Simulation Design of Novel Non-Fluorine Polymers as Electron Transport Layer for Lead-Free Perovskite Solar Cells
Abstract
:1. Introduction
2. Device Models for Simulation
3. Simulation Software
4. Simulation Steps
- Step 1
- Start of simulation: Define the environment, geometry, and physical parameters of all the device’s layers according to Table 1.
- Step 2
- Step 3
- Estimation of ranges for different parameters: Propose the range of thickness and doping density for each layer of (i) device BT-LIC, (ii) device BT-BIC, (iii) device BT-L4F, and (iv) device BT-BO-L4F from the literature.
- Step 4
- Thickness optimization of HTL: Determine the optimal thickness of PEDOT: PSS for each device as a hole transport layer through a series of simulations, which gives the maximum power conversion efficiency and quantum efficiency (QE). After that, update with the optimal thickness of PEDOT: PSS for further simulations.
- Step 5
- Determination of PV parameters as a function of HTL thickness: Determine the photovoltaic parameters such as open-circuit voltage, short-circuit current, fill factor, and power conversion efficiency of each device as a function of PEDOT: PSS thickness.
- Step 6
- Thickness optimization of perovskite absorber layer: Determine the optimal thickness of the perovskite absorber layer (Cs2AgBi0.75Sb0.25Br6) for each device as an absorber layer through a series of simulations, which gives the maximum power conversion efficiency and quantum efficiency. Then, update with the optimal thickness of the absorber for further simulations.
- Step 7
- Determination of PV parameters as a function of perovskite thickness: Determine the photovoltaic parameters such as open-circuit voltage, short-circuit current, fill factor, and power conversion efficiency of each device as a function of absorber thickness. But for simplicity, only the photovoltaic parameters of a highly efficient device are shown and discussed.
- Step 8
- Thickness optimization of ETL: Determine the optimal thickness of the ETL for each device ((i) BT-LIC, (ii) BT-BIC, (iii) BT-L4F, and (iv) BT-BO-L4F) through a series of simulations, which gives the maximum power conversion efficiency and quantum efficiency. After that, update with the optimal thickness of the ETL for further simulations.
- Step 9
- Determination of PV parameters as a function of optimized ETL thickness: Determine the photovoltaic parameters such as open-circuit voltage, short-circuit current, fill factor, and power conversion efficiency of each device as a function of electron transfer layer thickness.
- Step 10
- Determination of PV parameters as a function of ETL doping: Determine the photovoltaic parameters such as open-circuit voltage, short-circuit current, fill factor, and power conversion efficiency of each device as a function of ETL doping density.
- Step 11
- Determination of PV response and parameters of the optimized devices: Determine the photovoltaic current–voltage response and other photovoltaic parameters of all the optimized devices such as open-circuit voltage, short-circuit current, fill factor, and power conversion efficiency of each device as a function of ETL doping density.
- Step 12
- Determination of QE response of the optimized devices: Determine the quantum efficiency of all the optimized devices.
- Step 13
- End of simulation.
Photovoltaic Parameters | PEDOT:PSS | Perovskite Cs2AgBi0.75Sb0.25Br6 | BT-LIC | BT-BIC | BT-L4F | BT-BO-L4F |
---|---|---|---|---|---|---|
Thickness (nm) | 50 | 500 | 100 | 100 | 100 | 100 |
Energy Bandgap (Eg, eV) | 2.2 | 1.8 | 1.57 | 1.73 | 1.58 | 1.6 |
Electron Affinity (X, eV) | 2.9 | 3.58 | 3.85 | 3.73 | 4 | 3.98 |
Dielectric Permittivity () | 3.0 | 6.5 | 3.5 | 3.5 | 3.5 | 3.5 |
Effective Density of States at Conduction Band (Nc, cm−3) | 2.2 × 1015 | 2.2 × 1018 | 1 × 1020 | 1 × 1020 | 1 × 1020 | 1 × 1020 |
Effective Density of States at Valence Band (Nv, cm−3) | 1.8 × 1018 | 1.8 × 1019 | 1 × 1020 | 1 × 1020 | 1 × 1020 | 1 × 1020 |
Hole Thermal Velocity (Vh, cm/s) | 1 × 107 | 1 × 107 | 1 × 107 | 1 × 107 | 1 × 107 | 1 × 107 |
Electron Thermal Velocity (Ve, cm/s) | 1 × 107 | 1 × 107 | 1 × 107 | 1 × 107 | 1 × 107 | 1 × 107 |
Electron Mobility (, cm−2/V.s) | 10 | 2 | 1 × 10−4 | 1 × 10−4 | 1 × 10−4 | 1 × 10−4 |
Hole Mobility (, cm−2/V.s) | 10 | 2 | 1 × 10−4 | 1 × 10−4 | 1 × 10−4 | 1 × 10−4 |
Uniform Shallow Donor Doping (Nd,,cm−3) | - | - | 1 × 1016 | 1 × 1016 | 1 × 1016 | 1 × 1016 |
Uniform Shallow Acceptor Doping (Na, cm−3) | 1015 | - | 1 × 1016 | - | - | - |
Defect Density (Nt, cm−3) | 1014 | 1014 | 1014 | 1014 | 1014 | 1014 |
Reference | [65,66,67,68,69] | [70,71] | [72,73,74] |
5. Simulation Material Parameters
6. Results and Discussion
6.1. Thickness Optimization of the Hole Transport Layer
6.2. Thickness Optimization of the Absorber Layer
- Thicker absorber layers enhance absorption efficacy by capturing more photons, increasing the likelihood of photon absorption and charge carrier generation.
- The thickness of the absorber layer affects charge carrier extraction. Excessive thickness can lead to increased recombination or trapping of charge carriers, reducing the quantum efficiency.
- Thicker absorber layers may experience more light scattering or reflection at interfaces, resulting in a loss of absorbed photons and potentially impacting the quantum efficiency.
