TEA concentration the
number of Flory components increased from four components up to six components due
to the appearance of new low-molecular weight components V and VI and a decrease
in the contribution of components I–III. Thus, polymerization at a low ethylene pressure
and high TEA concentration, when the predominant transfer reaction is the transfer with
AlEt3, is characterized by a greater heterogeneity of active sites. We believe these results
can be attributed to the formation of temporarily inactive sites containing the titanium–
polymer bond during polymerization [8,12,14]. These sites emerge in the polymerization
due to the reversible adsorption of TEA on the active sites containing the growing polymer
chain. In this case, transformations of the active sites during polymerization and chain-
growth limiting reactions (the transfer reactions involving TEA) can be represented by
Scheme 2. Presumably, during polymerization, triethylaluminum competes with ethylene
in the adsorption processes on the coordinatively unsaturated titanium ion in the active
site (Cp), and further transformations of the active site proceed by two routes: (1) the
formation of the ethylene π-complex with the titanium ion (Cp

+), followed by the insertion
of coordinated ethylene into the active Ti–CH2P bond (the chain propagation reaction);
(2) the formation of the AlEt3 complex with the titanium ion (the temporarily inactive Cp*
site). This site can transform into the initial active site (Cp) due to AlEt3 desorption, or into
a new active site (Cp

i) as a result of chain transfer with triethylaluminum. Evidently, the
concentration of the temporarily inactive sites (Cp*) depends on the concentration of AlEt3
and ethylene, and will increase with an increase in the AlEt3 concentration and a decrease
in the ethylene concentration.

Table 2. Results of the deconvolution of MWD curves for the PE samples obtained at different
ethylene pressures (Table 1) [19].

P (C2H4), bar 4 1

Flory Component Contribution,
%

Mw,
kg/mol

Contribution,
%

Mw,
kg/mol

I 9.0 3000 6.4 2100
II 28.5 860 23.2 690
III 40.0 330 27.2 275
IV 21.8 100 26.7 100
V - - 12.9 30
VI - - 3.2 6.8

Sum of
components

Mw, kg/mol 645 410
Mw/Mn 4.6 9.2
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Table 3. Results of the deconvolution of MWD curves for the PE samples obtained at different TEA
concentrations (Table 1) [19].

(AlEt3), mmol/L 1.2 4.8

Flory Component Contribution,
%

Mw,
kg/mol

Contribution,
%

Mw,
kg/mol

I 8.9 3170 6.6 3500
II 34.6 1100 18.8 1070
III 42.5 470 38.6 390
IV 14.2 135 28.3 120
V 7.7 39

Sum of
components

Mw,
kg/mol 905 590
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containing the coordinatively unsaturated Ti3+ ion bound to the growing polymer chain (–CH2P);
Cp

+, the active site with coordinated ethylene; Cp*, the temporarily inactive site containing AlEt3,
which is adsorbed on the Ti3+ ion; and Cp

i, the active site formed via the exchange of alkyl ligands to
produce the Et2Al–CH2P.

We believe that the formation of the temporarily inactive Cp* site containing the
Ti–CH2P bond and the adsorbed TEA molecule, on which the chain propagation is in-
terrupted, can be considered as an additional chain-growth limiting reaction (the chain
transfer reaction). The data obtained show that this reaction proceeds predominantly on the
active sites producing low-molecular weight polyethylene, which leads to a considerable
broadening of MWD (an increase in the Mw/Mn value).

In some cases, the reaction between the cocatalyst and catalyst results in deeper
reduction of Ti4+ to Ti2+ which might be an additional explanation of heterogeneity of
active sites [55,56].

