An Analysis of the Self-Healing and Mechanical Properties as well as Shape Memory of 3D-Printed Surlyn® Nanocomposites Reinforced with Multiwall Carbon Nanotubes
Abstract
:1. Introduction
2. Materials and Experimental Procedure
2.1. Materials
2.2. Extruder Filament Preparation
2.3. 3D-Printing of Surlyn® Using FDM
2.4. Self-Healing Testing
2.5. Mechanical Testing
2.6. SEM Study: Dispersion Analysis of the Nanoreinforcement
2.7. Thermal Analysis
2.8. Thermally Activated Shape Memory Properties
3. Results and Discussion
3.1. Extruded Polymer Filaments and Tensile Test of the 3D-Printed Specimens
3.2. Self-Healing Ability
3.3. Printed Tensile Test 3D-Printed Specimens
3.4. Nano-Structure Analysis and Fracture Characterization
3.5. Thermally Activated Dual- and Triple-Shape Memory Effect
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, J.; Zhang, X.; Jiang, L.; Qiao, J. Advances in Toughened Polymer Materials by Structured Rubber Particles. Prog. Polym. Sci. 2019, 98, 101160. [Google Scholar] [CrossRef]
- Ghosh, S.K. Self-Healing Materials: Fundamentals, Design Strategies, and Applications; John Wiley: Hoboken, NJ, USA, 2009. [Google Scholar]
- Fall, R. Puncture Reversal of Ethylene Ionomers—Mechanistic Studies. Master’s Thesis, Virginia Polytechnic University, Blacksburg, VA, USA, 2001. [Google Scholar]
- Wang, N.; Yang, X.; Zhang, X. Ultrarobust Subzero Healable Materials Enabled by Polyphenol Nano-Assemblies. Nat. Commun. 2023, 14, 814. [Google Scholar] [CrossRef] [PubMed]
- Self-Healing Materials: An Alternative Approach to 20 Centuries of Materials Science. Chem. Int. Newsmag. IUPAC 2008, 30, 20–21. [CrossRef]
- Wang, R.; Kuan, H.-C.; Qiu, A.; Su, X.; Ma, J. A Facile Approach to the Scalable Preparation of Thermoplastic/Carbon Nanotube Composites. Nanotechnology 2020, 31, 195706. [Google Scholar] [CrossRef]
- Prusty, R.K.; Rathore, D.K.; Ray, B.C. CNT/Polymer Interface in Polymeric Composites and Its Sensitivity Study at Different Environments. Adv. Colloid Interface Sci. 2017, 240, 77–106. [Google Scholar] [CrossRef]
- Kasaliwal, G.R.; Pegel, S.; Göldel, A.; Pötschke, P.; Heinrich, G. Analysis of Agglomerate Dispersion Mechanisms of Multiwalled Carbon Nanotubes during Melt Mixing in Polycarbonate. Polymer 2010, 51, 2708–2720. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, Y.Y.; Huang, P.; Li, Y.Q.; Fu, S.Y. Improved Bond Strength, Reduced Porosity and Enhanced Mechanical Properties of 3D-Printed Polyetherimide Composites by Carbon Nanotubes. Compos. Commun. 2022, 30, 101083. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, H.B.; Yang, Y.; Wang, M.; Cao, A.; Yu, Z.Z. High-Performance Epoxy Nanocomposites Reinforced with Three-Dimensional Carbon Nanotube Sponge for Electromagnetic Interference Shielding. Adv. Funct. Mater. 2016, 26, 447–455. [Google Scholar] [CrossRef]
- Basheer, B.V.; George, J.J.; Siengchin, S.; Parameswaranpillai, J. Polymer Grafted Carbon Nanotubes—Synthesis, Properties, and Applications: A Review. Nano-Struct. Nano-Objects 2020, 22, 100429. [Google Scholar] [CrossRef]
