Synthesis and Characterization of Polymer-Based Membranes for Methotrexate Drug Delivery
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Membrane Formulation
3.2. FTIR-ATR Analysis
3.3. TG/DTG Analysis
3.4. UV–VIS Results
3.5. Images Obtained with AIM-9000 Shimadzu Microscope in Visible Spectrum
3.6. Membrane Characterization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kunduru, K.R.; Basu, A.; Domb, A. Biodegradable Polymers: Medical Applications. In Encyclopedia of Polymer Science and Technology, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2016; pp. 1–22. [Google Scholar]
- Pacheco-Quito, E.M.; Ruiz-Caro, R.; Veiga, M.D. Carrageenan: Drug Delivery Systems and Other Biomedical Applications. Mar. Drugs 2020, 18, 583. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Ma, S.; Liu, H.; Geng, H.; Lu, X.; Zhang, X.; Li, H.; Gao, C.; Zhag, X.; Gao, P. Guided bone regeneration with asymmetric collagen-chitosan membranes containing aspirin- loaded chitosan nanoparticles. Int. J. Nanomed. 2017, 12, 8855–8866. [Google Scholar] [CrossRef] [PubMed]
- García, M.C. Drug delivery systems based on nonimmunogenic biopolymers. In Engineering of Biomaterials for Drug Delivery Systems; Woodhead Publishing: Sawston, UK, 2018; pp. 317–344. [Google Scholar] [CrossRef]
- Baranwal, J.; Barse, B.; Fais, A.; Delogu, G.L.; Kumar, A. Biopolymer: A Sustainable Material for Food and Medical Applications. Polymers 2022, 14, 983. [Google Scholar] [CrossRef]
- George, A.; Shrivastav, S.P. Preparation and evaluation of chitosan-alginate/carrageenan hydrogel for oral drug delivery in the treatment of diabetes. J. Bioact. Compat. Polym. 2023, 38, 8839115231183487. [Google Scholar] [CrossRef]
- Bajas, D.; Vlase, G.; Mateescu, M.; Grad, O.A.; Bunoiu, M.; Vlase, T.; Avram, C. Formulation and Characterization of Alginate-Based Membranes for the Potential Transdermal Delivery of Methotrexate. Polymers 2021, 13, 161. [Google Scholar] [CrossRef]
- Song, E.-H.; Shang, J.; Ratner, D.M. 9.08-Polysaccharides. In Polymer Science: A Comprehensive Reference; Matyjaszewski, K., Möller, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 137–155. [Google Scholar] [CrossRef]
- Milivojevic, M.; Pajic-Lijakovic, I.; Bugarski, B. Biological macromolecules in cell encapsulation. In Biological Macromolecules; Nayak, A.K., Dhara, A.K., Dilipkumar Pal, D., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 491–528. [Google Scholar] [CrossRef]
- Rinaudo, M. Chitin and Chitosan: Properties and Applications. Prog. Polym. Sci. 2006, 31, 603–632. [Google Scholar] [CrossRef]
- Carrillo-Castillo, T.; Luna-Velasco, A.; Zaragoza-Contreras, E.; Castro-Carmona, J. Thermosensitive hydrogel for in situ-controlled methotrexate delivery. e-Polymers 2021, 21, 910–920. [Google Scholar] [CrossRef]