3.1.2. Chain Transfer Reactions Involving Triethylaluminum during Polymerization
of Hexene-1

Polymerization of higher alpha olefins (1-hexene and 1-octene) over supported titanium–
magnesium catalysts (TMC) is of significant fundamental and practical interest [57–64]. In
our studies [25,65–67], data were obtained on the polymerization kinetics of hexene-1 over
supported titanium–magnesium catalysts and the molecular weight characteristics of the
produced polyhexene. It should be noted that polyhexene is an X-ray amorphous polymer
soluble in heptane under polymerization conditions (solution polymerization). As was
noted in our publication [30], this is one of the causes explaining essential differences in
the molecular weight characteristics between polyhexene (PH) produced over TMC and
polypropylene (PP) or polyethylene (PE) produced over similar catalysts by suspension
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polymerization as solid particles. When polyhexene is formed by solution polymerization,
the TEA concentration on the catalyst surface corresponds to its concentration in the poly-
mer solution, whereas upon formation of semicrystalline PP and PE particles by suspension
polymerization, the TEA concentration on the catalyst surface may be substantially lower
compared to its concentration in heptane. This may explain data presented in ref. [66], that
the molecular weight of polyhexene decreases considerably with an increase in the TEA
concentration during polymerization in the absence of hydrogen and at a high concentra-
tion of the monomer (2 mol/L). Thus, under the indicated conditions, TEA is an efficient
and main transfer agent of the polymer chain. At the same time, polyhexene with very high
molecular weight and narrow MWD (Mw/Mn = 3.1) is formed at hexene-1 polymerization
over TMC with tri-iso-butylaluminium (TIBA) as cocatalyst [25].

Table 4 illustrates data on the deconvolution of MWD curves into Flory components
for the polyhexene samples obtained using TEA and TIBA cocatalysts. These data indicate
the occurrence of three types of active sites on the TMC surface in the presence of TIBA
cocatalyst. The use of the TEA cocatalyst leads to a sharp decrease (by a factor of 3–4.5)
in the molecular weight of polyhexene formed on these sites and the appearance of two
additional Flory components with a very low molecular weight (6 and 28 kg/mol). This may
be related to the additional formation of two new groups of active sites due to the reversible
adsorption of TEA on a part of active sites. This results to the temporarily interruption of the
chain propagation on these sites (Scheme 2 in Section 3.1.1). This conclusion corresponds
to the results presented above in Section 3.1.1 (Tables 2 and 3), which were obtained at
ethylene polymerization over supported TMC under the conditions when chain transfer in
the presence of TEA was the predominant polymer chain transfer reaction.

Table 4. Results of the deconvolution of MWD curves for polyhexene samples obtained with TIBA
and TEA cocatalysts [66].

Cocatalyst

TIBA TEA

Mw, 1

kg/mol
2100 290

Mw/Mn
1 3.1 17

Flory Component Contribution,
%

Mw,
kg/mol

Contribution,
%

Mw,
kg/mol

I 25.4 4700 10 1650
II 60.1 1400 26.4 410
III 14.2 490 34.8 115
IV - - 24.7 28
V - - 10.4 6

Sum of
components

Mw,
kg/mol 2100 300

Mw/Mn 3.1 16
1 Polymerization at 70 ◦C, [TEA] = 5 mmol/L, [TIBA] = 6 mmol/L, [C6H12] = 1 mol/L, for 1 h.

The presented data on the polymer chain-growth limiting reactions with TEA during
polymerization of ethylene (Section 3.1.1) and hexene-1 (Section 3.1.2) over supported TMC
under the conditions when these reactions are the predominant chain transfer reactions
suggest that the indicated reactions proceed as a complicated process shown in Scheme 2.
The process includes two reactions limiting the polymer chain growth: (1) the exchange of
alkyl ligands in the (Cp*) complex in Scheme 2, which contains the active site—a titanium
compound with the growing polymer chain and the TEA molecule adsorbed on the active
site; (2) the interruption of the polymer chain growth due to the reversible adsorption of
TEA on the active site (the Cp* complex in Scheme 2). The desorption of TEA from the
(Cp*) complex leads to the regeneration of the active site and resumption of the polymer
chain growth.
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The data obtained suggests that reaction (2) occurs predominantly on the active
sites producing a low-molecular weight polymer. Such heterogeneity of active sites in
this reaction leads to the broadening of MWD of the formed polymers (polyethylene
and polyhexene).

3.2. Chain Transfer Reaction Involving α-Olefins in the Case of Ethylene Copolymerization with
α-Olefins over Supported Titanium–Magnesium Catalysts

Copolymerization of ethylene with α-olefins makes it possible to obtain a wide set of
polymers with a decreased density compared to homopolyethylene due to the appearance
of branchings in copolymer as a result of α-olefin addition to the growing polyethylene
chain. At the same time, it was revealed [23,24,68] that ethylene copolymerization with
α-olefins over titanium–magnesium catalysts results in the formation of the polymer with
a lower molecular weight compared to homopolyethylene. The example data on the
molecular weights of homopolyethylene and copolymers of ethylene with propylene and
hexene-1 are presented in Table 5. So, it is necessary to propose the additional chain transfer
reaction with the participation of α-olefins proceeds at copolymerization of α-olefins. The
possible routes of this reaction are discussed in ref. [24] on the base of experimental data on
the content of terminal double bonds of different types formed in the homopolyethylene
and copolymers of ethylene with α-olefins (Table 5).

