A Dexamethasone-Loaded Polymeric Electrospun Construct as a Tubular Cardiovascular Implant
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of the Fibrillary Scaffolds by Electrospinning
2.2. Scanning Electron Microscopy
2.3. Evaluation of the Electrospun Fiber Diameter
2.4. Drug Release Study
2.5. Hydrogel in the Polymer Tubular Structures
2.6. Cell Culturing
2.7. Immunohistochemistry
2.8. Beating Frequency
2.9. Quantification of the Markers
2.10. Cell Proliferation
2.11. Cytotoxicity Evaluation
2.12. Statistics
3. Results
3.1. Fiber Diameter Measurement
3.2. In Vitro Evaluation of the Dexamethasone (DEX) Release
3.3. Evaluation of the Cytocompatibility of the Electrospun Scaffolds
3.4. Cell Proliferation
3.5. CD31, αSMA, Col I as Markers of the HUVECs and HUVSMCs
3.6. SAA, Cx43, CD31 as Markers of the iPSC-CMs Containing Constructs
3.7. Beating Frequency
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gaziano, T.; Reddy, K.S.; Paccaud, F.; Horton, S.; Chaturvedi, V. Cardiovascular Disease. Disease Control Priorities in Developing Countries, 2nd ed.; The International Bank for Reconstruction and Development: Washington, DC, USA, 2006. [Google Scholar]
- Nugent, H.M.; Edelman, E.R. Tissue engineering therapy for cardiovascular disease. Circ. Res. 2003, 92, 1068–1078. [Google Scholar] [CrossRef] [PubMed]
- Zoob, M.; Smith, K.S. Aetiology of complete heart-block. Br. Med. J. 1963, 2, 1149. [Google Scholar] [CrossRef] [PubMed]
- Pyngottu, A.; Werner, H.; Lehmann, P.; Balmer, C. Health-related quality of life and psychological adjustment of children and adolescents with pacemakers and implantable cardioverter defibrillators: A systematic review. Pediatr. Cardiol. 2019, 40, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, A.D.; Parsonnet, V. Survey of cardiac pacing and defibrillation in the United States in 1993. Am. J. Cardiol. 1996, 78, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Kiehl, E.L.; Makki, T.; Matar, R.M.; Johnston, D.R.; Rickard, J.W.; Tarakji, K.G.; Kanj, M.; Wazni, O.M.; Saliba, W.I.; Varma, N. Incidence and predictors of late atrioventricular conduction recovery among patients requiring permanent pacemaker for complete heart block after cardiac surgery. Heart Rhythm 2017, 14, 1786–1792. [Google Scholar] [CrossRef] [PubMed]
- Liberman, L.; Silver, E.S.; Chai, P.J.; Anderson, B.R. Incidence and characteristics of heart block after heart surgery in pediatric patients: A multicenter study. J. Thorac. Cardiovasc. Surg. 2016, 152, 197–202. [Google Scholar] [CrossRef]
- Takeuchi, D.; Tomizawa, Y. Pacing device therapy in infants and children: A review. J. Artif. Organs 2013, 16, 23–33. [Google Scholar] [CrossRef]
- Ronaldson-Bouchard, K.; Ma, S.P.; Yeager, K.; Chen, T.; Song, L.; Sirabella, D.; Morikawa, K.; Teles, D.; Yazawa, M.; Vunjak-Novakovic, G. Advanced maturation of human cardiac tissue grown from pluripotent stem cells. Nature 2018, 556, 239–243. [Google Scholar] [CrossRef]
- Campostrini, G.; Windt, L.M.; van Meer, B.J.; Bellin, M.; Mummery, C.L. Cardiac tissues from stem cells: New routes to maturation and cardiac regeneration. Circ. Res. 2021, 128, 775–801. [Google Scholar] [CrossRef]