- Thin absorber layers may exhibit limited charge transport and higher recombination rates, while excessively thick layers can impede charge extraction due to longer carrier transit times, both affecting the overall efficiency.
6.3. Thickness Optimization of Electron Transport Layer
- (a)
- Device architecture: The optimal electron transport layer thickness may vary according to the specific device architecture, such as whether the solar cell has a planar or mesoporous structure.
- (b)
- Material characteristics: The ideal thickness for effective charge transfer and extraction can be influenced by the electron transport layer’s material characteristics, such as (i) electron transport, (ii) series resistance, (iii) shunt resistance, (iv) carrier lifetime, (v) electron mobility, (vi) electron density, (vii) recombination losses, (viii) charge extraction efficiency, (ix) optical absorption, and (x) interface energy level alignment, among others.
- (c)
- Thin-film deposition method: There are several thin-film deposition methods that may be used to manage the electron transport layer’s thickness, and each has advantages and limitations of its own. Spin coating, for instance, is a very cheap and simple method.
- (d)
- Post-deposition method: By modifying the thickness of the electron transport layer using post-deposition techniques like solvent or annealing, the morphology and interface properties of the electron transport layer may be altered.
- (e)
- Photovoltaic performance matrices: Depending on the device’s individual performance metrics, such as power conversion efficiency, short-circuit current, and fill factor, the ideal electron transport layer thickness may vary. These metrics may all be influenced by the electron transport layer’s thickness.
- (f)
- Trade-offs: When determining the ideal electron transport layer thickness, it is frequently necessary to compromise between several device characteristics, such as reducing leakage currents while increasing charge transfer efficiency.
- (g)
- Interaction with other layers: The electron transport layer’s thickness can have an impact on how the electrode, absorber layer, and hole transport layer interact with other layers in the device.
- (h)
- Energy level alignment: The energy level alignment between the ETL and the perovskite layer exhibits some differences. Such differences can lead to a modification of the energy levels inside the valence band (VB) and conduction band (CB) at the interface separating the electron transport layer (ETL) and the perovskite material. The determination of the energy level offset plays a crucial role in driving the process of charge transfer and has a significant impact on the efficiency of charge extraction and hence the efficiency of solar cells. This might make the optimization procedure more challenging.
6.4. Doping Density Optimization of the Electron Transport Layer
6.5. Photo Current–Voltage Response of the Optimized Devices
6.6. External Quantum Efficiency Response of the Optimized Devices
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, S.; Biju, V.P.; Qi, Y.; Chen, W.; Liu, Z. Recent Progress in the Development of High-Efficiency Inverted Perovskite Solar Cells. NPG Asia Mater. 2023, 15, 27. [Google Scholar] [CrossRef]
- Shao, M.; Bie, T.; Yang, L.; Gao, Y.; Jin, X.; He, F.; Zheng, N.; Yu, Y.; Zhang, X. Over 21% Efficiency Stable 2D Perovskite Solar Cells. Adv. Mater. 2022, 34, 2107211. [Google Scholar] [CrossRef] [PubMed]
- Rong, Y.; Hu, Y.; Mei, A.; Tan, H.; Saidaminov, M.I.; Seok, S., II; McGehee, M.D.; Sargent, E.H.; Han, H. Challenges for Commercializing Perovskite Solar Cells. Science 2018, 361, eaat8235. [Google Scholar] [CrossRef]
- Liu, J.; Aydin, E.; Yin, J.; De Bastiani, M.; Isikgor, F.H.; Rehman, A.U.; Yengel, E.; Ugur, E.; Harrison, G.T.; Wang, M.; et al. 28.2%-Efficient, Outdoor-Stable Perovskite/Silicon Tandem Solar Cell. Joule 2021, 5, 3169–3186. [Google Scholar] [CrossRef]
- Babayigit, A.; Ethirajan, A.; Muller, M.; Conings, B. Toxicity of Organometal Halide Perovskite Solar Cells. Nat. Mater. 2016, 15, 247–251. [Google Scholar] [CrossRef] [PubMed]
- Ding, G.; Zheng, Y.; Xiao, X.; Cheng, H.; Zhang, G.; Shi, Y.; Shao, Y. Sustainable Development of Perovskite Solar Cells: Keeping a Balance between Toxicity and Efficiency. J. Mater. Chem. A 2022, 10, 8159–8171. [Google Scholar] [CrossRef]