- Baqeri, N.; Shahsavari, S.; Dahouee, I.A.; Shirmard, L.R. Design of slow-release methotrexate drug delivery system using PHBV magnetic nanoparticles and evaluation of its cytotoxicity. J. Drug Deliv. Sci. Technol. 2022, 77, 103854. [Google Scholar] [CrossRef]
- Prajapati, V.D.; Maheriya, P.M.; Jani, G.K.; Solanki, H.K. Carrageenan: A natural seaweed polysaccharide and its applications. Carbohydr. Polym. 2014, 105, 97–112. [Google Scholar] [CrossRef]
- James, N.; BeMiller, J.N. 13-Carrageenans. In Carbohydrate Chemistry for Food Scientists, 3rd ed.; AACC International Press: Devon, UK, 2019; pp. 279–291. [Google Scholar] [CrossRef]
- Tuvikene, R. Carrageenans. In Handbook of Hydrocolloid, 3rd ed.; Phillips, G.O., Peter, A., Eds.; Woodhead Publishing Series in Food Science, Technology and Nutrition; WilliamsWoodhead Publishing: Sawston, UK, 2021; pp. 767–804. [Google Scholar] [CrossRef]
- Lin, J.; Li, Y.; Li, Y.; Wu, H.; Yu, F.; Zhou, S.; Xie, L.; Luo, F.; Lin, C.; Hou, Z. Drug/Dye-Loaded, Multifunctional PEG-Chitosan-Iron Oxide Nanocomposites for Methotraxate Synergistically Self-Targeted Cancer Therapy and Dual Model Imaging. ACS Appl. Mater. Interfaces 2015, 7, 11908–11920. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Gao, Q.; Lu, X.; Zhou, H. In situ forming hydrogels based on chitosan for drug delivery and tissue regeneration. Asian J. Sci. 2016, 11, 673–683. [Google Scholar] [CrossRef]
- Ali, A.; Ahmed, S. A review on chitosan and its nanocomposites in drug delivery. Int. J. Biol. Macromol. 2018, 109, 273–286. [Google Scholar] [CrossRef] [PubMed]
- Nedelcu, R.I.; Balaban, M.; Turcu, G.; Brinzea, A.; Ion, D.A.; Antohe, M.; Hodorogea, A.; Calinescu, A.; Badarau, A.I.; Popp, C.G.; et al. Efficacy of methotrexate as anti-inflammatory and anti-proliferative drug in dermatology: Three case reports. Exp. Ther. Med. 2019, 18, 905–910. [Google Scholar] [CrossRef] [PubMed]
- Yadav, K.; Soni, A.; Singh, D.; Singh, M.R. Polymers in topical delivery of anti-psoriatic medications and other topical agents in overcoming the barriers of conventional treatment strategies. Prog. Biomater. 2021, 10, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Dabholkar, N.; Gorantla, S.; Waghule, T.; Rapalli, V.K.; Kothuru, A.; Goel, S.; Singhvi, G. Biodegradable microneedles fabricated with carbohydrates and proteins: Revolutionary approach for transdermal drug delivery. Int. J. Biol. Macromol. 2021, 170, 602–621. [Google Scholar] [CrossRef]
- Ma, Y.; Xin, L.; Tan, H.; Fan, M.; Li, J.; Jia, Y.; Hu, X. Chitosan membrane dressings toughened by glycerol to load antibacterial drugs for wound healing. Mater. Sci. Eng. C 2017, 81, 522–531. [Google Scholar] [CrossRef]
- Osifo, P.O.; Neomagus, H.W.; van der Merwe, H.; Branken, D.J. Transport properties of chitosan membranes for zinc (II) removal from aqueous systems. Sep. Purif. Technol. 2017, 179, 428–437. [Google Scholar] [CrossRef]
