Poly-Lactic Acid-Bagasse Based Bio-Composite for Additive Manufacturing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Bagasse’s Characterization
2.3. Mixture’s Preparation
2.4. Three-Dimensional Printing Techniques
- The extrusion multiplier determines as a percentage the amount of wire or pellets to be extruded adding or subtracting to the ones calculated. As can be noted, there is a significant difference in this parameter in the two printing techniques. If set above 1, it allows for the creation of more dense prints, but values that are much greater than 1 can sometimes cause material overflow the defines the shape of the printed element, resulting in lower dimensional accuracy but stronger prints [52]. It generally ranges between 0.9 and 1.1, but in the case of Tumaker NX Pro Pellets, it was necessary to set a significantly higher value due to the discontinuity of the feed material;
- The shrink rate represents the polymer shrinkage and it is a form of polymer compensation;
- The first layer width is set to allow a proper adhesion to the substate, and also a speed reduction factor is provided to improve the adhesion.
2.5. Characterization Techniques
2.6. Statistical Analysis
3. Results and Discussion
3.1. Bagasse’s Characterization
3.2. Pellets and Filament Thermal Properties
3.3. Thermal Properties of 3D-Printed Specimens
3.4. Mechanical Properties of 3D-Printed Specimens
3.5. Optical Microscopy
4. Conclusions
- Among the various additives used, MA was the one that made processing convenient thanks to the low viscosity shown at working temperatures. However, at the same time, it was not very thermally stable, since its degradation starts at 125 °C;
- On the other hand, PLA–BG–ELO and PLA–BG–ESBO show very similar mechanical properties, but ELO would seem to be better suited to preserve impact strength properties, probably due to a better polymer–BG interface that it is able to create;
- It was observed that the addition of BG and compatibilizer led to a reduction in stiffness, but the presence of the compatibilizer was useful to improve elongation at break and impact strength with respect to the formulation without the compatibilizer, thanks to a better compounding of the elements and a better cohesion;
- In general, a loss of mechanical properties with respect to pure PLA samples was observed, but the characteristics are still high enough to be used in several applications allowing for the recovering of a waste;
- The 3D samples printed by Tumaker NX Pro Pellets show a higher tensile strength than those made by BQ Witbox 2, and also a better accuracy in printing. It can, hence, be concluded that the extrusion of pellets produced objects with a better quality than those produced through filament extrusion, probably due to the fewer steps of processing necessary for the production of the pellets.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Castro-Criado, D.; Abdullah, J.A.A.; Romero, A.; Jiménez-Rosado, M. Stabilization and Valorization of Beer Bagasse to Obtain Bioplastics. Polymers 2023, 15, 1877. [Google Scholar] [CrossRef]
- Aliyu, S.; Bala, M. Brewer’s spent grain: A review of its potentials and applications. Afr. J. Biotechnol. 2011, 10, 324–331. [Google Scholar]
- Ortiz, I.; Torreiro, Y.; Molina, G.; Maroño, M.; Sánchez, J. A feasible application of circular economy: Spent grain energy recovery in the beer industry. Waste Biomass Valorization 2019, 10, 3809–3819. [Google Scholar] [CrossRef]
- Moran-Aguilar, M.; Costa-Trigo, I.; Calderón-Santoyo, M.; Domínguez, J.; Aguilar-Uscanga, M. Production of cellulases and xylanases in solid-state fermentation by different strains of Aspergillus niger using sugarcane bagasse and brewery spent grain. Biochem. Eng. J. 2021, 172, 108060. [Google Scholar] [CrossRef]
- Mussatto, S.I. Biotechnological potential of brewing industry by-products. In Biotechnology for Agro-Industrial Residues Utilisation: Utilisation of Agro-Residues; Springer: Berlin/Heidelberg, Germany, 2009; pp. 313–326. [Google Scholar]
- Jordá-Reolid, M.; Ibáñez-García, A.; Martínez García, A. Proceedings of the Biopol 2022-8th International Conference on Bio-Based and Biodegradable Polymers; Optimization of the Percentage of Beer Bagasse Fibres in bioPE polymeric Matrix-BIOVALORA Project; Garigós, M.D.C., Jiménez, A., Eds.; Universidad de Alicante: Alicante, Spain, 2022. [Google Scholar]
- ISO/ASTM 52900:2021; Additive Manufacturing. ISO: Geneva, Switzerland, 2021.