- Moiz, S.A.; Alahmadi, A.N.M.; Alshaikh, M.S. Lead-Free FACsSnI3 Based Perovskite Solar Cell: Designing Hole and Electron Transport Layer. Nanomaterials 2023, 13, 1524. [Google Scholar] [CrossRef]
- Xu, F.; Zhang, M.; Li, Z.; Yang, X.; Zhu, R. Challenges and Perspectives toward Future Wide-Bandgap Mixed-Halide Perovskite Photovoltaics. Adv. Energy Mater. 2023, 13, 2203911. [Google Scholar] [CrossRef]
- Bello, O.O.; Emetere, M.E. Progress and Limitation of Lead-Free Inorganic Perovskites for Solar Cell Application. Solar Energy 2022, 243, 370–380. [Google Scholar] [CrossRef]
- Yu, W.; Zou, Y.; Wang, H.; Qu, B.; Chen, Z.; Xiao, L. Expanding the Absorption of Double Perovskite Cs2AgBiBr6 to NIR Region. J. Phys. Chem. Lett. 2023, 14, 5310–5317. [Google Scholar] [CrossRef]
- Zhai, M.; Chen, C.; Cheng, M. Advancing Lead-Free Cs2AgBiBr6 Perovskite Solar Cells: Challenges and Strategies. Solar Energy 2023, 253, 563–583. [Google Scholar] [CrossRef]
- Igbari, F.; Xu, F.F.; Shao, J.Y.; Ud-Din, F.; Siffalovic, P.; Zhong, Y.W. Stacking Interactions and Photovoltaic Performance of Cs2AgBiBr6 Perovskite. Solar RRL 2023, 7, 2200932. [Google Scholar] [CrossRef]
- Momblona, C.; Gil-Escrig, L.; Bandiello, E.; Hutter, E.M.; Sessolo, M.; Lederer, K.; Blochwitz-Nimoth, J.; Bolink, H.J. Efficient Vacuum Deposited P-i-n and n-i-p Perovskite Solar Cells Employing Doped Charge Transport Layers. Energy Environ. Sci. 2016, 9, 3456–3463. [Google Scholar] [CrossRef]
- Correa-Baena, J.P.; Saliba, M.; Buonassisi, T.; Grätzel, M.; Abate, A.; Tress, W.; Hagfeldt, A. Promises and Challenges of Perovskite Solar Cells. Science 2017, 358, 739–744. [Google Scholar] [CrossRef]
- Foo, S.; Thambidurai, M.; Senthil Kumar, P.; Yuvakkumar, R.; Huang, Y.; Dang, C. Recent Review on Electron Transport Layers in Perovskite Solar Cells. Int. J. Energy Res. 2022, 46, 21441–21451. [Google Scholar] [CrossRef]
- Mohamad Noh, M.F.; Teh, C.H.; Daik, R.; Lim, E.L.; Yap, C.C.; Ibrahim, M.A.; Ahmad Ludin, N.; bin Mohd Yusoff, A.R.; Jang, J.; Mat Teridi, M.A. The Architecture of the Electron Transport Layer for a Perovskite Solar Cell. J. Mater. Chem. C 2018, 6, 682–712. [Google Scholar] [CrossRef]
- Mihailetchi, V.D.; Van Duren, J.K.J.; Blom, P.W.M.; Hummelen, J.C.; Janssen, R.A.J.; Kroon, J.M.; Rispens, M.T.; Verhees, W.J.H.; Wienk, M.M. Electron Transport in a Methanofullerene. Adv. Funct. Mater. 2003, 13, 43–46. [Google Scholar] [CrossRef]
- Yang, D.; Zhang, X.; Wang, K.; Wu, C.; Yang, R.; Hou, Y.; Jiang, Y.; Liu, S.; Priya, S. Stable Efficiency Exceeding 20.6% for Inverted Perovskite Solar Cells through Polymer-Optimized PCBM Electron-Transport Layers. Nano Lett. 2019, 19, 3313–3320. [Google Scholar] [CrossRef]
- Karuppuswamy, P.; Hanmandlu, C.; Moorthy Boopathi, K.; Perumal, P.; Liu, C.; Chen, Y.-F.; Chang, Y.-C.; Wang, P.-C.; Lai, C.-S.; Chu, C.-W. Solution-Processable Electron Transport Layer for Efficient Hybrid Perovskite Solar Cells beyond Fullerenes. Sol. Energy Mater. Sol. Cells 2017, 169, 78–85. [Google Scholar] [CrossRef]
- Saki, Z.; Aitola, K.; Sveinbjörnsson, K.; Yang, W.; Svanström, S.; Cappel, U.B.; Rensmo, H.; Johansson, E.M.J.; Taghavinia, N.; Boschloo, G. The Synergistic Effect of Dimethyl Sulfoxide Vapor Treatment and C60 Electron Transporting Layer towards Enhancing Current Collection in Mixed-Ion Inverted Perovskite Solar Cells. J. Power Sour. 2018, 405, 70–79. [Google Scholar] [CrossRef]
- Etxebarria, I.; Ajuria, J.; Pacios, R. Polymer:Fullerene Solar Cells: Materials, Processing Issues, and Cell Layouts to Reach Power Conversion Efficiency over 10%, a Review. J. Photon. Energy 2015, 5, 57214. [Google Scholar] [CrossRef]
- Wang, D.; Ye, T.; Zhang, Y. Recent Advances of Non-Fullerene Organic Electron Transport Materials in Perovskite Solar Cells. J. Mater. Chem. A Mater. 2020, 8, 20819–20848. [Google Scholar] [CrossRef]
- Heo, J.H.; Lee, S.-C.; Jung, S.-K.; Kwon, O.-P.; Im, S.H. Efficient and Thermally Stable Inverted Perovskite Solar Cells by Introduction of Non-Fullerene Electron Transporting Materials. J. Mater. Chem. A Mater. 2017, 5, 20615–20622. [Google Scholar] [CrossRef]
- Padula, D.; Landi, A.; Prampolini, G. Assessing Alkyl Side Chain Effects on Electron Transport Properties of Y6-Derived Non-Fullerene Acceptors. Energy Adv. 2023, 2, 1215–1224. [Google Scholar] [CrossRef]