Table 5. Data on the molecular weight and polydispersity of copolymers and content of terminal
double bonds of different types in copolymers of ethylene with propylene and hexene-1 [24].

Exp.
No. Comonomer (Cα/C2),

molar

Polymer
Yield 1,
kg/g cat

Mn,
kg/mol

Mw,
kg/mol Mw/Mn

Cα 2, mol.
%

Content of Double Bonds 3

CH2=CHR

Polymers 2023, 15, x FOR PEER REVIEW 8 of 17 
 

 

desorption of TEA from the (Ср*) complex leads to the regeneration of the active site and 
resumption of the polymer chain growth. 

The data obtained suggests that reaction (2) occurs predominantly on the active sites 
producing a low-molecular weight polymer. Such heterogeneity of active sites in this re-
action leads to the broadening of MWD of the formed polymers (polyethylene and poly-
hexene). 

3.2. Chain Transfer Reaction Involving α-Olefins in the Case of Ethylene Copolymerization with 
α-Olefins over Supported Titanium–Magnesium Catalysts 

Copolymerization of ethylene with α-olefins makes it possible to obtain a wide set of 
polymers with a decreased density compared to homopolyethylene due to the appearance 
of branchings in copolymer as a result of α-olefin addition to the growing polyethylene 
chain. At the same time, it was revealed [23,24,68] that ethylene copolymerization with α-
olefins over titanium–magnesium catalysts results in the formation of the polymer with a 
lower molecular weight compared to homopolyethylene. The example data on the molec-
ular weights of homopolyethylene and copolymers of ethylene with propylene and hex-
ene-1 are presented in Table 5. So, it is necessary to propose the additional chain transfer 
reaction with the participation of α-olefins proceeds at copolymerization of α-olefins. The 
possible routes of this reaction are discussed in ref. [24] on the base of experimental data 
on the content of terminal double bonds of different types formed in the homopolyeth-
ylene and copolymers of ethylene with α-olefins (Table 5). 

Table 5. Data on the molecular weight and polydispersity of copolymers and content of terminal 
double bonds of different types in copolymers of ethylene with propylene and hexene-1 [24]. 

Exp. 
No. Comonomer (Сα/С2), 

molar 
Polymer Yield 1, 

kg/g cat 
Mn, 

kg/mol 
Mw, 

kg/mol Mw/Mn Cα 2, mol. % 
Content of Double Bonds 3 

CH2=CHR 
 

R1CH=CHR2 

1 ─ 0 1.2 76 690 9.1 - 0.20 0.06 ─ 
2 

С3Н6 
0.18 4.7 50 420 8.4 2.0 0.14 0.08 0.04 

3 0.51 5.5 57 360 6.3 4.9 0.23 0.14 0.10 
4 

С6Н12 
2.3 12.5 59 540 9.2 1.0 0.24 ─ 0.04 

5 4.6 8.7 49 430 8.8 2.3 0.24 ─ 0.07 
1 Polymerization at ethylene pressure 2 bar, 80 °С, cocatalyst (AlEt3) = 2.6 mmol/L, without hydro-
gen. 2 Comonomer content in copolymers. 3 Calculated per one polymer chain. 

In all cases, the produced polymers contain terminal vinyl groups in the amount from 
0.14 to 0.24 groups per one polymer chain, which indicates the occurrence of the chain 
transfer with ethylene under the given conditions (reaction (3) in Scheme 1). At the same 
time, ethylene copolymerization with propylene is accompanied by an increase in the con-
tent of terminal vinylidene groups and the appearance of trans-vinylene groups in eth-
ylene copolymers with propylene and hexene-1. The formation of terminal vinylidene 
groups is associated with the β-hydride transfer from the β-carbon atom (*С) in the alkyl 
fragment obtained after 1,2-addition of propylene or hexene to the growing polyethylene 
chain (reaction (7)): 

 

(7)

The formation of trans-vinylene groups may proceed during the β-hydride transfer 
from the β-carbon atom (*С) in the alkyl fragment obtained after the 2,1-addition of pro-
pylene or hexene-1 to the growing polyethylene chain (reaction (8)): 

