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Abstract: Significant progress has been made in the advancement of perovskite solar cells, but
their commercialization remains hindered by their lead-based toxicity. Many non-toxic perovskite-
based solar cells have demonstrated potential, such as Cs2AgBi0.75Sb0.25Br6, but their power con-
version efficiency is inadequate. To address this issue, some researchers are focusing on emerging
acceptor–donor–acceptor’–donor–acceptor (A-DA’D-A)-type non-fullerene acceptors (NFAs) for
Cs2AgBi0.75Sb0.25Br6 to find effective electron transport layers for high-performance photovoltaic
responses with low voltage drops. In this comparative study, four novel A-DA’D-A-type NFAs,
BT-LIC, BT-BIC, BT-L4F, and BT-BO-L4F, were used as electron transport layers (ETLs) for the pro-
posed devices, FTO/PEDOT:PSS/Cs2AgBi0.75Sb0.25Br6/ETL/Au. Comprehensive simulations were
conducted to optimize the devices. The simulations showed that all optimized devices exhibit photo-
voltaic responses, with the BT-BIC device having the highest power conversion efficiency (13.2%) and
the BT-LIC device having the lowest (6.8%). The BT-BIC as an ETL provides fewer interfacial traps
and better band alignment, enabling greater open-circuit voltage for efficient photovoltaic responses.

Keywords: perovskite solar cell; non-fullerene acceptor (NFA); electron transport layer; PEDOT:PSS;
Cs2AgBi0.75Sb0.25Br6; BT-BIC; BT-LIC; BT-L4F; BT-BO-L4F

1. Introduction

Hybrid perovskite materials have demonstrated excellent performance over the past
several years in the field of solar devices, and as a result their power conversion efficiency
increased from a few percent to 27% in a very short period of time [1–3]. To further improve
the performance of perovskite solar cells, substantial research efforts are being made to
address several outstanding problems. Due to these efforts, perovskite solar cells are more
advantageous than other types of solar cells in a number of aspects, including cost, weight,
flexibility, portability, wide-area application, and low-temperature production [4,5]. Even
though perovskite solar cells have made great advances in the laboratory environment,
there are still a number of barriers to their general commercialization [6,7].

It is commonly known that the lead-based toxicity, power conversion efficiency, sta-
bility, and degradation of perovskite solar cells are the most significant unsolved chal-
lenges [8,9]. A highly stable double perovskite class of a Cs2AgBiBr6 absorber layer
has recently been reported as a viable substitute for Pb-based perovskite. As a result,
Cs2AgBi0.75Sb0.25Br6 is favored for this study due to its various benefits, including being
lead-free, non-toxic, extremely stable, and compatible with a variety of transport layers, as
reported in the literature [10–12].

Despite the perovskite absorber layer, the design architectures, material properties of
the charge transport layer, and other design limitations also have serious impacts on the
abovementioned problems. Two design architectures, (i) standard n-i-p and (ii) inverted
p-i-n, are frequently used for the fabrication of perovskite solar cells, depending on the
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front electron transport layer or hole transport layer facing the photons for solar cell
applications. In both architectures, the perovskite absorber layer is sandwiched between
the electron transport layer and the hole transport layer. Additionally, each architecture
has unique benefits and drawbacks. Currently, the inverted p-i-n design is used to create
the highest-performing photovoltaic devices [13–15].

The electron transport layer is one of the most significant functional layers in per-
ovskite solar cells, due to its crucial role in enhancing stability, power conversion efficiency,
cost, and consequently overall performance [15–17]. There are vital electronic parameters
of the electron transport layer that are fundamentally necessary for fine-tuning the effective
photovoltaic response, such as the (i) energy bandgap, (ii) electron affinity (LUMO), (iii) ion-
ization energy (HOMO), (iv) molecular packaging, (v) carrier mobilities, (vi) reorganization
energy, etc. The great majority of polymer and perovskite solar cells used for photovoltaic
applications include an electron transport layer composed of fullerene materials as PC60BM
([6,6]-phenyl C61-butyric acid methyl ester) and/or PC70BM ([6,6]-phenyl-C71-butyric
acid methyl ester) [18–20]. The fullerene-based electron transport layer, unfortunately,
has several drawbacks, such as (i) poor optical absorption, especially in the near-infrared
and visible range; (ii) thermal instability; (iii) photochemical instability; (iv) restricted
tuneability, etc. [21,22].