- Wang, X.; Jiang, M.; Zhou, Z.; Gou, J.; Hui, D. 3D printing of polymer matrix composites: A review and prospective. Compos. Part B Eng. 2017, 110, 442–458. [Google Scholar] [CrossRef]
- Wu, H.; Fahy, W.; Kim, S.; Kim, H.; Zhao, N.; Pilato, L.; Kafi, A.; Bateman, S.; Koo, J. Recent developments in polymers/polymer nanocomposites for additive manufacturing. Prog. Mater. Sci. 2020, 111, 100638. [Google Scholar] [CrossRef]
- Fico, D.; Rizzo, D.; Casciaro, R.; Esposito Corcione, C. A review of polymer-based materials for fused filament fabrication (FFF): Focus on sustainability and recycled materials. Polymers 2022, 14, 465. [Google Scholar] [CrossRef]
- Ivanova, O.; Williams, C.; Campbell, T. Additive manufacturing (AM) and nanotechnology: Promises and challenges. Rapid Prototyp. J. 2013, 19, 353–364. [Google Scholar] [CrossRef]
- González-Henríquez, C.M.; Sarabia-Vallejos, M.A.; Rodriguez-Hernandez, J. Polymers for additive manufacturing and 4D-printing: Materials, methodologies, and biomedical applications. Prog. Polym. Sci. 2019, 94, 57–116. [Google Scholar] [CrossRef]
- Corcione, C.E.; Palumbo, E.; Masciullo, A.; Montagna, F.; Torricelli, M.C. Fused Deposition Modeling (FDM): An innovative technique aimed at reusing Lecce stone waste for industrial design and building applications. Constr. Build. Mater. 2018, 158, 276–284. [Google Scholar] [CrossRef]
- D’Accolti, L.; De Cataldo, A.; Montagna, F.; Esposito Corcione, C.; Maffezzoli, A. The Role of 3D Printing in the Development of a Catalytic System for the Heterogeneous Fenton Process. Polymers 2023, 15, 580. [Google Scholar] [CrossRef]
- Ferrari, F.; Striani, R.; Fico, D.; Alam, M.M.; Greco, A.; Esposito Corcione, C. An Overview on Wood Waste Valorization as Biopolymers and Biocomposites: Definition, Classification, Production, Properties and Applications. Polymers 2022, 14, 5519. [Google Scholar] [CrossRef] [PubMed]
- Fico, D.; Rizzo, D.; De Carolis, V.; Montagna, F.; Palumbo, E.; Corcione, C.E. Development and characterization of sustainable PLA/Olive wood waste composites for rehabilitation applications using Fused Filament Fabrication (FFF). J. Build. Eng. 2022, 56, 104673. [Google Scholar] [CrossRef]
- Fico, D.; Rizzo, D.; De Carolis, V.; Montagna, F.; Esposito Corcione, C. Sustainable Polymer Composites Manufacturing through 3D Printing Technologies by Using Recycled Polymer and Filler. Polymers 2022, 14, 3756. [Google Scholar] [CrossRef]
- Fico, D.; Rizzo, D.; Montagna, F.; Esposito Corcione, C. Fused Filament Fabrication and Computer Numerical Control Milling in Cultural Heritage Conservation. Materials 2023, 16, 3038. [Google Scholar] [CrossRef]
- Rizzo, D.; Montagna, F.; Palumbo, E.; Fico, D.; De Carolis, V.; Casciaro, R.; Esposito Corcione, C. From apulian waste to original design objects: Fused filament fabrication (FFF) as a sustainable solution. In Proceedings of International Conference Florence Heri-Tech: The Future of Heritage Science and Technologies; Springer: Cham, Switzerland, 2022; pp. 127–139. [Google Scholar]