- Álvarez-González, B.; Rozalen, M.; Fernández-Perales, M.; Álvarez, M.A.; Sánchez-Polo, M. Methotrexate Gold Nanocarriers: Loading and Release Study: Its Activity in Colon and Lung Cancer Cells. Molecules 2020, 25, 6049. [Google Scholar] [CrossRef] [PubMed]
- Fuliaș, A.; Popoiu, C.; Vlase, G.; Vlase, T.; Onețiu, D.; Săvoiu, G.; Simu, G.; Pătruțescu, C.; Ilia, G.; Ledeți, I. Thermoanalytical and spectroscopic study on methotrexate—Active substance and tablet. Dig. J. Nanomater. Biostruct. 2014, 9, 93–98. [Google Scholar]
- Zhao, W.; Zheng, L.; Yang, J.; Ma, Z.; Tao, X.; Wang, Q. Dissolving microneedle patch-assisted transdermal delivery of methotrexate improve the therapeutic efficacy of rheumatoid arthritis. Drug Deliv. 2023, 30, 121–132. [Google Scholar] [CrossRef]
- Okolišan, D.; Vlase, G.; Vlase, T.; Avram, C. Preliminary study of κ-Carrageenan Based Membranes for Anti-Inflammatory Drug Delivery. Polymers 2022, 14, 4275. [Google Scholar] [CrossRef]
- Fernandes Queiroz, M.; Melo, K.R.; Sabry, D.A.; Sassaki, G.L.; Rocha, H.A. Does the use of chitosan contribute to oxalate kidney stone formation? Mar. Drugs 2014, 13, 141–158. [Google Scholar] [CrossRef]
- Fenga, F.; Liuc, Y.; Zhaoc, B.; Hu, K. Characterization of half N-acetylated chitosan powders and films. Procedia Eng. 2012, 27, 718–732. [Google Scholar] [CrossRef]
- Mansur, H.S.; Sadahira, C.M.; Souza, A.N.; Mansur, A.A.P. FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Mater. Sci. Eng. C 2008, 28, 539–548. [Google Scholar] [CrossRef]
- Ruiz-Cardona, L.; Sanzgiri, Y.D.; Benedetti, L.M.; Stella, V.J.; Topp, E.M. Application of benzyl hyaluronate membranes as potential wound dressings: Evaluation of water vapour and gas permeabilities. Biomaterials 1996, 17, 1639–1643. [Google Scholar] [CrossRef] [PubMed]
Membrane ID | Car | Chi | G | Span 80 | PVA | PVP | MTX | |
---|---|---|---|---|---|---|---|---|
mg | mg | mL | mL | mg | mg | mg | ||
1 | CarG | 10 | / | 0.3 | / | / | / | / |
2 | CarS | 10 | / | / | 0.3 | / | / | / |
3 | CarGMTX | 10 | / | 0.3 | / | / | / | 1 |
4 | CarSMTX | 10 | / | / | 0.3 | / | / | 1 |
5 | ChiG | / | 10 | 0.3 | / | / | / | / |
6 | ChiS | / | 10 | / | 0.3 | / | / | / |
7 | ChiGMTX | / | 10 | 0.3 | / | / | / | 1 |
8 | ChiSMTX | / | 10 | / | 0.3 | / | / | 1 |
9 | CarGPVA | 5 | / | 0.3 | / | 5 | / | / |
10 | CarSPVA | 5 | / | / | 0.3 | 5 | / | / |
11 | CarGPVAMTX | 5 | / | 0.3 | / | 5 | / | 1 |
12 | CarSPVAMTX | 5 | / | / | 0.3 | 5 | / | 1 |
13 | ChiGPVA | / | 5 | 0.3 | / | 5 | / | / |
14 | ChiSPVA | / | 5 | / | 0.3 | 5 | / | / |
15 | ChiGPVAMTX | / | 5 | 0.3 | / | 5 | / | 1 |
16 | ChiSPVAMTX | / | 5 | / | 0.3 | 5 | / | 1 |
17 | CarGPVP | 5 | / | 0.3 | / | / | 5 | / |
18 | CarSPVP | 5 | / | / | 0.3 | / | 5 | / |
19 | CarGPVPMTX | 5 | / | 0.3 | / | / | 5 | 1 |
20 | CarSPVPMTX | 5 | / | / | 0.3 | / | 5 | 1 |
21 | ChiGPVP | / | 5 | 0.3 | / | / | 5 | / |