Designing a non-fullerene-based (NFA) electron transport layer might potentially
overcome the drawbacks of the fullerene-based electron transport layer. The stability,
tuneability, and optical absorption can all be improved by easily adjusting the chemical
molecular structure, highest occupied molecular orbital (HOMO), and lowest unoccupied
molecular orbital (LUMO) of a non-fullerene-based electron transport layer over a rea-
sonably wide range [23–25]. The design of NFAs that are reported often falls into one
of two categories. One choice is the acceptor–donor–acceptor (A-D-A)-type molecule,
which has a simple manufacturing process and an energy level that is easily adjusted.
The other, the A-DA’D-A-type molecule, on the other hand, is supported by a greater
short-circuit current density (JSC) and wider absorption, thanks to its bigger conjugated
plane and enhanced intramolecular charge transfer (ICT). It is quite interesting to design
organic/polymer electron transport materials, notably with the help of A-DA’D-A-type
NFAs and their variants [26–35]. All these design parameters can be greatly tuned for an
effective electron transport layer in a perovskite solar cell by making use of various physio-
chemical methodologies [36–39]. On the basis of these physiochemical methodologies, four
novel A-DA’D-A types of NFAs as electron transport layers have recently been reported,
which are the end-group derivatives of Y5 and Y6 materials and named linear as BT-LIC
and bent as BT-BIC, BT-L4F, and BT-BO-L4F [40–43], as shown in Figure 1. All of these,
(i) BT-LIC, (ii) BT-BIC, (iii) BT-L4F, and (iv) BT-BO-L4F, are highly novel materials for the
electron transport layer, with very little and nearly negligible information available in the
reported literature.

In most cases, it may be difficult to dope polymers for electron/hole transport layers
(ETLs) at higher concentrations. This problem is caused by many variables, including
(i) solubility and compatibility, (ii) aggregation and phase separation, (iii) doping-induced
defects, and (iv) doping process restrictions. It is crucial to note that although high doping
concentrations in polymer transport layers might be difficult, they are not always required.
The maximum doping of the electron/hole transport layer is still reported in the literature
at a value of 1020 cm−3. For this reason, in our simulation of the suggested solar cell, we
employ a maximum doping density of up to 1020 cm−3 for both electron and hole transport
layers [44,45].

In this study, the p-i-n-type perovskite solar cells were chosen, as they demonstrate
relatively higher efficiency and ease of fabrication, as discussed above [46–50]. Simi-
larly, PEDOT: PSS (poly(3,4-ethylenedioxythiophene) polystyrene sulfonate)) as the hole
transport layer and Cs2AgBi0.75Sb0.25Br6 as the perovskite layer were selected due to
many advantages, such as being lead-free, highly stable, compatible with both transport
layers, etc. [51,52]. Figure 2 shows the design architecture of the four proposed devices
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with their energy band diagrams, namely (i) FTO/PEDOT: PSS/Cs2AgBi0.75Sb0.25Br6/
BT-LIC/Au (device BT-LIC), (ii) FTO/PEDOT: PSS/Cs2AgBi0.75Sb0.25Br6/BT-BIC/Au (de-
vice BT-BIC), (iii) FTO/PEDOT: PSS/Cs2AgBi0.75Sb0.25Br6/BT-L4F/Au (device BT-L4F),
and (iv) FTO/PEDOT: PSS/Cs2AgBi0.75Sb0.25Br6/BT-BO-L4F/Au (device BT-BO-L4F). The
main goal of this study is to comprehensively investigate, optimize, and compare the de-
vices as a function of the above hole transport layer to determine the different design
parameters that can offer the maximum power conversion efficiency. In order to maintain
simplicity, this study focuses exclusively on the analysis and comparison of the thickness
and doping density of the electron transport layer (ETL). The manuscript grows excessively
lengthy in other cases. However, future study endeavors may involve the utilization of
optimal thickness and doping values, as well as a comprehensive analysis and explanation
of the various properties related to the electron transport layer.

Polymers 2023, 15, x FOR PEER REVIEW 3 of 23 
 

 

 
Figure 1. The molecular structure of (a) BT-LIC, (b) BT-BIC, (c) BT-L4F, and (d) BT-BO-L4F is used 
as a non-fluorine electron transport layer. 

In most cases, it may be difficult to dope polymers for electron/hole transport layers 
(ETLs) at higher concentrations. This problem is caused by many variables, including (i) 
solubility and compatibility, (ii) aggregation and phase separation, (iii) doping-induced 
defects, and (iv) doping process restrictions. It is crucial to note that although high doping 
concentrations in polymer transport layers might be difficult, they are not always re-
quired. The maximum doping of the electron/hole transport layer is still reported in the 
literature at a value of 1020 cm−3. For this reason, in our simulation of the suggested solar 
cell, we employ a maximum doping density of up to 1020 cm−3 for both electron and hole 
transport layers [44,45]. 