- Chauveau, S.; Anyukhovsky, E.P.; Ben-Ari, M.; Naor, S.; Jiang, Y.-P.; Danilo, P., Jr.; Rahim, T.; Burke, S.; Qiu, X.; Potapova, I.A. Induced pluripotent stem cell–derived cardiomyocytes provide in vivo biological pacemaker function. Circulation Arrhythmia Electrophysiol. 2017, 10, e004508. [Google Scholar] [CrossRef]
- Zhang, W.; Li, X.; Sun, S.; Zhang, X. Implantation of engineered conduction tissue in the rat heart. Mol. Med. Rep. 2019, 19, 2687–2697. [Google Scholar] [CrossRef] [PubMed]
- Murata, K.; Masumoto, H. Systems for the functional evaluation of human heart tissues derived from pluripotent stem cells. Stem Cells 2022, 40, 537–545. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.S.; Stevens, K.R.; Yang, M.T.; Baker, B.M.; Nguyen, D.-H.T.; Cohen, D.M.; Toro, E.; Chen, A.A.; Galie, P.A.; Yu, X. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat. Mater. 2012, 11, 768–774. [Google Scholar] [CrossRef] [PubMed]
- Brassard, J.A.; Nikolaev, M.; Hübscher, T.; Hofer, M.; Lutolf, M.P. Recapitulating macro-scale tissue self-organization through organoid bioprinting. Nat. Mater. 2021, 20, 22–29. [Google Scholar] [CrossRef]
- Skylar-Scott, M.A.; Uzel, S.G.; Nam, L.L.; Ahrens, J.H.; Truby, R.L.; Damaraju, S.; Lewis, J.A. Biomanufacturing of organ-specific tissues with high cellular density and embedded vascular channels. Sci. Adv. 2019, 5, eaaw2459. [Google Scholar] [CrossRef]
- Cairns, M.L.; Dickson, G.R.; Orr, J.F.; Farrar, D.; Hardacre, C.; Sa, J.; Lemoine, P.; Mughal, M.Z.; Buchanan, F.J. The potential of electron beam radiation for simultaneous surface modification and bioresorption control of PLLA. J. Biomed. Mater. Res. Part A 2012, 100, 2223–2229. [Google Scholar] [CrossRef]
- Li, P.; Feng, X.; Jia, X.; Fan, Y. Influences of tensile load on in vitro degradation of an electrospun poly (l-lactide-co-glycolide) scaffold. Acta Biomater. 2010, 6, 2991–2996. [Google Scholar] [CrossRef]
- Jun, I.; Han, H.-S.; Edwards, J.R.; Jeon, H. Electrospun fibrous scaffolds for tissue engineering: Viewpoints on architecture and fabrication. Int. J. Mol. Sci. 2018, 19, 745. [Google Scholar] [CrossRef]
- Joanne, P.; Kitsara, M.; Boitard, S.-E.; Naemetalla, H.; Vanneaux, V.; Pernot, M.; Larghero, J.; Forest, P.; Chen, Y.; Menasché, P. Nanofibrous clinical-grade collagen scaffolds seeded with human cardiomyocytes induces cardiac remodeling in dilated cardiomyopathy. Biomaterials 2016, 80, 157–168. [Google Scholar] [CrossRef]
- Li, J.; Minami, I.; Yu, L.; Tsuji, K.; Nakajima, M.; Qiao, J.; Suzuki, M.; Shimono, K.; Nakatsuji, N.; Kotera, H. Extracellular recordings of patterned human pluripotent stem cell-derived cardiomyocytes on aligned fibers. Stem Cells Int. 2016, 2016, 2634013. [Google Scholar] [CrossRef]
- Wanjare, M.; Hou, L.; Nakayama, K.H.; Kim, J.J.; Mezak, N.P.; Abilez, O.J.; Tzatzalos, E.; Wu, J.C.; Huang, N.F. Anisotropic microfibrous scaffolds enhance the organization and function of cardiomyocytes derived from induced pluripotent stem cells. Biomater. Sci. 2017, 5, 1567–1578. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Wu, Q.; Xia, Y.; Wagner, M.B.; Xu, C. Cell alignment induced by anisotropic electrospun fibrous scaffolds alone has limited effect on cardiomyocyte maturation. Stem Cell Res. 2016, 16, 740–750. [Google Scholar] [CrossRef] [PubMed]