CH2=C
R1

R2
R1CH=CHR2

1 – 0 1.2 76 690 9.1 – 0.20 0.06 –

2 C3H6
0.18 4.7 50 420 8.4 2.0 0.14 0.08 0.04

3 0.51 5.5 57 360 6.3 4.9 0.23 0.14 0.10

4 C6H12
2.3 12.5 59 540 9.2 1.0 0.24 – 0.04

5 4.6 8.7 49 430 8.8 2.3 0.24 – 0.07

1 Polymerization at ethylene pressure 2 bar, 80 ◦C, cocatalyst (AlEt3) = 2.6 mmol/L, without hydrogen.
2 Comonomer content in copolymers. 3 Calculated per one polymer chain.

In all cases, the produced polymers contain terminal vinyl groups in the amount from
0.14 to 0.24 groups per one polymer chain, which indicates the occurrence of the chain
transfer with ethylene under the given conditions (reaction (3) in Scheme 1). At the same
time, ethylene copolymerization with propylene is accompanied by an increase in the
content of terminal vinylidene groups and the appearance of trans-vinylene groups in
ethylene copolymers with propylene and hexene-1. The formation of terminal vinylidene
groups is associated with the β-hydride transfer from the β-carbon atom (*C) in the alkyl
fragment obtained after 1,2-addition of propylene or hexene to the growing polyethylene
chain (reaction (7)):
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(7)

The formation of trans-vinylene groups may proceed during the β-hydride transfer 
from the β-carbon atom (*С) in the alkyl fragment obtained after the 2,1-addition of pro-
pylene or hexene-1 to the growing polyethylene chain (reaction (8)): 

CH2=C
R1

R2

(7)
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The formation of trans-vinylene groups may proceed during the β-hydride transfer
from the β-carbon atom (*C) in the alkyl fragment obtained after the 2,1-addition of
propylene or hexene-1 to the growing polyethylene chain (reaction (8)):
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R=CH3, C4H9

(8)

Thus, the decrease in the molecular weight of copolymers produced by copolymeriza-
tion of ethylene with α-olefins over TMC is caused by the appearance of two new additional
routes of the β-hydride chain transfer by reactions (7) and (8) in addition to the common
reaction of β-hydride transfer to coordinated ethylene, which proceeds during ethylene
homopolymerization over TMC by reaction (4) in Scheme 1. Reaction (7) involves the
Ti–CH2–CH(R)CH2P terminal group, which is bound to titanium ion in the active site and
forms upon normal 1,2-addition of α-olefin to the growing polymer chain. Reaction (8)
involves the Ti–CH(R)–CH2P terminal group, which forms after the 2,1-addition of α-olefin
to the growing polymer chain. The appearance of these two additional chain transfer
reactions results in the formation of copolymers, which have a decreased molecular weight
and contain vinylidene and trans-vinylene groups.

In ref. [24], data on the significant heterogeneity of the active centers of TMC in the
reaction of the chain transfer with ethylene and additional reactions of the chain transfer
with the participation of α-olefins (reactions (7) and (8)) during the copolymerization of
ethylene with propylene and hexen-1 were obtained. Copolymers of ethylene and α-olefins
were separated into fractions with different molecular weights and narrow MWD, and
the content of terminal double bonds of different types in these fractions was determined
(Figure 2).
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Figure 2. Data on the content of terminal double bonds of different types calculated per one polymer
chain for separate fractions of ethylene copolymers with propylene and hexene-1 with close content
of branchings (experiments 2 and 5 in Table 5). (a) Distribution of terminal vinyl double bonds for
ethylene/propylene copolymer (–�–) and ethylene/hexene-1 copolymer (–�–) and distribution of
terminal vinylidene double bonds in the ethylene/propylene copolymer (–H–); (b) Distribution of
the trans-vinylene double bonds in the ethylene/propylene copolymer (–�–) and ethylene/hexene-1
copolymer (–•–) [24].
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Data presented in Figure 2 reveals an essential heterogeneity in the distribution of
vinyl, vinylidene, and trans-vinylene groups for the fractions of copolymers with different
molecular weight. Vinyl and vinylidene terminal bonds are present only in the fractions
with low and moderate molecular weight (Figure 2a). At the same time, trans-vinylene
double bonds are virtually absent in the fractions with low and moderate molecular weight
(below 105 g/mol) and are present only in the fractions with a higher molecular weight,
predominantly in the fraction with the molecular weight of ca. 7 × 105 g/mol (Figure 2b).