- Cao, X.; Li, P.; Zhu, X.; Li, H.; Xu, R.; Li, J.; Ma, L.; Dong, H.; Wu, Z. Nonfullerene Agent Enables Efficient and Stable Tin-Based Perovskite Solar Cells. Solar RRL 2023, 7, 2300268. [Google Scholar] [CrossRef]
- Lin, Y.; Wang, J.; Zhang, Z.G.; Bai, H.; Li, Y.; Zhu, D.; Zhan, X. An Electron Acceptor Challenging Fullerenes for Efficient Polymer Solar Cells. Adv. Mater. 2015, 27, 1170–1174. [Google Scholar] [CrossRef]
- Zhou, D.; Wang, J.; Xu, Z.; Xu, H.; Quan, J.; Deng, J.; Li, Y.; Tong, Y.; Hu, B.; Chen, L. Recent Advances of Nonfullerene Acceptors in Organic Solar Cells. Nano Energy 2022, 103, 107802. [Google Scholar] [CrossRef]
- Wei, Q.; Liu, W.; Leclerc, M.; Yuan, J.; Chen, H.; Zou, Y. A-DA′D-A Non-Fullerene Acceptors for High-Performance Organic Solar Cells. Sci. China Chem. 2020, 63, 1352–1366. [Google Scholar] [CrossRef]
- Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H.-L.; Lau, T.-K.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P.A.; et al. Single-Junction Organic Solar Cell with over 15% Efficiency Using Fused-Ring Acceptor with Electron-Deficient Core. Joule 2019, 3, 1140–1151. [Google Scholar] [CrossRef]
- Cui, Y.; Yao, H.; Zhang, J.; Xian, K.; Zhang, T.; Hong, L.; Wang, Y.; Xu, Y.; Ma, K.; An, C.; et al. Single-Junction Organic Photovoltaic Cells with Approaching 18% Efficiency. Adv. Mater. 2020, 32, 1908205. [Google Scholar] [CrossRef]
- Zhu, C.; Yuan, J.; Cai, F.; Meng, L.; Zhang, H.; Chen, H.; Li, J.; Qiu, B.; Peng, H.; Chen, S.; et al. Tuning the Electron-Deficient Core of a Non-Fullerene Acceptor to Achieve over 17% Efficiency in a Single-Junction Organic Solar Cell. Energy Environ. Sci. 2020, 13, 2459–2466. [Google Scholar] [CrossRef]
- Cai, Y.; Li, Y.; Wang, R.; Wu, H.; Chen, Z.; Zhang, J.; Ma, Z.; Hao, X.; Zhao, Y.; Zhang, C.; et al. A Well-Mixed Phase Formed by Two Compatible Non-Fullerene Acceptors Enables Ternary Organic Solar Cells with Efficiency over 18.6%. Adv. Mater. 2021, 33, 2101733. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Jiang, Y.; Jin, K.; Qin, J.; Xu, J.; Li, W.; Xiong, J.; Liu, J.; Xiao, Z.; Sun, K.; et al. 18% Efficiency Organic Solar Cells. Sci. Bullet. 2020, 65, 272–275. [Google Scholar] [CrossRef]
- Jin, K.; Xiao, Z.; Ding, L. 18.69% PCE from Organic Solar Cells. J. Semicond. 2021, 42, 060502. [Google Scholar] [CrossRef]
- Li, S.; Ye, L.; Zhao, W.; Zhang, S.; Mukherjee, S.; Ade, H.; Hou, J. Energy-Level Modulation of Small-Molecule Electron Acceptors to Achieve over 12% Efficiency in Polymer Solar Cells. Adv. Mater. 2016, 28, 9423–9429. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; He, Q.; Zhao, F.; Huo, L.; Mai, J.; Lu, X.; Su, C.J.; Li, T.; Wang, J.; Zhu, J.; et al. A Facile Planar Fused-Ring Electron Acceptor for As-Cast Polymer Solar Cells with 8.71% Efficiency. J. Am. Chem. Soc. 2016, 138, 2973–2976. [Google Scholar] [CrossRef]
- Pan, H.; Zhao, X.; Gong, X.; Li, H.; Ladi, N.H.; Zhang, X.L.; Huang, W.; Ahmad, S.; Ding, L.; Shen, Y.; et al. Advances in Design Engineering and Merits of Electron Transporting Layers in Perovskite Solar Cells. Mater. Horiz. 2020, 7, 2276–2291. [Google Scholar] [CrossRef]
- Mahmood, K.; Sarwar, S.; Mehran, M.T. Current Status of Electron Transport Layers in Perovskite Solar Cells: Materials and Properties. RSC Adv. 2017, 7, 17044–17062. [Google Scholar] [CrossRef]
- Saif, O.M.; Elogail, Y.; Abdolkader, T.M.; Shaker, A.; Zekry, A.; Abouelatta, M.; Salem, M.S.; Fedawy, M. Comprehensive Review on Thin Film Homojunction Solar Cells: Technologies, Progress and Challenges. Energies 2023, 16, 4402. [Google Scholar] [CrossRef]
- Bagade, S.S.; Barik, S.B.; Malik, M.M.; Patel, P.K. Impact of Band Alignment at Interfaces in Perovskite-Based Solar Cell Devices. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, S.; Hou, J. Crystal Structures in State-of-the-Art Non-Fullerene Electron Acceptors. J. Mater. Chem. A 2022, 11. [Google Scholar] [CrossRef]
- Li, G.; Zhang, X.; Jones, L.O.; Alzola, J.M.; Mukherjee, S.; Feng, L.W.; Zhu, W.; Stern, C.L.; Huang, W.; Yu, J.; et al. Systematic Merging of Nonfullerene Acceptor π-Extension and Tetrafluorination Strategies Affords Polymer Solar Cells with >16% Efficiency. J. Am. Chem. Soc. 2021, 143, 6123–6139. [Google Scholar] [CrossRef]
