Electrospun SnO2/WO3 Heterostructure Nanocomposite Fiber for Enhanced Acetone Vapor Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Sensing Materials
2.2. Material Characterization
2.3. Detection of Acetone Vapor
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nicolescu, S.T.; Ştirbu, O.I.; Seritan, G.C.; Argatu, F.; Petroiu, G.; Ciucu, R.; Adochiei, I.R. The Optimization of a Real-Time Indoor Air Quality Monitoring System. In Proceedings of the 2022 E-Health and Bioengineering Conference (EHB), Iasi, Romania, 17–18 November 2022; pp. 1–4. [Google Scholar]
- Pathak, A.K.; Viphavakit, C. A review on all-optical fiber-based VOC sensors: Heading towards the development of promising technology. Sens. Actuators A Phys. 2022, 338, 113455. [Google Scholar] [CrossRef]
- Mirzaei, A.; Leonardi, S.G.; Neri, G. Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: A review. Ceram. Int. 2016, 42, 15119–15141. [Google Scholar] [CrossRef]
- Wu, K.; Debliquy, M.; Zhang, C. Metal–oxide–semiconductor resistive gas sensors for fish freshness detection. Compr. Rev. 2023, 22, 913–945. [Google Scholar] [CrossRef] [PubMed]
- Vidiš, M.; Patrnčiak, M.; Moško, M.; Plecenik, A.; Satrapinskyy, L.; Roch, T.; Ďurina, P.; Plecenik, T. Gas-triggered resistive switching and chemiresistive gas sensor with intrinsic memristive memory. Sens. Actuators B 2023, 389, 133878. [Google Scholar] [CrossRef]
- Baier, D.; Priamushko, T.; Weinberger, C.; Kleitz, F.; Tiemann, M. Selective Discrimination between CO and H2 with Copper–Ceria-Resistive Gas Sensors. ACS Sens. 2023, 8, 1616–1623. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, S.; Zeinali, S. VOC s detection using resistive gas nanosensor based on MIL-101(Cr) as a metal organic framework. Sens. Actuators A Phys. 2022, 346, 113810. [Google Scholar] [CrossRef]
- Wang, Z.; Zhu, L.; Wang, J.; Zhuang, R.; Mu, P.; Wang, J.; Yan, W. Advances in functional guest materials for resistive gas sensors. RSC Adv. 2022, 12, 24614–24632. [Google Scholar] [CrossRef]
- Wang, J.; Lian, S.; Lei, B.; Li, B.; Lei, S. Co-training neural network-based infrared sensor array for natural gas monitoring. Sens. Actuators A Phys. 2022, 335, 113392. [Google Scholar] [CrossRef]
- Qiang, Z.; Wang, X.; Zhang, W. Real-Time Correction of Gas Concentration in Nondispersive Infrared Sensor. IEEE Trans. Instrum. Meas. 2023, 72, 1–10. [Google Scholar] [CrossRef]
- Duan, K.; Ji, Y.; Wen, D.; Lu, Z.; Xu, K.; Ren, W. Mid-infrared fiber-coupled laser absorption sensor for simultaneous NH3 and NO monitoring in flue gases. Sens. Actuators B 2023, 374, 132805. [Google Scholar] [CrossRef]
- Li, Y.; Yu, L.; Zheng, C.; Ma, Z.; Yang, S.; Song, F.; Zheng, K.; Ye, W.; Zhang, Y.; Wang, Y.; et al. Development and field deployment of a mid-infrared CO and CO2 dual-gas sensor system for early fire detection and location. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 270, 120834. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Li, J.; Meng, F. Formic acid gas sensor based on coreless optical fiber coated by molybdenum disulfide nanosheet. J. Alloys Compd. 2022, 896, 163063. [Google Scholar] [CrossRef]
- Li, J.; Chen, G.; Meng, F. A fiber-optic formic acid gas sensor based on molybdenum disulfide nanosheets and chitosan works at room temperature. Opt. Laser Technol. 2022, 150, 107975. [Google Scholar] [CrossRef]