The data presented above testify to the considerable heterogeneity of the TMC active
sites in the polymer chain transfer reactions with ethylene (reaction (3)) and polymer chain
transfer involving a comonomer, which occurs during ethylene copolymerization with
α-olefins (reactions (7) and (8)). The chain transfer with ethylene proceeds predominantly
with the participation of the active sites producing the polymer with moderate and low
molecular weight. The additional chain transfer reaction with the participation of α-olefin,
which proceeds by reaction (7), involves active sites producing the polymer with moderate
and low molecular weight. The additional chain transfer with the participation of α-olefin,
which proceeds by reaction (8), involves only the active sites producing the polymer with
an increased molecular weight. It should be noted that this reaction may occur only
after 2,1-addition of α-olefin to the growing polymer chain on the active sites having a
low regiospecificity.

3.3. Chain Transfer Reaction with Hydrogen in the Polymerization of Ethylene, Propylene, and
Hexene-1, and Copolymerization of Ethylene with α-Olefins over Supported
Titanium–Magnesium Catalysts

It is well known that hydrogen is the most efficient chain transfer agent at the polymer-
ization of ethylene and α-olefins over supported titanium–magnesium catalysts [8,9,18,69–80].
The polymer chain transfer with hydrogen proceeds by reaction (6) in Scheme 1. Titanium
hydride formed by this reaction interacts with the monomer, which leads to regeneration
of the (Cl2Ti–CH2R) active site containing the alkyl group.

Our study [29] presents data concerning the effect of hydrogen on the molecular
weight and molecular weight distribution of polymers obtained by polymerization of
ethylene, propylene, and hexene-1 and copolymerization of ethylene with propylene and
hexene-1 over titanium–magnesium catalysts. These data demonstrate that, in some cases,
the obtained results are associated with considerable heterogeneity of the TMC active sites
in the polymer chain transfer reactions with hydrogen.

3.3.1. The Effect of Hydrogen on the Molecular Weight and MWD of Polymers Produced
during Polymerization of Ethylene, Propylene, and Hexene-1

In the case of ethylene polymerization, the introduction of hydrogen in the gas phase,
and the subsequent increase in its content in the reactor up to 50 vol.% leads to the expected
decrease in the molecular weight of polyethylene. Therewith, the shape of MWD curves
and polydispersity of the produced polymer virtually does not change. These results testify
to the homogeneity of the TMC active sites in the chain transfer with hydrogen at ethylene
polymerization. However, in the case of propylene and hexene-1 polymerization, we
observe the great effect of hydrogen on the polydispersity of polypropylene and polyhexene
(Table 6 and Figure 3).

It is seen that propylene and hexene-1 polymerization in the absence of hydrogen
leads to the formation of polymers with broad MWD (Mw/Mn = 9.1 for the PP 1 sample
and Mw/Mn = 16 for the PH 1 sample, Table 6). The introduction of hydrogen during
polymerization results in a significant narrowing of MWD for both polymers (Mw/Mn = 5.2
for the PP 2 sample and Mw/Mn = 6.7 for the PH 2 sample, Table 6). A comparison of MWD
curves for the PP 1 and PP 2 samples (Figure 3a) and the PH 1 and PH 2 samples (Figure 3b)
shows that the narrowing of MWD occurs mostly due to a decrease in the contribution of
the high-molecular-weight components in the PP 1 polymer and the PH 1 polymer.
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Table 6. Data on the effect of hydrogen on the molecular weight and polydispersity of polypropylene
(experiments PP 1 and PP 2) and polyhexene (experiments PH 1 and PH 2) [29].

Exp. No. H2
Polymer Yield,

kg/(gcat)
Mn, kg/mol Mw, kg/mol Mw/Mn

PP 1 1 - 7.1 34 310 9.1
PP 2 1 + 3 17.8 29 150 5.2

PH 1 2 - 0.5 14 230 16
PH 2 2 + 4 2.1 9.4 63 6.7

1 Polymerization at propylene pressure = 6 bar, 70 ◦C, [TEA] = 4.1 mmol/L, 1 h. 2 Polymerization at (C6H12) = 2 M,
70 ◦C, (TEA) = 6 mmol/L, for 10 min. 3 2.3 vol.% of H2 in gas phase. 4 1 bar of H2 in the gas phase.
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PH 1 (polymerization without hydrogen) and PH 2 (polymerization with hydrogen) [29].

