Polyurethane Acrylate Oligomer (PUA) Microspheres Prepared Using the Pickering Method for Reinforcing the Mechanical and Thermal Properties of 3D Printing Resin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of PUA Microspheres
2.3. Forming of 3D Printing Photosensitive Resin Modified with PUA Microspheres
2.4. Characterization Techniques
3. Results and Discussion
3.1. PUA Microspheres
3.2. Thermal Properties of SiO2, SiO2-CH=CH2, and PUA Microspheres
3.3. PUA Microsphere-Modified 3D Printing Photosensitive Resin
3.4. Mechanical Properties of PUA Microsphere-Modified Photosensitive Resin
3.5. Thermal Properties of PUA Microsphere-Modified Photosensitive Resin
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gradl, P.; Tinker, D.C.; Park, A.; Mireles, O.R.; Garcia, M.; Wilkerson, R.; McKinney, C. Robust Metal Additive Manufacturing Process Selection and Development for Aerospace Components. J. Mater. Eng. Perform. 2022, 31, 6013–6044. [Google Scholar] [CrossRef]
- Zareanshahraki, F.; Davenport, A.; Cramer, N.; Seubert, C.; Lee, E.; Cassoli, M.; Wang, X. Additive Manufacturing for Automotive Applications: Mechanical and Weathering Durability of Vat Photopolymerization Materials. 3D Print Addit. Manuf. 2021, 8, 302–314. [Google Scholar] [CrossRef] [PubMed]
- Leal, R.; Barreiros, F.M.; Alves, L.; Romeiro, F.; Vasco, J.C.; Santos, M.; Marto, C. Additive manufacturing tooling for the automotive industry. Int. J. Adv. Manuf. Technol. 2017, 92, 1671–1676. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, X.; Chen, X.; He, Y.; Cheng, L.; Huo, M.; Yin, J.; Hao, F.; Chen, S.; Wang, P.; et al. Additive manufacturing of structural materials. Mater. Sci. Eng. R 2021, 145, 100596. [Google Scholar] [CrossRef]
- Zhakeyev, A.; Wang, P.; Zhang, L.; Shu, W.; Wang, H.; Xuan, J. Additive Manufacturing: Unlocking the Evolution of Energy Materials. Adv. Sci. 2017, 4, 1700187. [Google Scholar] [CrossRef] [PubMed]
- Müller, F.J.; Fenton, O.S. Additive Manufacturing Approaches toward the Fabrication of Biomaterials. Adv. Mater. Interfaces 2022, 9, 2100670. [Google Scholar] [CrossRef]
- Bose, S.; Ke, D.; Sahasrabudhe, H.; Bandyopadhyay, A. Additive manufacturing of biomaterials. Prog. Mater. Sci. 2018, 93, 45–111. [Google Scholar] [CrossRef]
- Wu, Z.; Wu, S.; Qian, W.; Zhang, H.; Zhu, H.; Chen, Q.; Zhang, Z.; Guo, F.; Wang, J.; Withers, P.J. Structural integrity issues of additively manufactured railway components: Progress and challenges. Eng. Fail. Anal. 2023, 149, 107265. [Google Scholar] [CrossRef]
- Fei, J.; Rong, Y.; Zhu, L.; Li, H.; Zhang, X.; Lu, Y.; An, J.; Bao, Q.; Huang, X. Progress in Photocurable 3D Printing of Photosensitive Polyurethane: A Review. Macromol. Rapid. Commun. 2023, 44, e2300211. [Google Scholar] [CrossRef]
- Egan, P.F. Special Issue Editorial: Applications of 3D Printing for Polymers. Polymers 2023, 15, 1638. [Google Scholar] [CrossRef]
- Azlin, M.N.M.; Ilyas, R.A.; Zuhri, M.Y.M.; Sapuan, S.M.; Harussani, M.M.; Sharma, S.; Nordin, A.H.; Nurazzi, N.M.; Afiqah, A.N. 3D Printing and Shaping Polymers, Composites, and Nanocomposites: A Review. Polymers 2022, 14, 180. [Google Scholar] [CrossRef] [PubMed]
- Quan, H.; Zhang, T.; Xu, H.; Luo, S.; Nie, J.; Zhu, X. Photo-curing 3D printing technique and its challenges. Bioact. Mater. 2020, 5, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Maines, E.M.; Porwal, M.K.; Ellison, C.J.; Reineke, T.M. Sustainable advances in SLA/DLP 3D printing materials and processes. Green Chem. 2021, 23, 6863–6897. [Google Scholar] [CrossRef]
- Wu, D.; Zhao, Z.; Zhang, Q.; Qi, H.J.; Fang, D. Mechanics of shape distortion of DLP 3D printed structures during UV post-curing. Soft Matter. 2019, 15, 6151–6159. [Google Scholar] [CrossRef]