- Rizzo, D.; Fico, D.; Montagna, F.; Casciaro, R.; Esposito Corcione, C. From Virtual Reconstruction to Additive Manufacturing: Application of Advanced Technologies for the Integration of a 17th-Century Wooden Ciborium. Materials 2023, 16, 1424. [Google Scholar] [CrossRef] [PubMed]
- Toro, P.; Quijada, R.; Yazdani-Pedram, M.; Arias, J.L. Eggshell, a new bio-filler for polypropylene composites. Mater. Lett. 2007, 61, 4347–4350. [Google Scholar] [CrossRef]
- Li, H.-Y.; Tan, Y.-Q.; Zhang, L.; Zhang, Y.-X.; Song, Y.-H.; Ye, Y.; Xia, M.-S. Bio-filler from waste shellfish shell: Preparation, characterization, and its effect on the mechanical properties on polypropylene composites. J. Hazard. Mater. 2012, 217, 256–262. [Google Scholar] [CrossRef]
- Bashir, A.S.; Manusamy, Y. Recent developments in biocomposites reinforced with natural biofillers from food waste. Polym. Plast. Technol. Eng. 2015, 54, 87–99. [Google Scholar] [CrossRef]
- Manshor, M.; Anuar, H.; Aimi, M.N.; Fitrie, M.A.; Nazri, W.W.; Sapuan, S.; El-Shekeil, Y.; Wahit, M. Mechanical, thermal and morphological properties of durian skin fibre reinforced PLA biocomposites. Mater. Des. 2014, 59, 279–286. [Google Scholar] [CrossRef]
- Singh, T.; Pattnaik, P.; Aherwar, A.; Ranakoti, L.; Dogossy, G.; Lendvai, L. Optimal Design of Wood/Rice Husk-waste-Filled PLA Biocomposites Using Integrated CRITIC–MABAC-Based Decision-Making Algorithm. Polymers 2022, 14, 2603. [Google Scholar] [CrossRef]
- Lima, E.M.B.; Middea, A.; Neumann, R.; Thiré, R.M.d.S.M.; Pereira, J.F.; de Freitas, S.C.; Penteado, M.S.; Lima, A.M.; Minguita, A.P.d.S.; Mattos, M.d.C. Biocomposites of PLA and mango seed waste: Potential material for food packaging and a technological alternative to reduce environmental impact. Starch-Stärke 2021, 73, 2000118. [Google Scholar] [CrossRef]
- Hong, S.-H.; Park, J.H.; Kim, O.Y.; Hwang, S.-H. Preparation of chemically modified lignin-reinforced PLA biocomposites and their 3D printing performance. Polymers 2021, 13, 667. [Google Scholar] [CrossRef]
- Flores-Hernandez, C.; Velasco-Santos, C.; Hernandez-Zea, A.; Gomez-Guzman, O.; Yañez-Limon, J.; Rivera-Armenta, J.; Martinez-Hernandez, A. Low concentrations for significant improvements in thermal and thermomechanical properties of poly (lactic acid)–keratin biocomposites obtained by extrusion and 3D printing. J. Nat. Fibers 2022, 19, 1715–1728. [Google Scholar] [CrossRef]
- Le Duigou, A.; Barbé, A.; Guillou, E.; Castro, M. 3D printing of continuous flax fibre reinforced biocomposites for structural applications. Mater. Des. 2019, 180, 107884. [Google Scholar] [CrossRef]
- Datasheet. Ingeo Biopolymer 3D870 Technical Data Sheet. Available online: www.natureworksllc.com (accessed on 15 February 2023).
- ASTM D792-20; Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement. ASTM International: West Conshohocken, PA, USA, 2020.
- ASTM D1238-10; Standard Test Method for Melt Flow Rates of Thermoplastics by Extrusion Plastometer; D1238 Standard Test Method for Melt Flow Rates of Thermoplastics by Extrusion Plastometer. ASTM International: West Conshohocken, PA, USA, 2010.