- Chun, Y.W.; Balikov, D.A.; Feaster, T.K.; Williams, C.H.; Sheng, C.C.; Lee, J.-B.; Boire, T.C.; Neely, M.D.; Bellan, L.M.; Ess, K.C. Combinatorial polymer matrices enhance in vitro maturation of human induced pluripotent stem cell-derived cardiomyocytes. Biomaterials 2015, 67, 52–64. [Google Scholar] [CrossRef]
- Xu, C.; Miranda-Nieves, D.; Ankrum, J.A.; Matthiesen, M.E.; Phillips, J.A.; Roes, I.; Wojtkiewicz, G.R.; Juneja, V.; Kultima, J.R.; Zhao, W. Tracking mesenchymal stem cells with iron oxide nanoparticle loaded poly (lactide-co-glycolide) microparticles. Nano Lett. 2012, 12, 4131–4139. [Google Scholar] [CrossRef] [PubMed]
- Ankrum, J.A.; Dastidar, R.G.; Ong, J.F.; Levy, O.; Karp, J.M. Performance-enhanced mesenchymal stem cells via intracellular delivery of steroids. Sci. Rep. 2014, 4, 4645. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.B.; Lopez, M.J.; Kelley, B. Dexamethasone. 2018. Available online: https://pubmed.ncbi.nlm.nih.gov/29489240/ (accessed on 2 May 2023).
- Rog-Zielinska, E.A.; Richardson, R.V.; Denvir, M.A.; Chapman, K.E. Glucocorticoids and foetal heart maturation; implications for prematurity and foetal programming. J. Mol. Endocrinol. 2014, 52, 125–135. [Google Scholar] [CrossRef]
- Parikh, S.S.; Blackwell, D.J.; Gomez-Hurtado, N.; Frisk, M.; Wang, L.; Kim, K.; Dahl, C.P.; Fiane, A.; Tønnessen, T.; Kryshtal, D.O. Thyroid and glucocorticoid hormones promote functional T-tubule development in human-induced pluripotent stem cell–derived cardiomyocytes. Circ. Res. 2017, 121, 1323–1330. [Google Scholar] [CrossRef]
- El Zaoui, I.; Behar-Cohen, F.; Torriglia, A. Glucocorticoids exert direct toxicity on microvasculature: Analysis of cell death mechanisms. Toxicol. Sci. 2015, 143, 441–453. [Google Scholar] [CrossRef]
- Doshi, J.; Reneker, D.H. Electrospinning process and applications of electrospun fibers. J. Electrost. 1995, 35, 151–160. [Google Scholar] [CrossRef]
- Hotaling, N.A.; Bharti, K.; Kriel, H.; Simon, C.G., Jr. DiameterJ: A validated open source nanofiber diameter measurement tool. Biomaterials 2015, 61, 327–338. [Google Scholar] [CrossRef]
- Keijdener, H.; Konrad, J.; Hoffmann, B.; Gerardo-Nava, J.; Rütten, S.; Merkel, R.; Vázquez-Jiménez, J.; Brook, G.A.; Jockenhoevel, S.; Mela, P. A bench-top molding method for the production of cell-laden fibrin micro-fibers with longitudinal topography. J. Biomed. Mater. Res. Part B Appl. Biomater. 2020, 108, 1198–1212. [Google Scholar] [CrossRef] [PubMed]
- Kyriakou, S.; Lubig, A.; Sandhoff, C.A.; Kuhn, Y.; Jockenhoevel, S. Influence of Diameter and Cyclic Mechanical Stimulation on the Beating Frequency of Myocardial Cell-Laden Fibers. Gels 2023, 9, 677. [Google Scholar] [CrossRef] [PubMed]