- Wang, S.; Jing, X.; Wang, Y.; Si, J. Synthesis and characterization of novel phenolic resins containing aryl-boron backbone and their utilization in polymeric composites with improved thermal and mechanical properties. Polym. Adv. Technol. 2014, 25, 152–159. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, Z.; Gao, X.; Fan, T.; Chen, Y.; Wang, H. Enhanced mechanical performance of fused filament fabrication copolyester by continuous carbon fiber in-situ reinforcement. J. Appl. Polym. Sci. 2022, 140, e53296. [Google Scholar] [CrossRef]
- Guo, Y.; Hu, L.; Jia, P.; Zhang, B.; Zhou, Y. Enhancement of thermal stability and chemical reactivity of phenolic resin ameliorated by nanoSiO2. Korean J. Chem. Eng. 2017, 35, 298–302. [Google Scholar] [CrossRef]
- Yun, J.S.; Park, T.-W.; Jeong, Y.H.; Cho, J.H. Development of ceramic-reinforced photopolymers for SLA 3D printing technology. Appl. Phys. A 2016, 122, 629. [Google Scholar] [CrossRef]
- Sandoval, J.H.; Soto, K.F.; Murr, L.E.; Wicker, R.B. Nanotailoring photocrosslinkable epoxy resins with multi-walled carbon nanotubes for stereolithography layered manufacturing. J. Mater. Sci. 2006, 42, 156–165. [Google Scholar] [CrossRef]
- Wang, Y.; Delarue, A.P.; McAninch, I.M.; Hansen, C.J.; Robinette, E.J.; Peterson, A.M. Digital Light Processing of Highly Filled Polymer Composites with Interface-Mediated Mechanical Properties. ACS Appl. Polym. Mater. 2022, 4, 6477–6486. [Google Scholar] [CrossRef]
- Compton, B.G.; Hmeidat, N.S.; Pack, R.C.; Heres, M.F.; Sangoro, J.R. Electrical and Mechanical Properties of 3D-Printed Graphene-Reinforced Epoxy. Jom 2017, 70, 292–297. [Google Scholar] [CrossRef]
- Wang, J.; Xie, H.; Weng, Z.; Senthil, T.; Wu, L. A novel approach to improve mechanical properties of parts fabricated by fused deposition modeling. Mater. Des. 2016, 105, 152–159. [Google Scholar] [CrossRef]
- Chen, Q.; Zhao, J.; Ren, J.; Rong, L.; Cao, P.F.; Advincula, R.C. 3D Printed Multifunctional, Hyperelastic Silicone Rubber Foam. Adv. Funct. Mater. 2019, 29, 1900469. [Google Scholar] [CrossRef]
- Wang, X.; Chen, L.; Sun, G.; Liu, R. Hollow particles templated from Pickering emulsion with high thermal stability and solvent resistance: Young investigator perspective. J. Colloid Interface Sci. 2019, s542, 144–150. [Google Scholar] [CrossRef] [PubMed]
- ISO 14704:2016; Fine Ceramics (Advanced Ceramics, Advanced Technical Ceramics)—Test Method for Flexural Strength of Monolithic Ceramics at Room Temperature. ISO: Geneva, Switzerland, 2016.
- GB/T 9341-2008; Plastics—Determination of Flexural Properties. National Standard of China: Beijing, China, 2008.
- Kangur, T.; Kiisk, V.; Loot, A.; Timusk, M.; Järvekülg, M. Optical functionality of micro- and nanostructured silica surfaces prepared by a sol-gel phase separation method. Thin Solid Film. 2017, 622, 11–16. [Google Scholar] [CrossRef]
- Chen, P.; Wei, B.; Zhu, X.; Gao, D.; Gao, Y.; Cheng, J.; Liu, Y. Fabrication and characterization of highly hydrophobic rutile TiO2-based coatings for self-cleaning. Ceram. Int. 2019, 45, 6111–6118. [Google Scholar] [CrossRef]
- Yang, Z.; Tang, Y.; Zhang, J. Surface modification of CaCO3 nanoparticles with silane coupling agent for improvement of the interfacial compatibility with styrene-butadiene rubber (SBR) latex. Chalcogenide Lett. 2013, 10, 131–141. [Google Scholar]
- Gupta, S.; Ramamurthy, P.C.; Madras, G. Covalent Grafting of Polydimethylsiloxane over Surface-Modified Alumina Nanoparticles. Ind. Eng. Chem. Res. 2011, 50, 6585–6593. [Google Scholar] [CrossRef]
- Jeoffroy, E.; Demirors, A.F.; Schwendimann, P.; Dos Santos, S.; Danzi, S.; Hauser, A.; Partl, M.N.; Studart, A.R. One-Step Bulk Fabrication of Polymer-Based Microcapsules with Hard-Soft Bilayer Thick Shells. ACS Appl. Mater. Interfaces 2017, 9, 37364–37373. [Google Scholar] [CrossRef]