- Zarei, M.; Hamidi, S.M.; Chee, K.-W.-A. Colorimetric Plasmonic Hydrogen Gas Sensor Based on One-Dimensional Nano-Gratings. Crystals 2023, 13, 363. [Google Scholar] [CrossRef]
- Kumar, A.; Prajesh, R. The potential of acoustic wave devices for gas sensing applications. Sens. Actuators A Phys. 2022, 339, 113498. [Google Scholar] [CrossRef]
- Li, X.; Sun, W.; Fu, W.; Lv, H.; Zu, X.; Guo, Y.; Gibson, D.; Fu, Y.-Q. Advances in sensing mechanisms and micro/nanostructured sensing layers for surface acoustic wave-based gas sensors. J. Mater. Chem. A 2023, 11, 9216–9238. [Google Scholar] [CrossRef]
- Pasupuleti, K.S.; Ghosh, S.; Jayababu, N.; Kang, C.-J.; Cho, H.D.; Kim, S.-G.; Kim, M.-D. Boron doped g-C3N4 quantum dots based highly sensitive surface acoustic wave NO2 sensor with faster gas kinetics under UV light illumination. Sens. Actuators B 2023, 378, 133140. [Google Scholar] [CrossRef]
- Wada, R.; Takahashi, H. Frequency-specific highly sensitive acoustic sensor using a piezoresistive cantilever element and parallel Helmholtz resonators. Sens. Actuators A Phys. 2022, 345, 113808. [Google Scholar] [CrossRef]
- Kim, J.-Y.; Kim, S.S.; Tonezzer, M. Selective gas detection and quantification using a resistive sensor based on Pd-decorated soda-lime glass. Sens. Actuators B 2021, 335, 129714. [Google Scholar] [CrossRef]
- Chiu, S.-W.; Tang, K.-T. Towards a Chemiresistive Sensor-Integrated Electronic Nose: A Review. Sensors 2013, 13, 14214–14247. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Liu, Y.; Han, B.; Wang, M.; Wang, Q.; Zhang, Y.-n. Fiber optic volatile organic compound gas sensors: A review. Coord. Chem. Rev. 2023, 493, 215297. [Google Scholar] [CrossRef]
- Zhou, H.-y.; Ma, G.-m.; Wang, Y.; Qin, W.-q.; Jiang, J.; Yan, C.; Li, C.-r. Optical sensing in condition monitoring of gas insulated apparatus: A review. High Volt. 2019, 4, 259–270. [Google Scholar] [CrossRef]
- Zeng, J.; Zhang, Y.; Zeng, T.; Aleisa, R.; Qiu, Z.; Chen, Y.; Huang, J.; Wang, D.; Yan, Z.; Yin, Y. Anisotropic plasmonic nanostructures for colorimetric sensing. Nano Today 2020, 32, 100855. [Google Scholar] [CrossRef]
- Liu, B.; Zhuang, J.; Wei, G. Recent advances in the design of colorimetric sensors for environmental monitoring. Environ. Sci. Nano 2020, 7, 2195–2213. [Google Scholar] [CrossRef]
- Li, Z.; Zeng, W.; Li, Q. SnO2 as a gas sensor in detection of volatile organic compounds: A review. Sens. Actuators A Phys. 2022, 346, 113845. [Google Scholar] [CrossRef]
- Dong, Z.-M.; Xia, Q.; Ren, H.; Shang, X.; Lu, X.; Joo, S.W.; Huang, J. Preparation of hollow SnO2/ZnO cubes for the high-performance detection of VOCs. Ceram. Int. 2023, 49, 4650–4658. [Google Scholar] [CrossRef]
- Kang, X.; Deng, N.; Yan, Z.; Pan, Y.; Sun, W.; Zhang, Y. Resistive-type VOCs and pollution gases sensor based on SnO2: A review. Mater. Sci. Semicond. Process. 2022, 138, 106246. [Google Scholar] [CrossRef]
- Xu, Y.; Zheng, L.; Yang, C.; Liu, X.; Zhang, J. Highly sensitive and selective electronic sensor based on Co catalyzed SnO2 nanospheres for acetone detection. Sens. Actuators B 2020, 304, 127237. [Google Scholar] [CrossRef]