- Xin, J.; Li, W.; Zhang, Y.; Liang, Q.; Song, C.; Zhao, Y.; He, Z.; Liu, J.; Ma, W. A Review of Nonfullerene Solar Cells: Insight into the Correlation among Molecular Structure, Morphology, and Device Performance. Battery Energy 2023, 2, 20220040. [Google Scholar] [CrossRef]
- Liang, C.; Xing, G. Doping Electron Transporting Layer: An Effective Method to Enhance JSC of All-Inorganic Perovskite Solar Cells. Energy Environ. Mater. 2021, 4, 500–501. [Google Scholar] [CrossRef]
- Lee, S.; Paine, D.C.; Gleason, K.K. Heavily Doped Poly(3,4-Ethylenedioxythiophene) Thin Films with High Carrier Mobility Deposited Using Oxidative CVD: Conductivity Stability and Carrier Transport. Adv. Funct. Mater. 2014, 24, 7187–7196. [Google Scholar] [CrossRef]
- Xu, Z.; Li, N.; Niu, X.; Liu, H.; Liu, G.; Chen, Q.; Zhou, H. Balancing Energy-Level Difference for Efficient n-i-p Perovskite Solar Cells with Cu Electrode. Energy Mater. Adv. 2022, 2022, 9781073. [Google Scholar] [CrossRef]
- Wu, X.; Li, B.; Zhu, Z.; Chueh, C.C.; Jen, A.K.Y. Designs from Single Junctions, Heterojunctions to Multijunctions for High-Performance Perovskite Solar Cells. Chem. Soc. Rev. 2021, 50, 13090–13128. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, Z.; Zhang, W.; Jiang, Z.; Chen, W.; Chen, R.; Huang, Y.; Yang, Z.; Zhang, Y.; Han, L.; et al. Barrier Designs in Perovskite Solar Cells for Long-Term Stability. Adv. Energy Mater. 2020, 10, 2001610. [Google Scholar] [CrossRef]
- Fan, R.; Huang, Y.; Wang, L.; Li, L.; Zheng, G.; Zhou, H. The Progress of Interface Design in Perovskite-Based Solar Cells. Adv. Energy Mater. 2016, 6, 1600460. [Google Scholar] [CrossRef]
- Hossain, M.K.; Samajdar, D.P.; Das, R.C.; Arnab, A.A.; Rahman, M.F.; Rubel, M.H.K.; Islam, M.R.; Bencherif, H.; Pandey, R.; Madan, J.; et al. Design and Simulation of Cs2BiAgI6 Double Perovskite Solar Cells with Different Electron Transport Layers for Efficiency Enhancement. Energy Fuels 2023, 37, 3957–3979. [Google Scholar] [CrossRef]
- Mali, S.S.; Hong, C.K. P-i-n/p-Type Planar Hybrid Structure of Highly Efficient Perovskite Solar Cells towards Improved Air Stability: Synthetic Strategies and the Role of p-Type Hole Transport Layer (HTL) and n-Type Electron Transport Layer (ETL) Metal Oxides. Nanoscale 2016, 8, 10528–10540. [Google Scholar] [CrossRef]
- Wu, S.; Liu, M.; Jen, A.K.Y. Prospects and Challenges for Perovskite-Organic Tandem Solar Cells. Joule 2023, 7. [Google Scholar] [CrossRef]
- Sun, K.; Zhang, S.; Li, P.; Xia, Y.; Zhang, X.; Du, D.; Isikgor, F.H.; Ouyang, J. Review on Application of PEDOTs and PEDOT:PSS in Energy Conversion and Storage Devices. J. Mater. Sci. Mater. Electron. 2015, 26, 4438–4462. [Google Scholar] [CrossRef]
- Liu, F.; Zhu, J.; Wei, J.; Li, Y.; Lv, M.; Yang, S.; Zhang, B.; Yao, J.; Dai, S. Numerical Simulation: Toward the Design of High-Efficiency Planar Perovskite Solar Cells. Appl. Phys. Lett. 2014, 104, 253508. [Google Scholar] [CrossRef]
- Neukom, M.T.; Schiller, A.; Züfle, S.; Knapp, E.; Ávila, J.; Pérez-del-Rey, D.; Dreessen, C.; Zanoni, K.P.S.; Sessolo, M.; Bolink, H.J.; et al. Consistent Device Simulation Model Describing Perovskite Solar Cells in Steady-State, Transient, and Frequency Domain. ACS Appl. Mater. Interfaces 2019, 11, 23320–23328. [Google Scholar] [CrossRef]
- Gummel, H.K. A Self-Consistent Ierative Scheme for One-Dimensional Steady State Transistor Calculations. IEEE Trans. Electron. Dev. 1964, 11, 455–465. [Google Scholar] [CrossRef]
- Gwyn, C.W.; Scharfetter, D.L.; Wirth, J.L. The Analysis of Radiation Effects in Semiconductor Junction Devices. IEEE Trans. Nucl. Sci. 1967, 14, 153–169. [Google Scholar] [CrossRef]
- Burgelman, M.; Decock, K.; Niemegeers, A.; Verschraegen, J.; Degrave, S. SCAPS Manual; University of Ghent: Ghent, Belgium, 2016. [Google Scholar]
- Burgelman, M.; Nollet, P.; Degrave, S. Modelling Polycrystalline Semiconductor Solar Cells. Thin Solid Films 2000, 361, 527–532. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, Y.; Rockett, A. A New Simulation Software of Solar Cells—WxAMPS. Sol. Energy Mater. Sol. Cells 2012, 98, 124–128. [Google Scholar] [CrossRef]
- Moiz, S.A. Optimization of Hole and Electron Transport Layer for Highly Efficient Lead-Free Cs2TiBr6-Based Perovskite Solar Cell. Photonics 2022, 9, 23. [Google Scholar] [CrossRef]