- ASTM D3418-21; D3418 Standard Test Method for Transition Temperatures and Enthalpies of Fusion and Crystallization of Polymers by Differential Scanning Calorimetry. ASTM International: West Conshohocken, PA, USA, 2021.
- ASTM E2092-18a; E2092 Standard Test Method for Distortion Temperature in Three-Point Bending by Thermomechanical Analysis. ASTM International: West Conshohocken, PA, USA, 2018.
- Datasheet. Available online: https://www.scharlab.com (accessed on 15 February 2023).
- Datasheet. Plastic Additive 05 EP Reference Standard CAS 8016-11-3 Sigma Aldrich. Available online: www.sigmaaldrich.com (accessed on 17 February 2023).
- Datasheet. Plastic Additive 15 USP Reference Standard Sigma-Aldrich. Available online: www.sigmaaldrich.com (accessed on 17 February 2023).
- Specification of Rotor Mill Retsch ZM300. Laboratory Ultra Centrifugal Mill ZM 300—RETSCH. Available online: www.retsch.com (accessed on 5 May 2023).
- Specification of FT-IR 6300. FTIR_6000_Spec_Sheet.pdf. Available online: www.jascoinc.com (accessed on 5 May 2023).
- Specification of XRD Instrument. SmartLab|Rigaku Global Website. Available online: www.rigaku.com (accessed on 5 May 2023).
- Specification of TGA Instrument. TGA 550—TA Instruments. Available online: www.tainstrumens.com (accessed on 5 May 2023).
- Specification of FD720 Moisture Analyzer. FD-720 Moisture Analyzer—Balanzas Cobos. Available online: www.balanzascobos.com (accessed on 7 May 2023).
- Specification of Dryer Arid X10X. ARIDX10B MAN. Available online: www.dri-air.com (accessed on 15 May 2023).
- Specification of Dryer UF55 Memmert. Universal Oven UF55—Memmert GmbH + Co. KG. Available online: www.memmert.com (accessed on 5 May 2023).
- Specification of Extruder Collin Teach Line ZR25. Teach Line Compounder—COLLIN Lab & Pilot Solutions. Available online: www.collin-solutions.com (accessed on 7 May 2023).
- Specification of Extruder Next 1 Advance from 3D evo. Meet Our Filament Maker—Desktop Filament Makers|3devo. Available online: www.3devo.com (accessed on 10 May 2023).
- Burgos, N.; Martino, V.P.; Jiménez, A. Characterization and ageing study of poly (lactic acid) films plasticized with oligomeric lactic acid. Polym. Degrad. Stab. 2013, 98, 651–658. [Google Scholar] [CrossRef]
- Orue, A.; Eceiza, A.; Arbelaiz, A. Preparation and characterization of poly (lactic acid) plasticized with vegetable oils and reinforced with sisal fibers. Ind. Crops Prod. 2018, 112, 170–180. [Google Scholar] [CrossRef]
- Balart, J.; Fombuena, V.; Fenollar, O.; Boronat, T.; Sánchez-Nacher, L. Processing and characterization of high environmental efficiency composites based on PLA and hazelnut shell flour (HSF) with biobased plasticizers derived from epoxidized linseed oil (ELO). Compos. Part B Eng. 2016, 86, 168–177. [Google Scholar] [CrossRef]
- Specification of Tumaker NX Pro Pellets. 3D Printer Tumaker NX Pro Pellets—Printer Pellets|IT3D Group. Available online: www.tumaker.com (accessed on 17 February 2023).
- Specification of BQ Witbox 2: BQ Educación. Available online: www.stampa3dstore.com (accessed on 17 February 2023).
- Ćwikła, G.; Grabowik, C.; Kalinowski, K.; Paprocka, I.; Ociepka, P. The influence of printing parameters on selected mechanical properties of FDM/FFF 3D-printed parts. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2017; p. 012033. [Google Scholar]
- Specification of DSC Q200. Meet our Filament Maker—Desktop Filament Makers|3devo. Available online: www.tainstrumens.com (accessed on 7 May 2023).
- UNI EN ISO 11357-1: 2023; Plastics—Differential Scanning Calorimetry (DSC)—Part 1: General Principles. ISO: Geneva, Switzerland, 2023.