- Liu, X.; Xu, J.; Cheng, Z.; Yang, J.; Li, Y. A Sensitive Acetone Sensor Based on WS2/WO3 Nanosheets with p-n Heterojunctions. ACS Appl. Nano Mater. 2022, 5, 12592–12599. [Google Scholar] [CrossRef]
- Zhang, Y.; Duan, Z.; Zou, H.; Ma, M. Fabrication of electrospun LaFeO3 nanotubes via annealing technique for fast ethanol detection. Mater. Lett. 2018, 215, 58–61. [Google Scholar] [CrossRef]
- Vu, D.L.; Li, Y.-Y.; Lin, T.-H.; Wu, M.-C. Fabrication and humidity sensing property of UV/ozone treated PANI/PMMA electrospun fibers. J. Taiwan Inst. Chem. Eng. 2019, 99, 250–257. [Google Scholar] [CrossRef]
- Vu, D.L.; Lin, T.-F.; Lin, T.-H.; Wu, M.-C. Highly-Sensitive Detection of Volatile Organic Compound Vapors by Electrospun PANI/P3TI/PMMA Fibers. Polymers 2020, 12, 455. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.-C.; Kao, C.-K.; Lin, T.-F.; Chan, S.-H.; Chen, S.-H.; Lin, C.-H.; Huang, Y.-C.; Zhou, Z.; Wang, K.; Lai, C.-S. Surface plasmon resonance amplified efficient polarization-selective volatile organic compounds CdSe-CdS/Ag/PMMA sensing material. Sens. Actuators B 2020, 309, 127760. [Google Scholar] [CrossRef]
- Wu, M.-C.; Chan, S.-H.; Lin, T.-F.; Lu, C.-F.; Su, W.-F. Detection of volatile organic compounds using electrospun P3HT/PMMA fibrous film. J. Taiwan Inst. Chem. Eng. 2017, 78, 552–560. [Google Scholar] [CrossRef]
- Wu, M.-C.; Lin, C.-H.; Lin, T.-H.; Chan, S.-H.; Chang, Y.-H.; Lin, T.-F.; Zhou, Z.; Wang, K.; Lai, C.-S. Ultrasensitive Detection of Volatile Organic Compounds by a Freestanding Aligned Ag/CdSe–CdS/PMMA Texture with Double-Side UV–Ozone Treatment. ACS Appl. Mater. Interfaces 2019, 11, 34454–34462. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.-H.; Hsieh, T.-H.; Hsiao, K.-C.; Lin, T.-H.; Hsu, K.-H.; Wu, M.-C. Electrospun Fibrous Nanocomposite Sensing Materials for Monitoring Biomarkers in Exhaled Breath. Polymers 2023, 15, 1833. [Google Scholar] [CrossRef]
- Polavarapu, L.; Liz-Marzán, L.M. Growth and galvanic replacement of silver nanocubes in organic media. Nanoscale 2013, 5, 4355–4361. [Google Scholar] [CrossRef]
- Nayak, A.K.; Ghosh, R.; Santra, S.; Guha, P.K.; Pradhan, D. Hierarchical nanostructured WO3–SnO2 for selective sensing of volatile organic compounds. Nanoscale 2015, 7, 12460–12473. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, T.-H.; Chang, Y.-H.; Hsieh, T.-H.; Huang, Y.-C.; Wu, M.-C. Electrospun SnO2/WO3 Heterostructure Nanocomposite Fiber for Enhanced Acetone Vapor Detection. Polymers 2023, 15, 4318. https://doi.org/10.3390/polym15214318
Lin T-H, Chang Y-H, Hsieh T-H, Huang Y-C, Wu M-C. Electrospun SnO2/WO3 Heterostructure Nanocomposite Fiber for Enhanced Acetone Vapor Detection. Polymers. 2023; 15(21):4318. https://doi.org/10.3390/polym15214318
Chicago/Turabian StyleLin, Ting-Han, Yin-Hsuan Chang, Ting-Hung Hsieh, Yu-Ching Huang, and Ming-Chung Wu. 2023. "Electrospun SnO2/WO3 Heterostructure Nanocomposite Fiber for Enhanced Acetone Vapor Detection" Polymers 15, no. 21: 4318. https://doi.org/10.3390/polym15214318
APA StyleLin, T. -H., Chang, Y. -H., Hsieh, T. -H., Huang, Y. -C., & Wu, M. -C. (2023). Electrospun SnO2/WO3 Heterostructure Nanocomposite Fiber for Enhanced Acetone Vapor Detection. Polymers, 15(21), 4318. https://doi.org/10.3390/polym15214318