- Mohd Nurazzi, N.; Asyraf, M.R.M.; Khalina, A.; Abdullah, N.; Sabaruddin, F.A.; Kamarudin, S.H.; Ahmad, S.; Mahat, A.M.; Lee, C.L.; Aisyah, H.A.; et al. Fabrication, Functionalization, and Application of Carbon Nanotube-Reinforced Polymer Composite: An Overview. Polymers 2021, 13, 1047. [Google Scholar] [CrossRef]
- Nasiri, A.; Shariaty-Niasar, M.; Rashidi, A.M.; Khodafarin, R. Effect of CNT Structures on Thermal Conductivity and Stability of Nanofluid. Int. J. Heat. Mass. Transf. 2012, 55, 1529–1535. [Google Scholar] [CrossRef]
- Guadagno, L.; Naddeo, C.; Raimondo, M.; Barra, G.; Vertuccio, L.; Sorrentino, A.; Binder, W.H.; Kadlec, M. Development of Self-Healing Multifunctional Materials. Compos. B Eng. 2017, 128, 30–38. [Google Scholar] [CrossRef]
- Frei, R.; McWilliam, R.; Derrick, B.; Purvis, A.; Tiwari, A.; Di Marzo Serugendo, G. Self-Healing and Self-Repairing Technologies. Int. J. Adv. Manuf. Technol. 2013, 69, 1033–1061. [Google Scholar] [CrossRef]
- del Bosque, A.; Calderón-Villajos, R.; Sánchez, M.; Ureña, A. Multifunctional Carbon Nanotubes-Reinforced Surlyn Nanocomposites: A Study of Strain-Sensing and Self-Healing Capabilities. Nanomaterials 2022, 12, 2878. [Google Scholar] [CrossRef] [PubMed]
- Kalista, S.J. Self-Healing of Thermoplastic Poly(Ethylene-Co-Methacrylic Acid) Copolymers Following Projectile Puncture. Master’s Thesis, Virginia Tech, Blacksburg, VA, USA, 2003. [Google Scholar]
- Dizon, J.R.C.; Espera, A.H.; Chen, Q.; Advincula, R.C. Mechanical Characterization of 3D-Printed Polymers. Addit. Manuf. 2018, 20, 44–67. [Google Scholar] [CrossRef]
- Calderón-Villajos, R.; López, A.J.; Peponi, L.; Manzano-Santamaría, J.; Ureña, A. 3D-Printed Self-Healing Composite Polymer Reinforced with Carbon Nanotubes. Mater. Lett. 2019, 249, 91–94. [Google Scholar] [CrossRef]
- NORMA INTERNA LATEP PNT-PM-02 Procedimiento Normalizado de Trabajo Para La Determinación de Propiedades Mecánicas Dinámicas de Materiales Poliméricos Mediante Ensayos de Flexión En Voladizo.
- Verma, S.; Kumar Verma, V. Shape Memory Polymers for Additive Manufacturing: An Overview. Mater. Today Proc. 2022, 57, 2077–2081. [Google Scholar] [CrossRef]
- Wang, X.; Xu, J.; Zhang, Y.; Wang, T.; Wang, Q.; Li, S.; Yang, Z.; Zhang, X. A Stretchable, Mechanically Robust Polymer Exhibiting Shape-Memory-Assisted Self-Healing and Clustering-Triggered Emission. Nat. Commun. 2023, 14, 4712. [Google Scholar] [CrossRef]
- Kuang, X.; Chen, K.; Dunn, C.K.; Wu, J.; Li, V.C.F.; Qi, H.J. 3D Printing of Highly Stretchable, Shape-Memory, and Self-Healing Elastomer toward Novel 4D Printing. ACS Appl. Mater. Interfaces 2018, 10, 7381–7388. [Google Scholar] [CrossRef]
- Rousseau, I.A. Challenges of Shape Memory Polymers: A Review of the Progress toward Overcoming SMP’s Limitations. Polym. Eng. Sci. 2008, 48, 2075–2089. [Google Scholar] [CrossRef]
- García-Huete, N.; Post, W.; Laza, J.M.; Vilas, J.L.; León, L.M.; García, S.J. Effect of the Blend Ratio on the Shape Memory and Self-Healing Behaviour of Ionomer-Polycyclooctene Crosslinked Polymer Blends. Eur. Polym. J. 2018, 98, 154–161. [Google Scholar] [CrossRef]
- ISO-527-2-2012; Plastics-Determination of Tensile Properties. International Organization for Standardization: Geneva, Switzerland, 2012.
- ASTM D2240-05; Standard Test Method for Rubber Property-Durometer Hardness. ASTM: West Conshohocken, PA, USA, 2010.