- Moiz, S.A.; Alahmadi, A.N.M. Design of Dopant and Lead-Free Novel Perovskite Solar Cell for 16.85% Efficiency. Polymers 2021, 13, 2110. [Google Scholar] [CrossRef]
- Burgelman, M.; Decock, K.; Khelifi, S.; Abass, A. Advanced Electrical Simulation of Thin Film Solar Cells. In Thin Solid Films; Elsevier: Amsterdam, The Netherlands, 2013; Volume 535. [Google Scholar] [CrossRef]
- Burgelman, M.; Verschraegen, J.; Degrave, S.; Nollet, P. Modeling Thin-Film PV Devices. Prog. Photovolt. Res. Appl. 2004, 12, 143–153. [Google Scholar] [CrossRef]
- Verschraegen, J.; Burgelman, M. Numerical Modeling of Intra-Band Tunneling for Heterojunction Solar Cells in Scaps. Thin Solid Films 2007, 515, 6276–6279. [Google Scholar] [CrossRef]
- He, Y.; Xu, L.; Yang, C.; Guo, X.; Li, S. Design and Numerical Investigation of a Lead-Free Inorganic Layered Double Perovskite Cs4cusb2cl12 Nanocrystal Solar Cell by Scaps-1d. Nanomaterials 2021, 11, 2321. [Google Scholar] [CrossRef]
- Chowdhury, M.S.; Shahahmadi, S.A.; Chelvanathan, P.; Tiong, S.K.; Amin, N.; Techato, K.; Nuthammachot, N.; Chowdhury, T.; Suklueng, M. Effect of Deep-Level Defect Density of the Absorber Layer and n/i Interface in Perovskite Solar Cells by SCAPS-1D. Results Phys. 2020, 16, 102839. [Google Scholar] [CrossRef]
- Moiz, S.A.; Albadwani, S.A.; Alshaikh, M.S. Towards Highly Efficient Cesium Titanium Halide Based Lead-Free Double Perovskites Solar Cell by Optimizing the Interface Layers. Nanomaterials 2022, 12, 3435. [Google Scholar] [CrossRef]
- Moiz, S.A.; Alzahrani, M.S.; Alahmadi, A.N.M. Electron Transport Layer Optimization for Efficient PTB7:PC70BM Bulk-Heterojunction Solar Cells. Polymers 2022, 14, 3610. [Google Scholar] [CrossRef]
- Moiz, S.A.; Alahmadi, A.N.M.; Aljohani, A.J. Design of a Novel Lead-Free Perovskite Solar Cell for 17.83% Efficiency. IEEE Access 2021, 9, 54254–54263. [Google Scholar] [CrossRef]
- McClure, E.T.; Ball, M.R.; Windl, W.; Woodward, P.M. Cs2AgBiX6 (X = Br, Cl): New Visible Light Absorbing, Lead-Free Halide Perovskite Semiconductors. Chem. Mater. 2016, 28, 1348–1354. [Google Scholar] [CrossRef]
- Amri, K.; Belghouthi, R.; Aillerie, M.; Gharbi, R. Device Optimization of a Lead-Free Perovskite/Silicon Tandem Solar Cell with 24.4% Power Conversion Efficiency. Energies 2021, 14, 3383. [Google Scholar] [CrossRef]
- Zhang, G.; Lin, F.R.; Qi, F.; Heumüller, T.; Distler, A.; Egelhaaf, H.J.; Li, N.; Chow, P.C.Y.; Brabec, C.J.; Jen, A.K.Y.; et al. Renewed Prospects for Organic Photovoltaics. Chem. Rev. 2022, 122, 14180–14274. [Google Scholar] [CrossRef]
- Liu, H.; Dai, T.; Zhou, J.; Wang, H.; Guo, Q.; Guo, Q.; Zhou, E. The Development of A-DA’D-A Type Nonfullerene Acceptors Containing Non-Halogenated End Groups. Nano Res. 2023, 2023, 1–13. [Google Scholar] [CrossRef]
- Perdigón-Toro, L.; Zhang, H.; Markina, A.; Yuan, J.; Hosseini, S.M.; Wolff, C.M.; Zuo, G.; Stolterfoht, M.; Zou, Y.; Gao, F.; et al. Barrierless Free Charge Generation in the High-Performance PM6:Y6 Bulk Heterojunction Non-Fullerene Solar Cell. Adv. Mater. 2020, 32, 1906763. [Google Scholar] [CrossRef]
- Shi, T.; Zhang, H.S.; Meng, W.; Teng, Q.; Liu, M.; Yang, X.; Yan, Y.; Yip, H.L.; Zhao, Y.J. Effects of Organic Cations on the Defect Physics of Tin Halide Perovskites. J. Mater. Chem. A Mater. 2017, 5, 15124–15129. [Google Scholar] [CrossRef]
- Cao, W.; Hu, Z.; Lin, Z.; Guo, X.; Su, J.; Chang, J.; Hao, Y. Defects and Doping Engineering towards High Performance Lead-Free or Lead-Less Perovskite Solar Cells. J. Energy Chem. 2022, 68, 420–438. [Google Scholar] [CrossRef]
- Friedel, B.; Keivanidis, P.E.; Brenner, T.J.K.; Abrusci, A.; McNeill, C.R.; Friend, R.H.; Greenham, N.C. Effects of Layer Thickness and Annealing of PEDOT:PSS Layers in Organic Photodetectors. Macromolecules 2009, 42, 6741–6747. [Google Scholar] [CrossRef]
- Moiz, S.A.; Khan, I.A.; Younis, W.A.; Masud, M.I.; Ismail, Y.; Khawaja, Y.M. Solvent Induced Charge Transport Mechanism for Conducting Polymer at Higher Temperature. Mater. Res. Express 2020, 7, 095304. [Google Scholar] [CrossRef]
- Karimov, K.S.; Ahmed, M.M.; Moiz, S.A.; Babadzhanov, P.; Marupov, R.; Turaeva, M.A. Electrical Properties of Organic Semiconductor Orange Nitrogen Dye Thin Films Deposited from Solution at High Gravity. Eurasian Chem.-Technol. J. 2003, 5, 109–113. [Google Scholar] [CrossRef]