22 | ChiSPVP | / | 5 | / | 0.3 | / | 5 | / |
23 | ChGPVPMTX | / | 5 | 0.3 | / | / | 5 | 1 |
24 | ChSPVPMTX | / | 5 | / | 0.3 | / | 5 | 1 |
Ingredient ID | Membrane Appearance | Aspect | Ingredient ID | Membrane Appearance | Aspect | ||
---|---|---|---|---|---|---|---|
1 | CarG | Clear, elastic, homogeneous | 5 | ChiG | Clear, elastic, homogeneous | ||
2 | CarS | Clear, rigid, inhomogeneous | 6 | ChiS | Clear, rigid, homogeneous | ||
3 | CarGMTX | Unclear, elastic, homogeneous | 7 | ChiGMTX | Clear, elastic, homogeneous | ||
4 | CarSMTX | Unclear, rigid, inhomogeneous | 8 | ChiSMTX | Clear, rigid, inhomogeneous | ||
9 | CarGPVA | Clear, elastic homogeneous | 13 | ChiGPVA | Clear, elastic, homogeneous | ||
10 | CarSPVA | Clear, rigid, homogeneous | 14 | ChiSPVA | Clear, rigid, homogeneous | ||
11 | CarGPVAMTX | Clear, elastic, homogeneous, | 15 | ChiGPVAMTX | Clear, elastic, homogeneous, | ||
12 | CarSPVAMTX | Unclear, rigid, inhomogeneous | 16 | ChiSPVAMTX | Unclear, rigid, inhomogeneous | ||
17 | CarGPVP | Clear, elastic, homogeneous | 21 | ChiGPVP | Clear, elastic, homogeneous | ||
18 | CarSPVP | Clear, rigid, homogeneous | 22 | ChiSPVP | Clear, rigid, homogeneous | ||
19 | CarGPVPMTX | Clear, elastic, homogeneous | 23 | ChiGPVPMTX | Clear, elastic, homogeneous | ||
20 | CarSPVPMTX | Unclear, rigid, inhomogeneous | 24 | ChiSPVPMTX | Unclear, rigid, inhomogeneous |
(a) | |||||||
---|---|---|---|---|---|---|---|
Characteristic Bonds and Movement | Compound | ||||||
MTX | CarG | CarGMTX | CarGPVA | CarGPVAMTX | CarGPVP | CarGPVPMTX | |
Wavenumber of Most Relevant Peaks (cm−1) | |||||||
O-H | 3351 | 3316 | 3340 | 3300 | 3300 | 3320 | 3320 |
N-H | 3190 | 3247 | 3190 | 3230 | |||
C-H | 2950 | 2940 | 2952 | 2926 | 2927 | 2929 | 2932 |
C=O | 1670–1601 | 1640 | 1670 | 1640 | 1670 | 1642 | 1648 |
N-H | 1555–1508 | - | 1557 1508 | 1555 1507 | 1558 1507 | 1558 1506 | 1558 1506 |
CH3 and CH2 deformation vibration | - | 1419 B 1368 B | 1400 1358 | 1401 1375 | 1401 1376 | 1423 1374 | 1423 1374 |
-C-O- | 1453–1201 | 1453 | 1452 | 1450–1205 | 1459 | 1459 | |
C-N stretch vibration | 1097 | 1202 A | 1202 | 1204 | 1095 | 1035 | 1112 |
C-H sym. deformation vibration | - | 1160 | - | - | 1160 | 1159 | 1160 |
C-O stretching, linkage of 3,6-anhydro-D-galactose | - | 1032 919 | 1096 919 | 1095 919 | 1035 919 | 921 | 920 |
C-O-SO3 of D-galactose-4, sulfate | - | 827 | 827 | 827 | 827 | 843 | 843 |
Vibration of -C-C skeleton | - | 920 | 920 | 920 | 920 | 925 | 924 |
(b) | |||||||
Characteristic Bonds and Movement | Compound | ||||||
MTX | ChiG | ChiGMTX | ChiGPVA | ChiGPVAMTX | ChiGPVP | ChiGPVPMTX | |
Wavenumber of Most Relevant Peaks (cm−1) | |||||||
O-H | 3351 | 3300 | 3300 | 3270 | 3300 | 3296 | 3300 |
N-H | 3190 | 3230 | 3189 | 3240 | |||
C-H | 2950 | 2925 | 2926 | 2926 | 2925 | 2923 | 2927 |
C=O | 1670−1601 | 1650 | 1650 | 1734 | 1734 | 1650 | 1652 |