- López, A.J.; Teno, J.; Rams, J.; Ureña, A. Healing Ability of Ionomeric Polymers under Low-Energy Transfer Damages. In How Smart Are the Polymers; Peponi, L., Raquez, J.M., Eds.; Nova Science Publishers: New York, NY, USA, 2018; pp. 176–186. [Google Scholar]
- Wilson, A.J.C. Methods of Experimental Physics. Volume 3: Molecular Physics Edited by D. Williams. Acta Crystallogr. 1963, 16, 155–156. [Google Scholar] [CrossRef]
- Arrieta, M.P.; Sessini, V.; Peponi, L. Biodegradable Poly(Ester-Urethane) Incorporated with Catechin with Shape Memory and Antioxidant Activity for Food Packaging. Eur. Polym. J. 2017, 94, 111–124. [Google Scholar] [CrossRef]
- Kalista, S.J.; Ward, T.C. Thermal Characteristics of the Self-Healing Response in Poly(Ethylene-Co-Methacrylic Acid) Copolymers. J. R. Soc. Interface 2007, 4, 405–411. [Google Scholar] [CrossRef]
- Mirabedini, S.M.; Alizadegan, F. Ionomers as Self-Healing Materials. In Self-Healing Polymer-Based Systems; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Blok, L.G.; Longana, M.L.; Yu, H.; Woods, B.K.S. An Investigation into 3D Printing of Fibre Reinforced Thermoplastic Composites. Addit. Manuf. 2018, 22, 176–186. [Google Scholar] [CrossRef]
- Wu, W.; Geng, P.; Li, G.; Zhao, D.; Zhang, H.; Zhao, J. Influence of Layer Thickness and Raster Angle on the Mechanical Properties of 3D-Printed PEEK and a Comparative Mechanical Study between PEEK and ABS. Materials 2015, 8, 5271. [Google Scholar] [CrossRef]
- Huang, B.; Singamneni, S. Raster Angle Mechanics in Fused Deposition Modelling. J. Compos. Mater. 2015, 49, 363–383. [Google Scholar] [CrossRef]
- Bronnikov, S.; Kostromin, S.; Asandulesa, M.; Pankin, D.; Podshivalov, A. Interfacial Interactions and Interfacial Polarization in Polyazomethine/MWCNTs Nanocomposites. Compos. Sci. Technol. 2020, 190, 108049. [Google Scholar] [CrossRef]
- Tachino, H.; Hara, H.; Hirasawa, E.; Kutsumizu, S.; Tadano, K.; Yano, S. Dynamic Mechanical Relaxations of Ethylene Ionomers. Macromolecules 1993, 26, 752–757. [Google Scholar] [CrossRef]
- Marx, C.L.; Cooper, S.L. The Crystallinity of Ionomers. J. Macromol. Sci. Part B 1974, 9, 19–33. [Google Scholar] [CrossRef]
- Dolog, R.; Weiss, R.A. Shape Memory Behavior of a Polyethylene-Based Carboxylate Ionomer. Macromolecules 2013, 46, 7845–7852. [Google Scholar] [CrossRef]
- Irurzun, I.M.; Grigera, T.S.; Susana, C.M.; Figini, R.V.; Marx-Figini, M. Solid-State NMR Analyses of the Crystalline-Noncrystalline Structure and Its Thermal Changes for Ethylene Ionomers. J. Polym. Sci. B Polym. Phys. 2002, 40, 1142–1153. [Google Scholar] [CrossRef]
- Tsujita, Y.; Shibayama, K.; Takizawa, A.; Kinoshita, T.; Uematsu, I. Thermal Properties of Ethylene Ionomers. J. Appl. Polym. Sci. 1987, 33, 1307–1314. [Google Scholar] [CrossRef]
- Lu, L.; Li, G. One-Way Multishape-Memory Effect and Tunable Two-Way Shape Memory Effect of Ionomer Poly(Ethylene-Co-Methacrylic Acid). ACS Appl. Mater. Interfaces 2016, 8, 14812–14823. [Google Scholar] [CrossRef] [PubMed]
- Ray, A.K. Effects of Chemical Constituents on Crystalline Properties of Ethylene Ionomers. J. Therm. Anal. 1996, 46, 1527–1539. [Google Scholar] [CrossRef]
- Hirasawa, E.; Yamamoto, Y.; Tadano, K.; Yano, S. Formation of Ionic Crystallites and Its Effect on the Modulus of Ethylene Ionomers. Macromolecules 1989, 22, 2776–2780. [Google Scholar] [CrossRef]
- Tadano, K.; Hirasawa, E.; Yamamoto, H.; Yano, S. Order—Disorder Transition of Ionic Clusters in Ionomers. Macromolecules 1989, 22, 226–233. [Google Scholar] [CrossRef]
- Sessini, V.; Raquez, J.M.; Lo Re, G.; Mincheva, R.; Kenny, J.M.; Dubois, P.; Peponi, L. Multiresponsive Shape Memory Blends and Nanocomposites Based on Starch. ACS Appl. Mater. Interfaces 2016, 8, 19197–19201. [Google Scholar] [CrossRef] [PubMed]