In this study, the p-i-n-type perovskite solar cells were chosen, as they demonstrate 
relatively higher efficiency and ease of fabrication, as discussed above [46–50]. Similarly, 
PEDOT: PSS (poly(3,4-ethylenedioxythiophene) polystyrene sulfonate)) as the hole 
transport layer and Cs2AgBi0.75Sb0.25Br6 as the perovskite layer were selected due to many 
advantages, such as being lead-free, highly stable, compatible with both transport layers, 
etc. [51,52]. Figure 2 shows the design architecture of the four proposed devices with their 
energy band diagrams, namely (i) FTO/PEDOT: PSS/Cs2AgBi0.75Sb0.25Br6/BT-LIC/Au (de-
vice BT-LIC), (ii) FTO/PEDOT: PSS/Cs2AgBi0.75Sb0.25Br6/BT-BIC/Au (device BT-BIC), (iii) 
FTO/PEDOT: PSS/Cs2AgBi0.75Sb0.25Br6/BT-L4F/Au (device BT-L4F), and (iv) FTO/PEDOT: 
PSS/Cs2AgBi0.75Sb0.25Br6/BT-BO-L4F/Au (device BT-BO-L4F). The main goal of this study is 
to comprehensively investigate, optimize, and compare the devices as a function of the 
above hole transport layer to determine the different design parameters that can offer the 
maximum power conversion efficiency. In order to maintain simplicity, this study focuses 
exclusively on the analysis and comparison of the thickness and doping density of the 
electron transport layer (ETL). The manuscript grows excessively lengthy in other cases. 
However, future study endeavors may involve the utilization of optimal thickness and 
doping values, as well as a comprehensive analysis and explanation of the various prop-
erties related to the electron transport layer. 

Figure 1. The molecular structure of (a) BT-LIC, (b) BT-BIC, (c) BT-L4F, and (d) BT-BO-L4F is used as
a non-fluorine electron transport layer.

Polymers 2023, 15, x FOR PEER REVIEW 4 of 23 
 

 

 
Figure 2. Design architecture of the proposed perovskite solar cells with their energy band dia-
grams: (a) FTO/PEDOT:PSS/Cs2AgBi0.75Sb0.25Br6/BT-LIC/Au (device BT-LIC), (b) FTO/PE-
DOT:PSS/Cs2AgBi0.75Sb0.25Br6/BT-BIC/Au (device BT-BIC), (c) FTO/PE-
DOT:PSS/Cs2AgBi0.75Sb0.25Br6/BT-L4F/Au (device BT-L4F), and (d) FTO/PE-
DOT:PSS/Cs2AgBi0.75Sb0.25Br6/BT-BO-L4F/Au (device BT-BO-L4F). 

2. Device Models for Simulation 
The software for modeling solar cells typically solves a set of coupled differential 

equations for semiconductor devices using conventional mathematical techniques. The 
general photovoltaic responses of solar cells, such as short-circuit current, open-circuit 
voltage, fill factor, and power conversion efficiency, are identified using the solutions of 
these equations [53–57]. Detailed information about these models can be found in our pre-
viously published results [7]. 

The SCAPS 1D (version 3.3.10) software employs a drift-diffusion model for the pur-
pose of computing the energy levels within the band diagram of a photovoltaic cell. These 
equations incorporate various parameters, including carrier production, recombination, 
and transport processes. The SCAPS 1D software is capable of solving Poisson’s equation, 
which establishes a relationship between the electric field and the charge distribution pre-
sent in a solar cell. The aforementioned equation incorporates the impact of the electro-
static potential on the energy levels depicted in the band diagram. SCAPS 1D utilizes the 
derived electric field and charge distribution to ascertain the band offsets and energy lev-
els at different locations within the band diagram of the solar cell. 

3. Simulation Software 
A solar cell’s photovoltaic response may be estimated using the mathematical equa-

tions mentioned above, which are the foundation of any photovoltaic modeling software. 
In theory, simulation software is a tool that allows users to foretell the output response of 
solar devices without performing actual testing in a variety of settings. Simulation soft-
ware can reasonably predict the experimental results of a solar cell [57–60]. The conditions 
must be met by modeling software to accurately forecast the output of photovoltaic re-
sponses accurately. Numerous researchers assert that SCAPS 1D is extremely trustworthy 
software that satisfies many of the criteria listed in the references [61–64] and may be used 
to simulate a wide range of photovoltaic processes. 

