Development of Lead-Free Radiation Shielding Material Utilizing Barium Sulfate and Magnesium Oxide as Fillers in Addition Cure Liquid Silicone Rubber
Abstract
:1. Introduction
2. Materials and Methods
2.1. Manufacture of the Samples
2.2. Sample Characterizations
2.2.1. Tensile Tests
2.2.2. Wettability
2.2.3. Density
2.2.4. Viscosity
2.2.5. Morphology
2.2.6. Irradiation Tests
3. Results and Discussion
3.1. Material Characterization
3.2. Montecarlo Simulations and Effecttive Transmission Analysis
3.3. Radiation Shielding Effectiveness
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hricak, H.; Brenner, D.J.; Adelstein, S.J.; Frush, D.P.; Hall, E.J. Managing radiation use in medical imaging: A multifaceted challenge. Radiology 2011, 258, 889–905. [Google Scholar] [CrossRef] [PubMed]
- ICRP-Publication. The 2007 Recommendations of the International Commission on Radiological Protection. Ann. ICRP 2007, 103, 2–4. [Google Scholar]
- Hendee, W.; Edwards, F. ALARA and an integrated approach to radiation protection. Semin. Nucl. Med. 1986, 16, 142–150. [Google Scholar] [CrossRef]
- Yeung, A.W.K. The “As Low As Reasonably Achievable” (ALARA) principle: A brief historical overview and a bibliometric analysis of the most cited publications. Radioprotection 2019, 54, 103–109. [Google Scholar] [CrossRef]
- Peters, S.; Zweers, D.; de Lange, F.; Mourik, J. Lead composite vs. nonlead protective garments: Which are better? A multivendor comparison. Radiat. Prot. Dosim. 2017, 175, 460–465. [Google Scholar] [CrossRef] [PubMed]
- Khan, F.M. The Physics of Radiation Therapy, 2nd ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 1994. [Google Scholar]
- Glasgow, G.P. The Safety point bismuth/lead alloys: A review. Med. Dosim. 1991, 1, 13–18. [Google Scholar] [CrossRef]
- Takano, Y.; Okazaki, K.; Ono, K.; Kai, M. Experimental and theoretical studies on radiation protective effect of a lighter non-lead protective apron. Jpn. J. Radiol. Technol. 2005, 61, 1027–1032. [Google Scholar] [CrossRef]
- Yaffe, M.J.; Mawdsley, G.E.; Martin, L.; Servant, R.; George, R. Composite materials for X-ray protection. Health Phys. 1991, 60, 661–664. [Google Scholar] [CrossRef]
- Nambiar, S.; Yeow, J.T.W. Polymer-Composite Materials for Radiation Protection. ACS Appl. Mater. Interfaces 2012, 4, 5717–5726. [Google Scholar] [CrossRef]
- Yue, K.; Luo, W.; Dong, X.; Wang, C.; Wu, G.; Jiang, M.; Zha, Y. A new lead-free radiation shielding material for radiotheraphy. Radiat. Prot. Dosim. 2009, 133, 256–260. [Google Scholar] [CrossRef]
- Kellens, P.; De Hauwere, A.; Gossye, T.; Peire, S.; Tournicourt, I.; Strubbe, L.; Pooter, J.; Bacher, K. Integrity of personal radiation protective equipment (PRPE): A 4-year longitudinal follow-up study. Insights Imaging 2022, 13, 183. [Google Scholar] [CrossRef] [PubMed]
- Finnerty, M.; Brennan, P.C. Protective aprons in imaging departments: Manufacturer stated lead equivalence values require validation. Eur. Radiol. 2005, 15, 1477–1484. [Google Scholar] [CrossRef] [PubMed]
- Webster, E.W. Experiments with medium Z materials for shielding against low-energy X-rays. Radiology 1966, 86, 1. [Google Scholar] [CrossRef]
- Webster, E.W. Addendum to ‘Composite materials for X-ray protection’. Health Phys. 1991, 61, 917–918. [Google Scholar] [PubMed]