The results of the MWD curves deconvolution into Flory components for PP 1 and PP
2 samples obtained in the presence or absence of hydrogen are presented in Table 7. It is
seen that the introduction of hydrogen into the polymerization leads to a decrease in the
number of Flory components from five to four because component V, with a high molecular
weight, disappears.

Table 7. Data on the deconvolution of MWD curves into Flory components for the polypropylene
samples shown in Figure 3a [29].

Sample 1 PP 1 PP 2

H2, vol. % – 2.3

Flory Component Contribution,
%

Mw,
kg/mol

Contribution,
%

Mw,
kg/mol

I 5.5 7 11.7 19
II 21.6 32 37.1 57
III 40.3 110 37.8 155
IV 29.2 390 13.5 510
V 10.2 1700

Sum of
components

Mw,
kg/mol 320 145

Mw/Mn 12 4.2
1 Experiment numbers correspond to experiments in Table 6.

Therefore, the results obtained in the case of propylene and hexene-1 polymerization
show the noticeable inhomogeneity of active sites of TMC catalyst in the chain transfer re-
action with hydrogen; namely, the active sites that produce polypropylene and polyhexene
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with the highest molecular weight have the highest reactivity in the chain transfer reaction
with hydrogen.

3.3.2. The Effect of Hydrogen on the Molecular Weight and MWD of Copolymers
Produced at Ethylene Copolymerization with Propylene and Hexene-1

As it was noted in Section 3.3.1, the introduction of hydrogen during the homopoly-
merization of ethylene leads to a decrease in the molecular weight of the polymer, but it
does not affect the polydispersity of the polymer (Mw/Mn values). At the same time, in
ref. [29] it was demonstrated that during the copolymerization of ethylene with propylene
and hexene-1, the introduction of hydrogen during polymerization leads not only to a
decrease in the molecular weight of copolymers, but also to a significant narrowing of
MWD (a decrease in Mw/Mn values; Table 8 and Figure 4).

Table 8. Data on the effect of hydrogen on the molecular weight and polydispersity of copolymers of
ethylene with propylene (EPC) and ethylene with hexene-1 (EHC).

Exp.
No

Cα

Content,
mol %

P (H2),
bar

Polymer
Yield 1,
Kg/gcat

Mn,
kg/mol

Mw,
kg/mol Mw/Mn

EPC 1 1 25 - 1 23 190 8.3
EPC 2 2 21 0.1 1.4 17 99 5.8

EHC 1 3 2.1 - 3.3 20 280 14.0
EHC 2 3 2.1 0.25 2.0 24 110 4.6

1 Polymerization conditions: ethylene pressure 1 bar, propylene pressure 2 bar, 70 ◦C, for 1 h. 2 Polymerization
conditions: ethylene pressure 2 bar, propylene pressure 2 bar, 70 ◦C, for 1 h. 3 Polymerization conditions: ethylene
pressure = 2 bar, 80 ◦C, (TEA) = 2.4 mmol/L, (C6)/(C2)= 2.3 (molar), polymerization duration 15 min.
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The introduction of a comonomer commonly leads to a pronounced increase in the
activity of catalysts in comparison with ethylene homopolymerization [18,32,33,81–83]. So,
we carried out the copolymerization at a low ethylene pressure (1–2 bar).

It is seen the MWD narrowing occurs due to a decrease in the contribution of the
copolymers MWD components with high molecular weight (Figure 4), similar to that
observed for the propylene and hexene-1 homopolymerization (Figure 3). This result is
clearly supported by the data on deconvolution of MWD curves into Flory components for
samples EPC1 and EPC2 (Table 9). One can see that the hydrogen introduction leads to the
disappearance of the high molecular weight component (V) in the EPC2 sample.
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Table 9. Data on the deconvolution of MWD curves into Flory components for ethylene/propylene
copolymer samples presented in Figure 4a [29].