Figure 2. Design architecture of the proposed perovskite solar cells with their energy band
diagrams: (a) FTO/PEDOT:PSS/Cs2AgBi0.75Sb0.25Br6/BT-LIC/Au (device BT-LIC), (b) FTO/
PEDOT:PSS/Cs2AgBi0.75Sb0.25Br6/BT-BIC/Au (device BT-BIC), (c) FTO/PEDOT:PSS/
Cs2AgBi0.75Sb0.25Br6/BT-L4F/Au (device BT-L4F), and (d) FTO/PEDOT:PSS/Cs2AgBi0.75Sb0.25Br6/BT-
BO-L4F/Au (device BT-BO-L4F).

2. Device Models for Simulation

The software for modeling solar cells typically solves a set of coupled differential
equations for semiconductor devices using conventional mathematical techniques. The
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general photovoltaic responses of solar cells, such as short-circuit current, open-circuit
voltage, fill factor, and power conversion efficiency, are identified using the solutions of
these equations [53–57]. Detailed information about these models can be found in our
previously published results [7].

The SCAPS 1D (version 3.3.10) software employs a drift-diffusion model for the pur-
pose of computing the energy levels within the band diagram of a photovoltaic cell. These
equations incorporate various parameters, including carrier production, recombination,
and transport processes. The SCAPS 1D software is capable of solving Poisson’s equation,
which establishes a relationship between the electric field and the charge distribution
present in a solar cell. The aforementioned equation incorporates the impact of the electro-
static potential on the energy levels depicted in the band diagram. SCAPS 1D utilizes the
derived electric field and charge distribution to ascertain the band offsets and energy levels
at different locations within the band diagram of the solar cell.

3. Simulation Software

A solar cell’s photovoltaic response may be estimated using the mathematical equa-
tions mentioned above, which are the foundation of any photovoltaic modeling software.
In theory, simulation software is a tool that allows users to foretell the output response of
solar devices without performing actual testing in a variety of settings. Simulation software
can reasonably predict the experimental results of a solar cell [57–60]. The conditions must
be met by modeling software to accurately forecast the output of photovoltaic responses
accurately. Numerous researchers assert that SCAPS 1D is extremely trustworthy software
that satisfies many of the criteria listed in the references [61–64] and may be used to simulate
a wide range of photovoltaic processes.

4. Simulation Steps

In general, the SCAPS 1D simulation steps are a list of feasible actions that must be
executed. The following is a list of the simulation processes that are necessary to apply to
the suggested devices in order to obtain the highest power conversion efficiency.

Step 1 Start of simulation: Define the environment, geometry, and physical parameters of
all the device’s layers according to Table 1.

Step 2 Extraction of simulation parameters: Extract the input physical and material char-
acteristics for the perovskite absorber layer, the hole transport layer (HTL), and
the electron transport layer (ETL) using the literature as a guide and updated in
Table 1 [63–71].

Step 3 Estimation of ranges for different parameters: Propose the range of thickness and
doping density for each layer of (i) device BT-LIC, (ii) device BT-BIC, (iii) device
BT-L4F, and (iv) device BT-BO-L4F from the literature.

Step 4 Thickness optimization of HTL: Determine the optimal thickness of PEDOT: PSS
for each device as a hole transport layer through a series of simulations, which gives
the maximum power conversion efficiency and quantum efficiency (QE). After that,
update with the optimal thickness of PEDOT: PSS for further simulations.

Step 5 Determination of PV parameters as a function of HTL thickness: Determine the
photovoltaic parameters such as open-circuit voltage, short-circuit current, fill factor,
and power conversion efficiency of each device as a function of PEDOT: PSS thickness.

Step 6 Thickness optimization of perovskite absorber layer: Determine the optimal thick-
ness of the perovskite absorber layer (Cs2AgBi0.75Sb0.25Br6) for each device as an
absorber layer through a series of simulations, which gives the maximum power con-
version efficiency and quantum efficiency. Then, update with the optimal thickness of
the absorber for further simulations.

Step 7 Determination of PV parameters as a function of perovskite thickness: Determine the
photovoltaic parameters such as open-circuit voltage, short-circuit current, fill factor,
and power conversion efficiency of each device as a function of absorber thickness.
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But for simplicity, only the photovoltaic parameters of a highly efficient device are
shown and discussed.