- Sherkar, T.S.; Momblona, C.; Gil-Escrig, L.; Ávila, J.; Sessolo, M.; Bolink, H.J.; Koster, L.J.A. Recombination in Perovskite Solar Cells: Significance of Grain Boundaries, Interface Traps, and Defect Ions. ACS Energy Lett. 2017, 2, 1214–1222. [Google Scholar] [CrossRef]
- Moiz, S.A.; Alahmadi, A.N.M.; Aljohani, A.J. Design of Silicon Nanowire Array for PEDOT:PSS-Silicon Nanowire-Based Hybrid Solar Cell. Energies 2020, 13, 3797. [Google Scholar] [CrossRef]
- Della Gaspera, E.; Peng, Y.; Hou, Q.; Spiccia, L.; Bach, U.; Jasieniak, J.J.; Cheng, Y.B. Ultra-Thin High Efficiency Semitransparent Perovskite Solar Cells. Nano Energy 2015, 13, 249–257. [Google Scholar] [CrossRef]
- Brendel, R.; Queisser, H.J. On the Thickness Dependence of Open Circuit Voltages of P-n Junction Solar Cells. Solar Energy Mater. Solar Cells 1993, 29, 397–401. [Google Scholar] [CrossRef]
- Zhang, C.; Zhu, X. N-Type Quinoidal Oligothiophene-Based Semiconductors for Thin-Film Transistors and Thermoelectrics. Adv. Funct. Mater. 2020, 31, 2000765. [Google Scholar] [CrossRef]
- Naab, B.D.; Gu, X.; Kurosawa, T.; To, J.W.F.; Salleo, A.; Bao, Z. Role of Polymer Structure on the Conductivity of N-Doped Polymers. Adv. Electron. Mater. 2016, 2, 1600004. [Google Scholar] [CrossRef]
- Moiz, S.A.; Alahmadi, A.N.M.; Karimov, K.S. Improved Organic Solar Cell by Incorporating Silver Nanoparticles Embedded Polyaniline as Buffer Layer. Solid State Electron. 2020, 163, 107658. [Google Scholar] [CrossRef]
- Guo, Z.; Jena, A.K.; Kim, G.M.; Miyasaka, T. The High Open-Circuit Voltage of Perovskite Solar Cells: A Review. Energy Environ. Sci. 2022, 15, 3171–3222. [Google Scholar] [CrossRef]
- Shao, Y.; Yuan, Y.; Huang, J. Correlation of Energy Disorder and Open-Circuit Voltage in Hybrid Perovskite Solar Cells. Nat. Energy 2016, 1, 1–6. [Google Scholar] [CrossRef]
- Shaheen, S.E.; Brabec, C.J.; Sariciftci, N.S.; Padinger, F.; Fromherz, T.; Hummelen, J.C. 2.5% Efficient Organic Plastic Solar Cells. Appl. Phys. Lett. 2001, 78, 841–843. [Google Scholar] [CrossRef]
- Wu, J.; Huang, W.-K.; Chang, Y.-C.; Tsai, B.-C.; Hsiao, Y.-C.; Chang, C.-Y.; Chen, C.-T.; Chen, C.-T. Simple Mono-Halogenated Perylene Diimides as Non-Fullerene Electron Transporting Materials in Inverted Perovskite Solar Cells with ZnO Nanoparticle Cathode Buffer Layers. J. Mater. Chem. A Mater. 2017, 5, 12811–12821. [Google Scholar] [CrossRef]
- Angmo, D.; Peng, X.; Cheng, J.; Gao, M.; Rolston, N.; Sears, K.; Zuo, C.; Subbiah, J.; Kim, S.-S.; Weerasinghe, H.; et al. Beyond Fullerenes: Indacenodithiophene-Based Organic Charge-Transport Layer toward Upscaling of Low-Cost Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2018, 10, 22143–22155. [Google Scholar] [CrossRef]
- Karuppuswamy, P.; Chen, H.-C.; Wang, P.-C.; Hsu, C.-P.; Wong, K.-T.; Chu, C.-W. The 3 D Structure of Twisted Benzo[Ghi]Perylene-Triimide Dimer as a Non-Fullerene Acceptor for Inverted Perovskite Solar Cells. ChemSusChem 2018, 11, 415–423. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Cai, F.; Yang, L.; Yan, Y.; Cai, J.; Wang, H.; Gurney, R.S.; Liu, D.; Wang, T. Eliminating Light-Soaking Instability in Planar Heterojunction Perovskite Solar Cells by Interfacial Modifications. ACS Appl. Mater. Interfaces 2018, 10, 33144–33152. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Li, X.; Zou, Y.; Liu, H.; Wang, L.; Fang, J.; Yang, C. Energy Level-Modulated Non-Fullerene Small Molecule Acceptors for Improved VOC and Efficiency of Inverted Perovskite Solar Cells. J. Mater. Chem. A Mater. 2019, 7, 3336–3343. [Google Scholar] [CrossRef]
- Chen, C.; Li, H.; Ding, X.; Cheng, M.; Li, H.; Xu, L.; Qiao, F.; Li, H.; Sun, L. Molecular Engineering of Triphenylamine-Based Non-Fullerene Electron-Transport Materials for Efficient Rigid and Flexible Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2018, 10, 38970–38977. [Google Scholar] [CrossRef] [PubMed]
- Ran, C.; Wu, Z.; Xi, J.; Yuan, F.; Dong, H.; Lei, T.; He, X.; Hou, X. Construction of Compact Methylammonium Bismuth Iodide Film Promoting Lead-Free Inverted Planar Heterojunction Organohalide Solar Cells with Open-Circuit Voltage over 0.8 V. J. Phys. Chem. Lett. 2017, 8, 394–400. [Google Scholar] [CrossRef] [PubMed]