- Materie Plastiche—Termogravimetria (TG) dei Polimeri—Parte 1: Principi Generali. UNI EN ISO 11358-1: 2022; ISO: Geneva, Switzerland, 2022.
- UNI EN ISO 1133: 2022; Materie Plastiche—Determinazione Dell’indice di Fluidità in Massa (MFR) e Dell’indice di Fluidità in Volume (MVR) dei Materiali Termoplastici—Parte 1: Metodo Normalizzato. ISO: Geneva, Switzerland, 2022.
- Specification of Twelvindex Atsfaar. Laboratori Chiavi in Mano Milano Sesto San Giovanni—Fornitura Installazione Arredi Tecnici Strumentazione Analisi. Available online: www.atsfaar.it (accessed on 7 May 2023).
- Specification of Dynamometer Instron 6025. Universal Testing Systems Up to 300 kN|Instron. Available online: www.instron.com (accessed on 7 May 2023).
- UNI EN ISO 527-2:2012; Materie Plastiche—Determinazione Delle Proprietà a Trazione—Parte 2: Condizioni di Prova per Materie Plastiche per Stampaggio ed Estrusione. ISO: Geneva, Switzerland, 2012.
- UNI EN ISO 178:2019; Materie Plastiche—Determinazione Delle Proprietà di Flessione. ISO: Geneva, Switzerland, 2019.
- Specification of Ceast Resil Impactor 6967. Impact Drop Towers and Pendulums|Instron. Available online: www.instron.com (accessed on 15 May 2023).
- UNI EN ISO 179-1:2023; Materie Plastiche—Determinazione Delle Caratteristiche All’urto Charpy—Parte 1: Prova d’urto non Strumentato. ISO: Geneva, Switzerland, 2023.
- Lin, Y.; Liao, Y.; Yu, Z.; Fang, S.; Ma, X. A study on co-pyrolysis of bagasse and sewage sludge using TG-FTIR and Py-GC/MS. Energy Convers. Manag. 2017, 151, 190–198. [Google Scholar] [CrossRef]
- Olsson, A.-M.; Salmén, L. The association of water to cellulose and hemicellulose in paper examined by FTIR spectroscopy. Carbohydr. Res. 2004, 339, 813–818. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.Y.; Yoo, D.I.; Shin, Y.; Seo, G. FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohydr. Res. 2005, 340, 417–428. [Google Scholar] [CrossRef]
- Chen, W.-H.; Wang, C.-W.; Ong, H.C.; Show, P.L.; Hsieh, T.-H. Torrefaction, pyrolysis and two-stage thermodegradation of hemicellulose, cellulose and lignin. Fuel 2019, 258, 116168. [Google Scholar] [CrossRef]
- Ju, X.; Bowden, M.; Brown, E.E.; Zhang, X. An improved X-ray diffraction method for cellulose crystallinity measurement. Carbohydr. Polym. 2015, 123, 476–481. [Google Scholar] [CrossRef] [PubMed]
- Ručigaj, A.; Alič, B.; Krajnc, M.; Šebenik, U. Investigation of cure kinetics in a system with reactant evaporation: Epoxidized soybean oil and maleic anhydride case study. Eur. Polym. J. 2014, 52, 105–116. [Google Scholar] [CrossRef]
Properties | PLA 3D870 | ASTM Method | Ref. |
---|---|---|---|