N-H | 1555–1508 | 1557 | 1558 | 1565 1508 | 1558 1507 | 1558 | 1558 |
-C-O- | 1453–1201 | 1401 | 1399 | 1404 | 1399 | 1458 | 1459 |
C-N stretching vibration | 1097 | 1323 | 1320 | - | 1100 | - | 1100 |
Asymmetric bridge oxygen C-O-C stretching | - | 1153 | - | - | - | 1152 | 1152 |
Vibration of -C-C skeleton | - | 1011 920 | 920 | 920 | 920 | 925 | 924 |
(a) | ||||||
---|---|---|---|---|---|---|
Membranes | Process | Temperature (°C) | Mass Loss (%) | Total Mass Loss (%) | ||
Initial | Final | Max | ||||
CarG | I | 225 | 252 | 237 | 8.70 | 57.70 |
CarGPVP | I | 118 | 186 | 154 | 12.50 | 48.41 |
II | 222 | 252 | 230 | 6.33 | ||
III | 254 | 277 | 263 | 5.15 | ||
CarGPVA | I | 180 | 223 | 192 | 14.15 | 63.51 |
II | 227 | 263 | 256 | 13.00 | ||
CarGMTX | I | 237 | 271 | 247 | 20.25 | 58.87 |
CarGPVPMTX | I | 240 | 276 | 254 | 9.75 | 37.12 |
CarGPVAMTX | I | 197 | 233 | 207 | 10.7 | 54.66 |
(b) | ||||||
Membranes | Process | Temperature (°C) | Mass Loss (%) | Total Mass Loss (%) | ||
Initial | Final | Max | ||||
ChiG | I | 122 | 173 | 157 | 12.82 | 66.57 |
II | 238 | 320 | 278 | 26.16 | ||
ChiGPVP | I | 106 | 190 | 152 | 23.09 | 58.39 |
II | 250 | 320 | 286 | 14.45 | ||
ChiGPVA | I | 145 | 208 | 172 | 14.80 | 62.83 |
II | 254 | 320 | 285 | 19.65 | ||
ChiGMTX | I | 229 | 304 | 270 | 26.4 | 63.5 |
ChiGPVPMTX | I | 108 | 200 | 159 | 18.04 | 51.09 |
II | 223 | 289 | 258 | 15.52 | ||
ChiGPVAMTX | I | 106 | 212 | 160 | 20.00 | 60.93 |
II | 244 | 320 | 285 | 19.65 |
Membranes | SR (%) |
---|---|
CarGPVAMTX | - |
CarGPVPMTX | - |
ChiGPVAMTX | 111.11 |
ChiGPVPMTX | 107.57 |
Membranes | WVTR (g·m−2·d−1) |
---|---|
CarGPVAMTX | 1389.81 |
CarGPVPMTX | 1492.36 |
ChiGPVAMTX | 1319.74 |
ChiGPVPMTX | 1353.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bradu, I.-A.; Vlase, T.; Bunoiu, M.; Grădinaru, M.; Pahomi, A.; Bajas, D.; Budiul, M.M.; Vlase, G. Synthesis and Characterization of Polymer-Based Membranes for Methotrexate Drug Delivery. Polymers 2023, 15, 4325. https://doi.org/10.3390/polym15214325
Bradu I-A, Vlase T, Bunoiu M, Grădinaru M, Pahomi A, Bajas D, Budiul MM, Vlase G. Synthesis and Characterization of Polymer-Based Membranes for Methotrexate Drug Delivery. Polymers. 2023; 15(21):4325. https://doi.org/10.3390/polym15214325
Chicago/Turabian StyleBradu, Ionela-Amalia, Titus Vlase, Mădălin Bunoiu, Mădălina Grădinaru, Alexandru Pahomi, Dorothea Bajas, Mihaela Maria Budiul, and Gabriela Vlase. 2023. "Synthesis and Characterization of Polymer-Based Membranes for Methotrexate Drug Delivery" Polymers 15, no. 21: 4325. https://doi.org/10.3390/polym15214325
APA StyleBradu, I. -A., Vlase, T., Bunoiu, M., Grădinaru, M., Pahomi, A., Bajas, D., Budiul, M. M., & Vlase, G. (2023). Synthesis and Characterization of Polymer-Based Membranes for Methotrexate Drug Delivery. Polymers, 15(21), 4325. https://doi.org/10.3390/polym15214325