Sample 1 EPC 1 EPC 2

P (H2),bar – 0.1

Flory Component Contribution,
% Mw, kg/mol Contribution,

% Mw, kg/mol

I 11.6 9 8.3 5.9
II 32.1 32 35.5 26
III 34.2 100 42.3 81
IV 21.5 380 18.3 300
V 6.7 1600

Sum of
components

Mw,kg/mol 180 95
Mw/Mn 7.8 5.8

1 Samples numbers correspond to samples in Table 8.

Thus, it can be concluded that in all cases (homopolymerization of α-olefins and
copolymerization of ethylene with α-olefins), the presence of branchings in the growing
polymer chain leads to the appearance of heterogeneity of the TMC active sites in the chain
transfer reaction with hydrogen. Therewith, in all cases, an increased reactivity toward
the chain transfer reaction with hydrogen is observed for the active sites producing the
high-molecular-weight component of these polymers, which leads to the narrowing of
MWD of the produced polymers.

It was shown in Section 3.2 that a close variant of heterogeneity of active sites was
observed for the chain transfer reaction involving α-olefin at ethylene copolymerization
with hexene-1 in the absence of hydrogen. In this case, there appears a new route of
the chain transfer reaction, which is associated with the appearance of branchings in the
growing polymer chain after the 2,1-addition of α-olefin to the growing chain (reaction
(8)). This reaction was shown to proceed predominantly on the active sites that produce
high-molecular-weight copolymers of ethylene with propylene and hexene-1. As was
demonstrated in this Section, in the case of ethylene copolymerization with propylene and
hexene-1 in the presence of hydrogen, the chain transfer with hydrogen also proceeds more
likely on the TMC active sites producing high-molecular weight polymer (Figure 4).

Earlier, it was found [78,84] that the TMC active sites with a decreased regiospecificity,
on which the 2,1-addition of propylene to the growing chain can proceed, possess an
increased reactivity toward the chain transfer reaction hydrogen. In this case, it is possible
to propose the chain transfer reaction with hydrogen proceeds by two routes (reactions
(9) and (10)) with different values of rate constants of the chain transfer reactions with
hydrogen (Ktr

H (1) and Ktr
H (2)).
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Therewith, the Ktr
H (2) value should considerably exceed the Ktr

H (1) value. We
believe our results concerning the effect of hydrogen on the molecular weight distribu-
tion of polymers with different compositions (polypropylene, polyhexene, and ethylene
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copolymers with α-olefins), which contain branchings in the growing polymer chain, are
consistent with this statement.

4. Conclusions

1. The experimental data on the influence of the polymerization conditions of ethylene,
propylene, hexene-1, and copolymerization of ethylene with α-olefins on the molecular
weight and polydispersity (Mw/Mn values) of polymers obtained on the multisite sup-
ported titanium–magnesium catalysts are presented and discussed. The results allow us to
identify the heterogeneity of the active centers of these catalysts in chain transfer reactions
with an organoaluminum cocatalyst (triethylaluminum), hydrogen, and comonomer in the
case of copolymerization of ethylene with α-olefins.

2. In the case of polymerization of ethylene and hexene-1, the chain transfer reaction
with TEA takes place with higher reactivity at active centers producing a low-molecular-
weight polymer, which leads to an increase in the polydispersity of obtained polymers. A
new scheme of two reactions of the limitation of chain propagation with the participation
of TEA, which is reversibly adsorbed on the active centers of TMC, is presented.

3. In the case of copolymerization of ethylene with propylene and hexene-1, two addi-
tional chain transfer reactions occur with the participation of α-olefins, which lead to a de-
crease in the molecular weight of the obtained copolymers, compared to homopolyethylene.
Schemes of these reactions are proposed based on experimental data on the appearance of
terminal vinylidene and trans-vinylene groups in copolymers. It was found that the chain
transfer reaction with the formation of terminal vinylidene groups takes place on active
centers, producing a copolymer with a low molecular weight (<5 × 105 g/mol), and the
chain transfer reaction with the formation of trans-vinylene groups takes place on active
centers, producing a high-molecular copolymer (>5 × 105 g/mol).

4. In the case of polymerization of propylene, hexene-1, and copolymerization of
ethylene with α-olefins, the chain transfer reaction with hydrogen proceeds with a higher
reactivity on active centers that produce high-molecular polymers, which leads to a narrow-
ing of the molecular weight distribution of polymers obtained in the presence of hydrogen.
According to the literature data [78,84], these centers have reduced regiospecificity (in-
creased probability of the 2,1-addition of α-olefin to the growing polymer chain), which
ensures their increased reactivity in the chain transfer reaction with hydrogen.
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