Specific gravity, g/cc | 1.22 | D792 | [31] |
MFI, g/10 min | 9–15 | D1238 | [32] |
Peak melt temperature, °C | 165–180 | D3418 | [33] |
Glass transition temperature, °C | 55–60 | D3418 | [33] |
Heat distortion temperature, °C | 75–85 | E2092 | [34] |
Properties | Values |
---|---|
Density at 55 °C | 1.32 g/cm3 |
Appearance | Flakes, white, up to 0.5 cm |
Bulk density | 700–800 kg/m3 |
Solubility in water at 20 °C | Hydrolysis reaction |
Melting point | 51–53 °C |
Boiling point | 200 °C |
Flash point | 103 °C |
Ignition temperature | 475 °C |
Vapor pressure at 40 °C | 1.3 hPa |
Evaporation heat at 54.9 °C | 157.2 KJ/mol |
Expl. limit (upper) | 7.1 Vol. % |
Expl. limit (lower) | 1.4 Vol. % |
pH | <1 |
Properties | Values |
---|---|
Density at 20 °C | 1.05–1.06 g cm−3 |
Viscosity at 25 °C | 8–12 p |
Acid value | ≤1 mg KOH g−1 |
Partition coefficient | >6.2 |
Iodine value | ≤5 |
Color | Yellowish |
Flash point | Non-measurable |
Pour point | −3 °C |
Oxirane oxygen | >8 °C |
Solubility in water | Insoluble |
Appearance | Viscous |
Properties | Values |
---|---|
Density at 20 °C | 0.990–0.997 g cm−3 |
Viscosity at 20 °C | 4.5–5.5 cp |
Acidity | ≤0.75 mg KOH g−1 |
Refractive index at 20 °C | 1.472–1.473 |
Iodine value | ≤3 |
Gardner color | ≤2 |
Flash point | 289 °C |
Pour point | <12 °C |
Oxirane oxygen | 6.6–8.0% |
Saponification index | 182–184 |
Solubility in water | Insoluble |
Appearance | Clear liquid |
Formulation | PLA (wt. %) | BG (wt. %) | Compatibilizer (wt. %) |
---|---|---|---|
PLA | 100 | 0 | 0 |
PLA–BG-p | 90 | 10 | 0 |
PLA–BG–MA-p | 85.71 | 9.53 | 4.76 |
PLA-BG–ELO-p | 85.71 | 9.53 | 4.76 |
PLA–BG–ESBO-p | 85.71 | 9.53 | 4.76 |
Formulation | Temperature Profile (°C) | Screw Speed (rpm) |
---|---|---|
PLA | 170-185-180-180 | 3.4 |
PLA–BG–MA-f | 170-185-190-170 | 3.5 |
PLA–BG–ELO-f | 170-185-190-170 | 3.5 |
PLA–BG–ESBO-f | 170-175-170-160 | 3.3 |
Parameters | BQ Witbox 2 | Tumaker NX Pro Pellet |
---|---|---|
Nozzle diameter (mm) | 0.8 | 0.8 |
Layer thickness (mm) | 0.4 | 0.4 |
Extrusion multiplier | 1.1 | 7.5 1/5.6 2 |
Shrink rate (mm/s) | 30 | 40 |
First layer width (%) | 90 | 90 |
Speed reduction factor first layer | 0.5 | 0.6 |
Infill (%) | 100 | 100 |
Printing temperature first layer (°C) | 195 | 195 |
Printing temperature other layers (°C) | 190 | 190 |
Bed temperature (°C) | 50 | 60 |
First layer cooling (%) | 0 | 0 |
Cooling other layers (%) | 100 | 100 |
Degradation Step | Temperature Range (°C) | Maximum Degradation Rate (°C) | Weight Loss (wt. %) |
---|---|---|---|
I | 120-180 | 160 | 7.6 |
II | 180-242 | 222 | 11.2 |
III | 242-322 | 298 | 34.3 |