- Çetin, H.; Yurt, A.; Yuksel, S.H. The absorption properties of lead-free garments for use in radiation protection. Radiat. Prot. Dosim. 2016, 173, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Mungpayaban, H.; Rindhatayathon, P.; Ninlaphruk, S.; Rueanngoen, A.; Ekgasit, S.; Pengprecha, S. X-ray protective materials from barium sulfate/amorphous cellulose/natural rubber composites. Radiat. Phys. Chem. 2022, 194, 110011. [Google Scholar] [CrossRef]
- Scuderi, J.G.; Brusovanik, G.V.; Campbell, D.R.; Henry, R.P.; Kwone, B.; Vaccaro, A.R. Evaluation of non–lead-based protective radiological material in spinal surgery. Spine J. 2006, 6, 577–582. [Google Scholar] [CrossRef]
- Aghamiri, M.R.; Mortazavi, S.M.J.; Tayebi, M.; Mosleh-Shirazi, M.; Baharvand, H.; Tavakkoli-Golpayegani, A.; Zeinali-Rafsanjani, B. A Novel Design for Production of Efficient Flexible Lead-Free Shields against X-ray Photons in Diagnostic Energy Range. J. Biomed. Phys. Eng. 2011, 1, 1. [Google Scholar]
- Schmid, E.; Panzer, W.; Schlattl, H.; Eder, H. Emission of fluorescent x-radiation from non-lead based shielding materials of protective clothing: A radiobiological problem? J. Radiol. Prot. 2012, 32, 129–139. [Google Scholar] [CrossRef]
- Faisal, M.; Khasim, S. Electromagnetic Absorption and Shielding Behavior of Polyaniline-Antimony Oxide Composites. AIP Conf. Proc. 2013, 1513, 1218–1219. [Google Scholar] [CrossRef]
- Gilys, L.; Griškonis, E.; Griškevičius, P.; Adlienė, D. Lead Free Multilayered Polymer Composites for Radiation Shielding. Polymers 2022, 14, 1696. [Google Scholar] [CrossRef] [PubMed]
- Adlienė, D.; Gilys, L.; Griškonis, E. Development and characterization of new tungsten and tantalum containing composites for radiation shielding in medicine. Nucl. Instrum. Methods Phys. Res. Sect. Beam Interact. Mater. Atoms 2020, 467, 21–26. [Google Scholar] [CrossRef]
- Kawano, S.; Nakagawa, H.; Okumura, Y.; Tsujikawa, K. A morality study of patients with itae-itae disease. Environ. Res. 1986, 40, 98–102. [Google Scholar] [CrossRef]
- Jasudkar, D.P.; Tulankar, A.L.; Satone, S.R. Arsenic and arsenic health effects. AIP Conf. Proc. 2019, 2104, 020047. [Google Scholar] [CrossRef]
- Sastri, V.R. Polymer Additives Used to Enhance Material Properties for Medical Device Applications; William Andrew Publishing: Norwich, UK, 2010; pp. 55–72. [Google Scholar] [CrossRef]
- Aral, N.; Nergis, F.B.; Candan, C. An alternative X-ray shielding material based on coated textiles. Text. Res. J. 2016, 86, 803–811. [Google Scholar] [CrossRef]
- Kim, S.; Choi, J.; Jeon, B. Physical analysis of the shielding capacity for a lightweight apron designed for shielding low intensity scattering X-rays. Sci. Rep. 2016, 6, 27721. [Google Scholar] [CrossRef]
- Dunne, N. 11—Mechanical properties of bone cements. In Orthopaedic Bone Cements; Deb, S., Ed.; Woodhead Publishing Series in Biomaterials; Woodhead Publishing: Sawston, UK, 2008; pp. 233–264. [Google Scholar] [CrossRef]
- Oglat, A.A.; Shalbi, S.M. An Alternative Radiation Shielding Material Based on Barium-Sulphate (BaSO4)-Modified Fly Ash Geopolymers. Gels 2022, 8, 227. [Google Scholar] [CrossRef]
- Pires, M.M.; Nascimento, C.D.; Souza, E.G.; Kruger, K.; Hoff, G. The use of barium sulfate as a constituent of concrete for shielding of radiology rooms. MatéRia 2021, 26, e13103. [Google Scholar] [CrossRef]