- Lin, J.T.; Lee, Y.Z.; Lalevee, J.; Kao, C.H.; Lin, K.H.; Cheng, D.C. Modeling the Enhanced Efficacy and Curing Depth of Photo-Thermal Dual Polymerization in Metal (Fe) Polymer Composites for 3D Printing. Polymers 2022, 14, 1158. [Google Scholar] [CrossRef]
- Lang, M.; Hirner, S.; Wiesbrock, F.; Fuchs, P. A Review on Modeling Cure Kinetics and Mechanisms of Photopolymerization. Polymers 2022, 14, 2074. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Jeon, K.; Lee, Y.; Seo, J.; Seo, K.; Han, H.; Khan, S. Preparation and characterization of UV-cured polyurethane acrylate/ZnO nanocomposite films based on surface modified ZnO. Prog. Org. Coat. 2012, 74, 435–442. [Google Scholar] [CrossRef]
- Barzaegari, A.; Barekat, M.; Razavi, R.S.; Loghman-Estarki, M.R.; Erfanmanesh, M.; Razavizadeh, M. Effect of nanosized carbon black content on the microstructure, thermal stability, and mechanical properties of 3D printed poly urethane acrylate. J. Manuf. Process. 2023, 98, 113–125. [Google Scholar] [CrossRef]
Water Phase | Oil Phase | |||||
---|---|---|---|---|---|---|
Water (mL) | PVA (wt%) | SiO2-CH=CH2 (wt%) | GVL (wt%) | PUA (wt%) | GMA (wt%) | 1173 (wt%) |
10 | 1 | 1 | 25 | 36 | 36 | 3 |
Number | Oil/Water Phase Ratio (Oil:Water) | Emulsifier Concentration | Emulsification Speed | Emulsification Time | UV Curing Time | Particle Size (D50, μm) |
---|---|---|---|---|---|---|
A-1 | 1 mL:20 mL | 1% | 20 K rpm | 5 min | 10 min | 18.09 |
A-2 | 2 mL:20 mL | 1% | 20 K rpm | 5 min | 10 min | 4.80 |
A-3 | 3 mL:20 mL | 1% | 20 K rpm | 5 min | 10 min | 4.09 |
A-4 | 4 mL:20 mL | 1% | 20 K rpm | 5 min | 10 min | 2.59 |
A-5 | 5 mL:20 mL | 1% | 20 K rpm | 5 min | 10 min | 1.83 |
B-1 | 2 mL:20 mL | 1% | 20 K rpm | 3 min | 10 min | 4.85 |
B-2 | same as A-2 | |||||
B-3 | 2 mL:20 mL | 1% | 20 K rpm | 8 min | 10 min | 4.90 |
C-1 | 2 mL:20 mL | 1% | 20 K rpm | 5 min | 5 min | 4.55 |
C-2 | same as A-2 | |||||
C-3 | 2 mL:20 mL | 1% | 20 K rpm | 5 min | 15 min | 4.78 |
D-1 | 2 mL:20 mL | 1% | 10 K rpm | 5 min | 10 min | 18.11 |
D-2 | 2 mL:20 mL | 1% | 15 K rpm | 5 min | 10 min | 16.52 |
D-3 | same as A-2 | |||||
D-4 | 2 mL:20 mL | 1% | 25 K rpm | 5 min | 10 min | 1.80 |
Sample | Tensile Strength (MPa) | Elongation at Break (%) | Bending Strength (MPa) |
---|---|---|---|
0% | 8.13 ± 1.11 | 8.93 ± 0.93 | 10.23 ± 0.40 |
0.1% | 9.73 ± 0.24 | 12.83 ± 1.24 | 11.08 ± 1.12 |
0.2% | 9.97 ± 0.32 | 9.81 ± 0.72 | 10.86 ± 0.33 |
0.3% | 10.43 ± 0.41 | 8.65 ± 0.53 | 11.63 ± 0.20 |
0.4% | 12.14 ± 0.33 | 11.55 ± 0.81 | 11.83 ± 0.31 |
0.5% | 14.32 ± 0.65 | 13.15 ± 0.72 | 12.96 ± 0.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Jiao, H.; Du, B.; Zhao, K. Polyurethane Acrylate Oligomer (PUA) Microspheres Prepared Using the Pickering Method for Reinforcing the Mechanical and Thermal Properties of 3D Printing Resin. Polymers 2023, 15, 4320. https://doi.org/10.3390/polym15214320
Zhao X, Jiao H, Du B, Zhao K. Polyurethane Acrylate Oligomer (PUA) Microspheres Prepared Using the Pickering Method for Reinforcing the Mechanical and Thermal Properties of 3D Printing Resin. Polymers. 2023; 15(21):4320. https://doi.org/10.3390/polym15214320
Chicago/Turabian StyleZhao, Xiaoliang, Hua Jiao, Bin Du, and Kang Zhao. 2023. "Polyurethane Acrylate Oligomer (PUA) Microspheres Prepared Using the Pickering Method for Reinforcing the Mechanical and Thermal Properties of 3D Printing Resin" Polymers 15, no. 21: 4320. https://doi.org/10.3390/polym15214320
APA StyleZhao, X., Jiao, H., Du, B., & Zhao, K. (2023). Polyurethane Acrylate Oligomer (PUA) Microspheres Prepared Using the Pickering Method for Reinforcing the Mechanical and Thermal Properties of 3D Printing Resin. Polymers, 15(21), 4320. https://doi.org/10.3390/polym15214320