IV | 322-383 | 347 | 14.8 |
V | 383-570 | Constant rate | 12.7 |
VI | 570-582 | 579 | 16.4 |
Formulation | Degradation Step (°C) | Tdm (°C) | Weight Loss (%) | Solid Residue (%) |
---|---|---|---|---|
PLA-p | 270–440 | 367 | 98 | 0 |
PLA-f | 270–440 | 367 | 98 | 0 |
PLA–BG-p | 250–440 | 375 | 92 | |
570–585 | 575 | 4 | 4 | |
PLA–BG–MA-p | 125–250 | 200 | 8 | |
290–430 | 375 | 90 | 0 | |
PLA–BG–MA-f | 125–250 | 200 | 7 | |
290–430 | 375 | 90 | 0 | |
PLA–BG–ELO-p | 240–440 | 363 | 95 | |
570–585 | 575 | 5 | 0 | |
PLA–BG–ELO-f | 240–440 | 363 | 95 | |
570–585 | 575 | 5 | 0 | |
PLA–BG–ESBO-p | 270–450 | 373 | 96 | |
570–585 | 575 | 4 | 0 | |
PLA–BG–ESBO-f | 270–450 | 370 | 98 | 0 |
Formulation | Tg1 (°C) | Tg2 (°C) | Tm (°C) |
---|---|---|---|
PLA-p | - | 63 | 175 |
PLA-f | - | 63 | 177 |
PLA-BG-p | - | 65 | 176 |
PLA–BG–MA-p | −3 | 64 | 176 |
PLA–BG–MA-f | 2 | 60 | 174 |
PLA–BG–ELO-p | −6 | 62 | 174 |
PLA–BG–ELO-f | −5 | 57 | 173 |
PLA–BG–ESBO-p | 0 | 64 | 173 |
PLA–BG–ESBO-f | −4 | 64 | 173 |
Formulation | MFI (g/10min) |
---|---|
PLA | 9–15 1 |
PLA–BG–MA-p | 80.7 ± 18.1 |
PLA-BG-MA-f | ND |
PLA–BG–ELO-p | 23.8 ± 2.5 |
PLA–BG–ELO-f | 34.6 ± 3.1 |
PLA–BG–ESBO-p | 21.8 ± 1.9 |
PLA–BG–ESBO-f | 34.2 ± 4.3 |
Formulation | Young’s Modulus Et (MPa) | Maximum Strength σt (MPa) | Elongation at Break εt (%) |
---|---|---|---|
PLA | 502 ± 70 | 52 ± 3 | 8 ± 0.5 |
PLA–BG-Tum | 613 ± 118 | 39 ± 2 | 6 ± 0.2 |
PLA–BG–MA-Tum | 428 ± 100 | 37 ± 1 | 8 ± 0.8 |
PLA–BG–ELO-Tum | 396 ± 43 | 36 ± 1 | 9 ± 0.9 |
PLA–BG–ESBO-Tum | 469 ± 18 | 36 ± 1 | 9 ± 0.8 |
Formulation | Young’s Modulus Et (MPa) | Maximum Strength σt (MPa) | Elongation at Break εt (%) |
---|---|---|---|
PLA | 785 ± 72 | 52 ± 3 | 7 ± 0.6 |
PLA–BG–MA-Wit | 578 ± 56 | 30 ± 1 | 8 ± 1 |
PLA–BG–ELO-Wit | 598 ± 34 | 32 ± 1 | 12 ± 1.1 |
PLA–BG–ESBO-Wit | 569 ± 53 | 32 ± 1 | 9 ± 1 |
Formulation | Young’s Modulus Ef (MPa) | Maximum Strength σf (MPa) | Elongation at Break εf (%) |
---|---|---|---|
PLA | 2680 ± 78 | 78 ± 1 | 10 ± 0.1 |
PLA–BG-Tum | 2740 ± 411 | 63 ± 3 | 7 ± 1.2 |
PLA–BG–MA-Tum | 1940 ± 197 | 45 ± 2 | 8 ± 1 |
PLA–BG–ELO-Tum | 2520 ± 51 | 53 ± 1 | 11 ± 0.9 |
PLA–BG–ESBO-Tum | 2250 ± 117 | 52 ± 1 | 11 ± 1.1 |
Formulation | Young’s Modulus Ef (MPa) | Maximum Strength σf (MPa) | Elongation at Break εf (%) |
---|---|---|---|
PLA | 2590 ± 308 | 81 ± 6 | 10 ± 0.1 |
PLA–BG–MA-Wit | 2370 ± 78 | 52 ± 3 | 8 ± 0.8 |
PLA–BG–ELO-Wit | 2320 ± 39 | 49 ± 2 | 12 ± 0.5 |
PLA–BG–ESBO-Wit | 2290 ± 96 | 49 ± 2 | 12 ± 0.2 |
Formulation | Impact Strength (kJ/m2) |
---|---|
PLA | 35 ± 4 |
PLA–BG-Tum | 14 ± 4 |
PLA–BG–MA-Tum | 18 ± 2 |
PLA–BG–ELO-Tum | 19 ± 2 |