- Pires, M.M.; Nascimento, C.D.; Souza, E.G.; Hoff, G.; Kulakowski, M.P. A radiation shielding study for radiotherapy rooms: An application for barium concrete. Matéria 2022, 27, e202248962. [Google Scholar] [CrossRef]
- Lourenço, N.A.; Hoff, G.; Borba, I.; Pires, M.M.; Nascimento, C.D.; Souza, E.G.; Garcia, T.S.; Trombini, H.; Pereira, L.G. Uso do Método de Monte Carlo para caracterização adicional de materiais para aplicação em blindagem de fótons. Rev. Bras. FíSica MéDica 2021, 15, 610. [Google Scholar] [CrossRef]
- Kim, S. Performance Evaluation of Radiation-Shielding Materials and Process Technology for Manufacturing Skin Protection Cream. Materials 2023, 16, 3059. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.C.; Dong, K.R.; Chung, W.K. Medical radiation shielding effect by composition of barium compounds. Ann. Nucl. Energy 2012, 47, 1–5. [Google Scholar] [CrossRef]
- Seon-Chil Kim, H.M.J. A Study on Performance of Low-Dose Medical Radiation Shielding Fiber (RSF) in CT Scans. Int. J. Technol. 2014, 4, 178–187. [Google Scholar] [CrossRef]
- Wang, X.; Qin, Y.; Zhao, C. High-temperature behavior of silicone rubber composite with boron oxide/calcium silicate. e-Polymers 2022, 22, 595–606. [Google Scholar] [CrossRef]
- McCaffrey, J.P.; Shen, H.; Downton, B.; Mainegra-Hing, E. Radiation attenuation by lead and nonlead materials used in radiation shielding garments. Med. Phys. 2007, 34, 530–537. [Google Scholar] [CrossRef] [PubMed]
- Hoff, G.; Streck, E.; Lai, A.; Fanti, V.; Golosio, B.; Nascimento, C.; Souza, E. Using Geant4 Monte Carlo toolkit to evaluate a low power X-ray tube generator configuration. Appl. Radiat. Isot. 2021, 168, 109487. [Google Scholar] [CrossRef]
- ASTM D412; Standard Test Methods for Vulcanized Rubber and Thermoplastic Elastomers-Tension. Technical Report; ASTM International: West Conshohocken, PA, USA, 2013.
- Scaff, L.A.M. Física da Radioterapia; Sarvier: Suresnes, France, 1997. [Google Scholar]
- Li, Y.; Zeng, X.; Lai, X.; Li, H.; Fang, W. Effect of the platinum catalyst content on the tracking and erosion resistance of addition-cure liquid silicone rubber. Polym. Test. 2017, 63, 92–100. [Google Scholar] [CrossRef]
- Agostinelli, S.; Allison, J.; Amako, K.a.; Apostolakis, J.; Araujo, H.; Arce, P.; Asai, M.; Axen, D.; Banerjee, S.; Barrand, G.; et al. GEANT4—A simulation toolkit. Nucl. Instrum. Methods Phys. Res. A 2003, 506, 250–303. [Google Scholar] [CrossRef]
- Allison, J.; Amako, K.; Apostolakis, J.; Araujo, H.; Dubois, P.A.; Asai, M.; Barrand, G.; Capra, R.; Chauvie, S.; Chytracek, R.; et al. Geant4 developments and applications. IEEE Trans. Nucl. Sci. 2006, 53, 270–278. [Google Scholar] [CrossRef]
- Allison, J.; Amako, K.; Apostolakis, J.; Arce, P.; Asai, M.; Aso, T.; Bagli, E.; Bagulya, A.; Banerjee, S.; Barrand, G.; et al. Recent developments in Geant4. Nucl. Instrum. Methods Phys. Res. A 2016, 835, 186–225. [Google Scholar] [CrossRef]
- Cranley, K. Catalogue of Diagnostic X-ray Spectra and Other Data; The Institute of Physics and Engineering in Medicine Report (IPEN): York, UK, 1997. [Google Scholar]
- Hoff, G.; Firmino, S.F.; Papaléo, R.M.; de Vilhena, M.T.M.B. Estimating Transmission Curves of Primary X-Ray Beams Used in Diagnostic Radiology. IEEE Trans. Nucl. Sci. 2012, 59, 323–333. [Google Scholar] [CrossRef]
- Resolution RDC No. 611; Technical Report. Agência Nacional de Vigilância Sanitária (ANVISA): Brasilia, Brazil, 9 March 2022.