- Moreira, R.; Velz, T.; Alves, N.; Gesche, V.N.; Malischewski, A.; Schmitz-Rode, T.; Frese, J.; Jockenhoevel, S.; Mela, P. Tissue-engineered heart valve with a tubular leaflet design for minimally invasive transcatheter implantation. Tissue Eng. Part C Methods 2015, 21, 530–540. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Lin, J.; Fei, Y.; Wang, H.; Gao, W. Preparation and characterization of electrospinning PLA/curcumin composite membranes. Fibers Polym. 2010, 11, 1128–1131. [Google Scholar] [CrossRef]
- Casasola, R.; Thomas, N.L.; Trybala, A.; Georgiadou, S. Electrospun poly lactic acid (PLA) fibres: Effect of different solvent systems on fibre morphology and diameter. Polymer 2014, 55, 4728–4737. [Google Scholar] [CrossRef]
- Zhao, L.; He, C.; Gao, Y.; Cen, L.; Cui, L.; Cao, Y. Preparation and cytocompatibility of PLGA scaffolds with controllable fiber morphology and diameter using electrospinning method. J. Biomed. Mater. Res. Part B Appl. Biomater. 2008, 87, 26–34. [Google Scholar] [CrossRef]
- Liu, X.; Baldursdottir, S.G.; Aho, J.; Qu, H.; Christensen, L.P.; Rantanen, J.; Yang, M. Electrospinnability of poly lactic-co-glycolic acid (PLGA): The role of solvent type and solvent composition. Pharm. Res. 2017, 34, 738–749. [Google Scholar] [CrossRef]
- Castaño Linares, Ó.; López Mengual, A.; Reginensi, D.; Matamoros Angles, A.; Engel López, E.; del Río Fernández, J.A. Chemotactic TEG3 cells’ guiding platforms based on PLA fibers functionalized with the SDF-1a/CXCL12 chemokine for neural regeneration therapy. Front. Bioeng. Biotechnol. 2021, 9, 1–12. [Google Scholar]
- Vacanti, N.M.; Cheng, H.; Hill, P.S.; Guerreiro, J.O.D.; Dang, T.T.; Ma, M.; Watson, S.E.; Hwang, N.S.; Langer, R.; Anderson, D.G. Localized delivery of dexamethasone from electrospun fibers reduces the foreign body response. Biomacromolecules 2012, 13, 3031–3038. [Google Scholar] [CrossRef]
- Tsiapla, A.-R.; Karagkiozaki, V.; Bakola, V.; Pappa, F.; Gkertsiou, P.; Pavlidou, E.; Logothetidis, S. Biomimetic and biodegradable cellulose acetate scaffolds loaded with dexamethasone for bone implants. Beilstein J. Nanotechnol. 2018, 9, 1986–1994. [Google Scholar] [CrossRef]
- Li, D.; Guo, G.; Fan, R.; Liang, J.; Deng, X.; Luo, F.; Qian, Z. PLA/F68/Dexamethasone implants prepared by hot-melt extrusion for controlled release of anti-inflammatory drug to implantable medical devices: I. Preparation, characterization and hydrolytic degradation study. Int. J. Pharm. 2013, 441, 365–372. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.J.; Kim, J.H.; Park, T.G. Dexamethasone-releasing biodegradable polymer scaffolds fabricated by a gas-foaming/salt-leaching method. Biomaterials 2003, 24, 2323–2329. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Luo, Y.; Pan, J.; Chen, A.; Ma, D.; Xu, M.; Tang, J.; Zhang, H. Long-term release of dexamethasone with a polycaprolactone-coated electrode alleviates fibrosis in cochlear implantation. Front. Cell Dev. Biol. 2021, 9, 740576. [Google Scholar] [CrossRef] [PubMed]
- Barbosa-Alfaro, D.; Andres-Guerrero, V.; Fernandez-Bueno, I.; García-Gutiérrez, M.T.; Gil-Alegre, E.; Molina-Martínez, I.T.; Pastor-Jimeno, J.C.; Herrero-Vanrell, R.; Bravo-Osuna, I. Dexamethasone plga microspheres for sub-tenon administration: Influence of sterilization and tolerance studies. Pharmaceutics 2021, 13, 228. [Google Scholar] [CrossRef] [PubMed]