- Alam, I.; Mollick, R.; Ashraf, M.A. Numerical Simulation of Cs2AgBiBr6-Based Perovskite Solar Cell with ZnO Nanorod and P3HT as the Charge Transport Layers. Phys. B Condens. Matter. 2021, 618, 413187. [Google Scholar] [CrossRef]
- Rai, S.; Pandey, B.K.; Garg, A.; Dwivedi, D.K. Hole transporting layer optimization for an efficient lead-free double perovskite solar cell by numerical simulation. Opt. Mater. 2021, 121, 111645. [Google Scholar] [CrossRef]
- Cao, D.H.; Stoumpos, C.C.; Yokoyama, T.; Logsdon, J.L.; Song, T.-B.; Farha, O.K.; Wasielewski, M.R.; Hupp, J.T.; Kanatzidis, M.G. Thin Films and Solar Cells Based on Semiconducting Two-Dimensional Ruddlesden–Popper (CH3(CH2)3NH3)2(CH3NH3)N−1SnnI3n+1 Perovskites. ACS Energy Lett. 2017, 2, 982–990. [Google Scholar] [CrossRef]
- Wang, N.; Zhou, Y.; Ju, M.G.; Garces, H.F.; Ding, T.; Pang, S.; Zeng, X.C.; Padture, N.P.; Sun, X.W. Heterojunction-Depleted Lead-Free Perovskite Solar Cells with Coarse-Grained B-γ-CsSnI3 Thin Films. Adv. Energy Mater. 2016, 6, 1601130. [Google Scholar] [CrossRef]
- Pantaler, M.; Olthof, S.; Meerholz, K.; Lupascu, D.C. Bismuth-Antimony Mixed Double Perovskites Cs2AgBi1-XSbxBr6in Solar Cells. MRS Adv. 2019, 4, 3545–3552. [Google Scholar] [CrossRef]
Device | Open-Circuit Voltage (Volts) | Short-Circuit Current (mA.cm−2) | Fill Factor (%) | Power Conversion Efficiency (%) |
---|---|---|---|---|
Device BT-LIC | 1.23 | 11.2 | 50 | 6.8 |
Device BT-BIC | 1.36 | 12.1 | 80 | 13.2 |
Device BT-L4F | 1.26 | 12.01 | 71 | 10.7 |
Device BT-BO-L4F | 1.24 | 12.5 | 78 | 12.09 |
Perovskite Layer | Hole Transport Layer | Electron Transport Layer (NFA) | Short-Circuit Current | Open-Circuit Voltage | Fill Factor | Power Conversion Efficiency | Ref. |
---|---|---|---|---|---|---|---|
MAPbI3 | PEDOT:PSS | PDI | 6.65 | 0.64 | 15.4 | 0.66 | [90] |
MAPbI3 | PEDOT:PSS | PDI | 14.64 | 0.75 | 29.5 | 3.23 | [90] |
MAPbI3 | NiOx | HATNA | 10.17 | 0.85 | 57.6 | 4.69 | [91] |
MAPbI3 | PEDOT:PSS | BPTI | 15.28 | 0.88 | 56.04 | 7.54 | [92] |
MAPbI3 | PCDTBT | PDI2 | 21.29 | 1.06 | 69.57 | 15.75 | [93] |
MAPbI3 | PEDOT:PSS | NDI-PM | 21.2 | 1.1 | 79.1 | 18.4 | [94] |
(MA0.8FA0.2) Pb(I0.93Cl0.07)3 | PEDOT:PSS | NDIF3 | 22.11 | 0.91 | 56 | 11.17 | [94] |
MAPbI3−xClx | PEDOT:PSS | PDPT | 22.9 | 0.76 | 44 | 7.6 | [23] |
MAPbI3 | P3CT | IT-4M | 21.84 | 1.086 | 79.75 | 18.92 | [95] |
MAPbI3 | NiOx | TPA-3CN | 22.5 | 1.05 | 81.1 | 19.2 | [96] |
Cs3Bi2I9 | P3HT | TiO2 | 0.34 | 0.31 | 38 | 0.4 | [97] |
Cs2AgBiBr6 | PEDOT:PSS | ZnO | 11.2 | 1.05 | 43.97 | 5.16 | [98] |
Cs2AgBiBr6 | Cu2O | ZnO | 11.2 | 0.972 | 47.43 | 5.15 | [98] |
Cs2AgBiBr6 | P3HT | ZnO | 11.1027 | 0.92 | 44.02 | 4.48 | [99] |
BA2MA3Sn4I13 | PTAA | TiO2 | 24.1 | 0.229 | 45.7 | 2.53 | [100] |
MASnI3-xBrx | PTAA | TiO2 | 0.452 | 5.02 | 48.3 | 1.10 | [101] |
Cs2AgBiBr6 | PTAA | TiO2 | 1.24 | 1.06 | 78 | 1.02 | [102] |
Cs2AgBi0.875Sb0.125Br6 | PTAA | TiO2 | 0.94 | 0.59 | 51 | 0.28 | [102] |
Cs2AgBi0.8Sb0.2Br6 | PTAA | TiO2 | 0.48 | 0.78 | 44 | 0.16 | [102] |
Cs2AgBi0.75Sb0.25Br6 | PTAA | TiO2 | 0.55 | 0.25 | 50 | 0.08 | [102] |
Cs2AgBi0.75Sb0.25Br6 | PEDOT:PSS | BT-LIC | 11.2 | 1.23 | 50 | 6.8 | This Study |
Cs2AgBi0.75Sb0.25Br6 | PEDOT:PSS | BT-BIC | 12.1 | 1.36 | 80 | 13.2 | |
Cs2AgBi0.75Sb0.25Br6 | PEDOT:PSS | BT-L4F | 12.01 | 1.26 | 71 | 10.7 | |
Cs2AgBi0.75Sb0.25Br6 | PEDOT:PSS | BT-BO-L4F | 12.5 | 1.24 | 78 | 12.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moiz, S.A.; Alshaikh, M.S.; Alahmadi, A.N.M. Simulation Design of Novel Non-Fluorine Polymers as Electron Transport Layer for Lead-Free Perovskite Solar Cells. Polymers 2023, 15, 4387. https://doi.org/10.3390/polym15224387
Moiz SA, Alshaikh MS, Alahmadi ANM. Simulation Design of Novel Non-Fluorine Polymers as Electron Transport Layer for Lead-Free Perovskite Solar Cells. Polymers. 2023; 15(22):4387. https://doi.org/10.3390/polym15224387
Chicago/Turabian StyleMoiz, Syed Abdul, Mohammed Saleh Alshaikh, and Ahmed N. M. Alahmadi. 2023. "Simulation Design of Novel Non-Fluorine Polymers as Electron Transport Layer for Lead-Free Perovskite Solar Cells" Polymers 15, no. 22: 4387. https://doi.org/10.3390/polym15224387
APA StyleMoiz, S. A., Alshaikh, M. S., & Alahmadi, A. N. M. (2023). Simulation Design of Novel Non-Fluorine Polymers as Electron Transport Layer for Lead-Free Perovskite Solar Cells. Polymers, 15(22), 4387. https://doi.org/10.3390/polym15224387