PLA–BG–ESBO-Tum | 18 ± 1 |
Formulation | Impact Strength (kJ/m2) |
---|---|
PLA | 30 ± 5 |
PLA–BG–MA-Wit | 18 ± 2 |
PLA–BG–ELO-Wit | 19 ± 1 |
PLA–BG–ESBO-Wit | 16 ± 1 |
Degree of Freedom | Sum of Squares | Mean Square | F-Value | Prob > F | |
---|---|---|---|---|---|
Model | 2 | 5541.33333 | 2770.66667 | 0.58472 | 0.56947 |
Error | 15 | 71,077.16667 | 4738.47778 | ||
Total | 17 | 76,618.5 |
Degree of Freedom | Sum of Squares | Mean Square | F-Value | Prob > F | |
---|---|---|---|---|---|
Model | 2 | 34,064.33333 | 17,032.16667 | 1.81551 | 0.19675 |
Error | 15 | 140,722.16667 | 9381.47778 | ||
Total | 17 | 174,786.5 |
Degree of Freedom | Sum of Squares | Mean Square | F-Value | Prob > F | |
---|---|---|---|---|---|
Model | 2 | 7900 | 3950 | 0.17734 | 0.83922 |
Error | 15 | 334,100 | 22,273.33333 | ||
Total | 17 | 342,000 |
Degree of Freedom | Sum of Squares | Mean Square | F-Value | Prob > F | |
---|---|---|---|---|---|
Model | 2 | 544,533.33333 | 272,266.66667 | 6.24544 | 0.01064 |
Error | 15 | 653,916.66667 | 43,594.44444 | ||
Total | 17 | 1,984,500 |
Degree of Freedom | Sum of Squares | Mean Square | F-Value | Prob > F | |
---|---|---|---|---|---|
Model | 2 | 24.08879 | 12.0444 | 3.26334 | 0.0522 |
Error | 15 | 110.72442 | 3.69081 | ||
Total | 17 | 134.81321 |
Degree of Freedom | Sum of Squares | Mean Square | F-Value | Prob > F | |
---|---|---|---|---|---|
Model | 2 | 10.53501 | 5.26751 | 1.11063 | 0.3421 |
Error | 15 | 147.02731 | 4.74282 | ||
Total | 17 | 157.56233 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carichino, S.; Scanferla, D.; Fico, D.; Rizzo, D.; Ferrari, F.; Jordá-Reolid, M.; Martínez-García, A.; Corcione, C.E. Poly-Lactic Acid-Bagasse Based Bio-Composite for Additive Manufacturing. Polymers 2023, 15, 4323. https://doi.org/10.3390/polym15214323
Carichino S, Scanferla D, Fico D, Rizzo D, Ferrari F, Jordá-Reolid M, Martínez-García A, Corcione CE. Poly-Lactic Acid-Bagasse Based Bio-Composite for Additive Manufacturing. Polymers. 2023; 15(21):4323. https://doi.org/10.3390/polym15214323
Chicago/Turabian StyleCarichino, Silvia, Dino Scanferla, Daniela Fico, Daniela Rizzo, Francesca Ferrari, María Jordá-Reolid, Asunción Martínez-García, and Carola Esposito Corcione. 2023. "Poly-Lactic Acid-Bagasse Based Bio-Composite for Additive Manufacturing" Polymers 15, no. 21: 4323. https://doi.org/10.3390/polym15214323
APA StyleCarichino, S., Scanferla, D., Fico, D., Rizzo, D., Ferrari, F., Jordá-Reolid, M., Martínez-García, A., & Corcione, C. E. (2023). Poly-Lactic Acid-Bagasse Based Bio-Composite for Additive Manufacturing. Polymers, 15(21), 4323. https://doi.org/10.3390/polym15214323