- Zheng, A.; Waterkotte, T.; Debele, T.; Dion, G.; Park, Y. Biodegradable dexamethasone polymer capsule for long-term release. Korean J. Chem. Eng. 2023, 40, 452–460. [Google Scholar] [CrossRef]
- Gu, Z.; Fan, S.; Kundu, S.C.; Yao, X.; Zhang, Y. Fiber diameters and parallel patterns: Proliferation and osteogenesis of stem cells. Regen. Biomater. 2023, 10, rbad001. [Google Scholar] [CrossRef]
- Xu, L.; Wang, H.; Tian, H.; Zhang, M.; He, J.; Ni, P. Facile construction of noncovalent graft copolymers with triple stimuli-responsiveness for triggered drug delivery. Polym. Chem. 2021, 12, 2152–2164. [Google Scholar] [CrossRef]
- Li, Z.; Huang, H.; Huang, L.; Du, L.; Sun, Y.; Duan, Y. Prevention of oxidized low density lipoprotein-induced endothelial cell injury by DA-PLGA-PEG-cRGD nanoparticles combined with ultrasound. Int. J. Mol. Sci. 2017, 18, 815. [Google Scholar] [CrossRef]
- Ding, Y.; Gao, Z.-G.; Jacobson, K.A.; Suffredini, A.F. Dexamethasone enhances ATP-induced inflammatory responses in endothelial cells. J. Pharmacol. Exp. Ther. 2010, 335, 693–702. [Google Scholar] [CrossRef]
- Herrera, N.A.; Duchatsch, F.; Kahlke, A.; Amaral, S.L.; Vasquez-Vivar, J. In vivo vascular rarefaction and hypertension induced by dexamethasone are related to phosphatase PTP1B activation not endothelial metabolic changes. Free. Radic. Biol. Med. 2020, 152, 689–696. [Google Scholar] [CrossRef]
- Siuda, D.; Tobias, S.; Rus, A.; Xia, N.; Förstermann, U.; Li, H. Dexamethasone upregulates Nox1 expression in vascular smooth muscle cells. Pharmacology 2014, 94, 13–20. [Google Scholar] [CrossRef]
- Shi, W.; Fuad, A.R.M.; Li, Y.; Wang, Y.; Huang, J.; Du, R.; Wang, G.; Wang, Y.; Yin, T. Biodegradable polymeric nanoparticles increase risk of cardiovascular diseases by inducing endothelium dysfunction and inflammation. J. Nanobiotechnology 2023, 21, 65. [Google Scholar]
- Rezaei, H.; Rezaie, Z.; Seifati, S.M.; Ardeshirylajimi, A.; Basiri, A.; Taheri, M.; Omrani, M.D. Poly-phosphate increases SMC differentiation of mesenchymal stem cells on PLGA–polyurethane nanofibrous scaffold. Cell Tissue Bank. 2020, 21, 495–505. [Google Scholar] [CrossRef]
- Khan, M.; Xu, Y.; Hua, S.; Johnson, J.; Belevych, A.; Janssen, P.M.; Gyorke, S.; Guan, J.; Angelos, M.G. Evaluation of changes in morphology and function of human induced pluripotent stem cell derived cardiomyocytes (HiPSC-CMs) cultured on an aligned-nanofiber cardiac patch. PLoS ONE 2015, 10, e0126338. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, C.-W.; Bai, M.-Y.; Chang, Y.; Chung, M.-F.; Lee, T.-Y.; Wu, C.-T.; Maiti, B.; Liao, Z.-X.; Li, R.-K.; Sung, H.-W. Electrical coupling of isolated cardiomyocyte clusters grown on aligned conductive nanofibrous meshes for their synchronized beating. Biomaterials 2013, 34, 1063–1072. [Google Scholar] [CrossRef] [PubMed]
- Zong, X.; Bien, H.; Chung, C.-Y.; Yin, L.; Fang, D.; Hsiao, B.S.; Chu, B.; Entcheva, E. Electrospun fine-textured scaffolds for heart tissue constructs. Biomaterials 2005, 26, 5330–5338. [Google Scholar] [CrossRef]