Material | Density (g/cm) | Contact Angle (°) |
---|---|---|
ALSR | ||
ALSR-Ba | ||
ALSR-Ba-Mg |
Components | Material | |
---|---|---|
ALSR-Ba (% wt) | ALSR-Ba-Mg (% wt) | |
(CH3)2 | 0.887 | 0.787 |
SiO | 0.047 | 0.041 |
BaSO4 | 0.067 | 0.079 |
MgO | NA | 0.081 |
Peak Tension (kVp) | MSE (%) | Shielding at 12 mm (%) | Pb | Pb | ||
---|---|---|---|---|---|---|
ALSR-Ba | ALSR-Ba-Mg | ALSR-Ba | ALSR-Ba-Mg | 0.42 mm | 0.50 mm | |
50 | 2.78 | 1.28 | 1.10 | 0.15 | 0.30 | 0.28 |
60 | 3.58 | 0.18 | 3.21 | 0.30 | 1.17 | 0.38 |
80 | 2.49 | 0.49 | 4.64 | 3.08 | 4.38 | 2.59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Souza, E.G.; Kruger, K.; Nascimento, C.D.; Aguzzoli, C.; Hoff, G.; Moraes, A.C.B.K.; Lund, R.G.; Nascente, P.S.; Cuevas-Suárez, C.E.; Piva, E.; et al. Development of Lead-Free Radiation Shielding Material Utilizing Barium Sulfate and Magnesium Oxide as Fillers in Addition Cure Liquid Silicone Rubber. Polymers 2023, 15, 4382. https://doi.org/10.3390/polym15224382
Souza EG, Kruger K, Nascimento CD, Aguzzoli C, Hoff G, Moraes ACBK, Lund RG, Nascente PS, Cuevas-Suárez CE, Piva E, et al. Development of Lead-Free Radiation Shielding Material Utilizing Barium Sulfate and Magnesium Oxide as Fillers in Addition Cure Liquid Silicone Rubber. Polymers. 2023; 15(22):4382. https://doi.org/10.3390/polym15224382
Chicago/Turabian StyleSouza, Everton G., Kaiser Kruger, Chiara D. Nascimento, Cesar Aguzzoli, Gabriela Hoff, Ana Cristina B. K. Moraes, Rafael G. Lund, Patrícia S. Nascente, Carlos E. Cuevas-Suárez, Evandro Piva, and et al. 2023. "Development of Lead-Free Radiation Shielding Material Utilizing Barium Sulfate and Magnesium Oxide as Fillers in Addition Cure Liquid Silicone Rubber" Polymers 15, no. 22: 4382. https://doi.org/10.3390/polym15224382
APA StyleSouza, E. G., Kruger, K., Nascimento, C. D., Aguzzoli, C., Hoff, G., Moraes, A. C. B. K., Lund, R. G., Nascente, P. S., Cuevas-Suárez, C. E., Piva, E., & Carreno, N. L. V. (2023). Development of Lead-Free Radiation Shielding Material Utilizing Barium Sulfate and Magnesium Oxide as Fillers in Addition Cure Liquid Silicone Rubber. Polymers, 15(22), 4382. https://doi.org/10.3390/polym15224382