- Sessini, V.; Brox, D.; López, A.J.; Ureña, A.; Peponi, L. Thermally Activated Shape Memory Behavior of Copolymers Based on Ethylene Reinforced with Silica Nanoparticles. Nanocomposites 2018, 4, 19–35. [Google Scholar] [CrossRef]
Material | Surlyn® and Surlyn® + MWCNTs |
---|---|
Infill density | 100% |
Layer thickness | 0.20 mm |
Raster orientation or infill orientations | 0°/90° central zones 45°/−45° clamping zones |
Printing speed | 25 mm/s |
Extruder temperature (hot-end temperature) | 210 °C |
Printing bed temperature | Room temperature |
Flow | 100% |
Specimen | E (MPa) | σTS (MPa) | Ɛ (%) | V (%) |
---|---|---|---|---|
Dupont datasheet/Hot plate manufactured | 290–300 * | 15–33 * | 470 * | 68 ± 5 ** |
Surlyn® | 349 ± 34 | 18 ± 2 | 200 ± 20 | 70 ± 5 |
Surlyn® + 0.1% MWCNTs | 324 ± 15 | 26 ± 2 | 180 ± 20 | 66 ± 4 |
Surlyn® + 0.5% MWCNTs | 335 ± 11 | 27 ± 2 | 190 ± 20 | 86 ± 4 |
Surlyn® + 1% MWCNTs | 292 ± 2 | 28 ± 1 | 210 ± 10 | 87 ± 3 |
Specimen | Tg (°C) | Tm (°C) | ΔHm (J/g) | Xc (%) |
---|---|---|---|---|
Surlyn® | 55 | 92 | 24.50 | 8.8 |
Surlyn® + 0.1% MWCNTs | 55 | 92 | 28.05 | 10.1 |
Surlyn® + 0.5% MWCNTs | 57 | 92 | 24.40 | 8.7 |
Surlyn® + 1% MWCNTs | 57 | 93 | 23.66 | 8.5 |
T: 60 °C | Rf (%) | Rr (%) | ||||
---|---|---|---|---|---|---|
Specimen | 1 Cycle | 2 Cycle | 3 Cycle | 1 Cycle | 2 Cycle | 3 Cycle |
Surlyn® | 96 | 95 | 94 | 81 | 88 | 88 |
Surlyn® + 0.1% MWCNTs | 96 | 95 | 95 | 86 | 90 | 90 |
Surlyn® + 0.5% MWCNTs | 96 | 95 | 94 | 86 | 89 | 89 |
Surlyn® + 1% MWCNTs | 97 | 95 | 95 | 86 | 90 | 90 |
T: 60 °C►80 °C | Rƒ 1► 2 | Rƒ 2► 3 | Rr 3► 2 | Rr 2► 1 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Specimen | 1 Cycle | 2 Cycle | 3 Cycle | 1 Cycle | 2 Cycle | 3 Cycle | 1 Cycle | 2 Cycle | 3 Cycle | 1 Cycle | 2 Cycle | 3 Cycle |
Surlyn® | 63 | 59 | 57 | 96 | 96 | 95 | 84 | 84 | 94 | 51 | 59 | 70 |
Surlyn® + 0.1% MWCNTs | 67 | 61 | 61 | 96 | 96 | 96 | 87 | 97 | 98 | 70 | 71 | 72 |
Surlyn® + 0.5% MWCNTs | 63 | 58 | 57 | 97 | 97 | 97 | 86 | 91 | 93 | 70 | 70 | 73 |
Surlyn® + 1% MWCNTs | 64 | 61 | 60 | 97 | 96 | 97 | 87 | 92 | 94 | 60 | 61 | 64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calderón-Villajos, R.; Sánchez, M.; Leones, A.; Peponi, L.; Manzano-Santamaría, J.; López, A.J.; Ureña, A. An Analysis of the Self-Healing and Mechanical Properties as well as Shape Memory of 3D-Printed Surlyn® Nanocomposites Reinforced with Multiwall Carbon Nanotubes. Polymers 2023, 15, 4326. https://doi.org/10.3390/polym15214326
Calderón-Villajos R, Sánchez M, Leones A, Peponi L, Manzano-Santamaría J, López AJ, Ureña A. An Analysis of the Self-Healing and Mechanical Properties as well as Shape Memory of 3D-Printed Surlyn® Nanocomposites Reinforced with Multiwall Carbon Nanotubes. Polymers. 2023; 15(21):4326. https://doi.org/10.3390/polym15214326
Chicago/Turabian StyleCalderón-Villajos, Rocío, María Sánchez, Adrián Leones, Laura Peponi, Javier Manzano-Santamaría, Antonio Julio López, and Alejandro Ureña. 2023. "An Analysis of the Self-Healing and Mechanical Properties as well as Shape Memory of 3D-Printed Surlyn® Nanocomposites Reinforced with Multiwall Carbon Nanotubes" Polymers 15, no. 21: 4326. https://doi.org/10.3390/polym15214326
APA StyleCalderón-Villajos, R., Sánchez, M., Leones, A., Peponi, L., Manzano-Santamaría, J., López, A. J., & Ureña, A. (2023). An Analysis of the Self-Healing and Mechanical Properties as well as Shape Memory of 3D-Printed Surlyn® Nanocomposites Reinforced with Multiwall Carbon Nanotubes. Polymers, 15(21), 4326. https://doi.org/10.3390/polym15214326