- Gay, M.S.; Li, Y.; Xiong, F.; Lin, T.; Zhang, L. Dexamethasone treatment of newborn rats decreases cardiomyocyte endowment in the developing heart through epigenetic modifications. PLoS ONE 2015, 10, e0125033. [Google Scholar] [CrossRef]
- Gay, M.S.; Dasgupta, C.; Li, Y.; Kanna, A.; Zhang, L. Dexamethasone induces cardiomyocyte terminal differentiation via epigenetic repression of cyclin D2 gene. J. Pharmacol. Exp. Ther. 2016, 358, 190–198. [Google Scholar] [CrossRef]
- Kim, H.; Kim, H.A.; Bae, Y.M.; Choi, J.S.; Lee, M. Dexamethasone-conjugated polyethylenimine as an efficient gene carrier with an anti-apoptotic effect to cardiomyocytes. J. Gene Med. 2009, 11, 515–522. [Google Scholar] [CrossRef]
- Rossier, M.F.; Lenglet, S.B.; Vetterli, L.; Python, M.; Maturana, A.S. Corticosteroids and redox potential modulate spontaneous contractions in isolated rat ventricular cardiomyocytes. Hypertension 2008, 52, 721–728. [Google Scholar] [CrossRef]
Polymeric Solution | DEX Concentration (mg/mL) |
---|---|
PLA | 0 |
20 PLA | 20 |
40 PLA | 40 |
PLGA | 0 |
20 PLGA | 20 |
40 PLGA | 40 |
Antibody | Dilution | Supplier |
---|---|---|
Anti-α-actinin (sarcomeric), mouse monoclonal (primary) | 1:50 | Sigma-Aldrich (Saint Louis, MO, USA) |
Connexin 43 (polyclonal) (primany) | 1:50 | Thermo Fischer (Waltham, MA, USA) |
Connexin 43 monoclonal antibody (3D8A5) (primary) | 1:50 | Thermo Fischer (Waltham, MA, USA) |
Anti-CD31 (PECAM-1) mouse monoclonal (primary) | 1:100 | Sigma-Aldrich (Saint Louis, MO, USA) |
CD31 rabbit polyclonal (primary) | 1:100 | Abbiotec (Escondido, CA, USA) |
α-smooth muscle actin (monoclonal, clone 1A4) (primary) | 1:1000 | Sigma-Aldrich (Saint Louis, MO, USA) |
Anti-collagen I antibody (ab34710) (primary) | 1:200 | Abcam (Cambridge, UK) |
Alexa 594 goat anti-mouse (A11005) (secondary) | 1:400 | Thermo Fischer (Waltham, MA, USA) |
Alexa 594 goat anti-rabbit (A110012) (secondary) | 1:400 | Thermo Fischer (Waltham, MA, USA) |
Alexa 488 goat anti-mouse (A11001) (secondary) | 1:400 | Thermo Fischer (Waltham, MA, USA) |
Alexa 488 goat anti-mouse (A11008) (secondary) | 1:400 | Thermo Fischer (Waltham, MA, USA) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kyriakou, S.; Acosta, S.; El Maachi, I.; Rütten, S.; Jockenhoevel, S. A Dexamethasone-Loaded Polymeric Electrospun Construct as a Tubular Cardiovascular Implant. Polymers 2023, 15, 4332. https://doi.org/10.3390/polym15214332
Kyriakou S, Acosta S, El Maachi I, Rütten S, Jockenhoevel S. A Dexamethasone-Loaded Polymeric Electrospun Construct as a Tubular Cardiovascular Implant. Polymers. 2023; 15(21):4332. https://doi.org/10.3390/polym15214332
Chicago/Turabian StyleKyriakou, Stavroula, Sergio Acosta, Ikram El Maachi, Stephan Rütten, and Stefan Jockenhoevel. 2023. "A Dexamethasone-Loaded Polymeric Electrospun Construct as a Tubular Cardiovascular Implant" Polymers 15, no. 21: 4332. https://doi.org/10.3390/polym15214332
APA StyleKyriakou, S., Acosta, S., El Maachi, I., Rütten, S., & Jockenhoevel, S. (2023). A Dexamethasone-Loaded Polymeric Electrospun Construct as a Tubular Cardiovascular Implant. Polymers, 15(21), 4332. https://doi.org/10.3390/polym15214332