Step 8 Thickness optimization of ETL: Determine the optimal thickness of the ETL for
each device ((i) BT-LIC, (ii) BT-BIC, (iii) BT-L4F, and (iv) BT-BO-L4F) through a se-
ries of simulations, which gives the maximum power conversion efficiency and
quantum efficiency. After that, update with the optimal thickness of the ETL for
further simulations.

Step 9 Determination of PV parameters as a function of optimized ETL thickness: Deter-
mine the photovoltaic parameters such as open-circuit voltage, short-circuit current,
fill factor, and power conversion efficiency of each device as a function of electron
transfer layer thickness.

Step 10 Determination of PV parameters as a function of ETL doping: Determine the
photovoltaic parameters such as open-circuit voltage, short-circuit current, fill factor,
and power conversion efficiency of each device as a function of ETL doping density.

Step 11 Determination of PV response and parameters of the optimized devices: Determine
the photovoltaic current–voltage response and other photovoltaic parameters of all
the optimized devices such as open-circuit voltage, short-circuit current, fill factor,
and power conversion efficiency of each device as a function of ETL doping density.

Step 12 Determination of QE response of the optimized devices: Determine the quantum
efficiency of all the optimized devices.

Step 13 End of simulation.

Table 1. Random simulation parameters such as thickness and doping are used for the novel non-
fluorine polymer acceptor transport layer, while other simulation parameters for given materials are
taken from the given references.

Photovoltaic Parameters PEDOT:PSS Perovskite
Cs2AgBi0.75Sb0.25Br6

BT-LIC BT-BIC BT-L4F BT-BO-L4F

Thickness (nm) 50 500 100 100 100 100

Energy Bandgap (Eg, eV) 2.2 1.8 1.57 1.73 1.58 1.6

Electron Affinity (X, eV) 2.9 3.58 3.85 3.73 4 3.98

Dielectric Permittivity (εr) 3.0 6.5 3.5 3.5 3.5 3.5

Effective Density of States at
Conduction Band (Nc, cm−3) 2.2 × 1015 2.2 × 1018 1 × 1020 1 × 1020 1 × 1020 1 × 1020

Effective Density of States at
Valence Band (Nv, cm−3) 1.8 × 1018 1.8 × 1019 1 × 1020 1 × 1020 1 × 1020 1 × 1020

Hole Thermal Velocity
(Vh, cm/s) 1 × 107 1 × 107 1 × 107 1 × 107 1 × 107 1 × 107

Electron Thermal Velocity
(Ve, cm/s) 1 × 107 1 × 107 1 × 107 1 × 107 1 × 107 1 × 107

Electron Mobility
(µe, cm−2/V.s) 10 2 1 × 10−4 1 × 10−4 1 × 10−4 1 × 10−4

Hole Mobility
(µh, cm−2/V.s) 10 2 1 × 10−4 1 × 10−4 1 × 10−4 1 × 10−4

Uniform Shallow Donor
Doping (Nd„cm−3) - - 1 × 1016 1 × 1016 1 × 1016 1 × 1016

Uniform Shallow Acceptor
Doping (Na, cm−3) 1015 - 1 × 1016 - - -

Defect Density (Nt, cm−3) 1014 1014 1014 1014 1014 1014

Reference [65–69] [70,71] [72–74]
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5. Simulation Material Parameters

For the optimization of each layer of a perovskite solar cell, the proper selection of
material parameters for each layer is essential. As the electron transport materials (i) BT-
LIC, (ii) BT-BIC, (iii) BT-L4F, and (iv) BT-BO-L4F are novel, an extensive amount of related
literature was reviewed to extract the simulation parameters, while for PEDOT:PSS and
Cs2AgBi0.75Sb0.25Br6 materials, the parameters were selected from highly reliable references,
as listed in Table 1.

Both the proposed perovskite absorber and the polymer-based transport layer offer an
inherently high density of defects. In most cases, these electronic defects are grown during
the crystal growth or fabrication process due to uncontrolled impurities, inconsistencies in
polymerization or crystal growth, thin-film deposition processes, and other environmental
parameters [74–77]. Therefore, a defect density of 1014 cm2 is introduced into the bulk
region of the absorber, hole transport layer, and electron transport layer, as indicated in
Table 1.

6. Results and Discussion
6.1. Thickness Optimization of the Hole Transport Layer

Generally, for any type of solar cell, the thickness of the hole transport layer (HTL)
plays a crucial role in improving the overall performance of the solar cell. The effectiveness
of the charge transfer process between the perovskite absorber layer and the electrode
can be considerably impacted by the thickness of the hole transport layer. To obtain the
highest possible efficiency in solar cells, it is essential to optimize the thickness of the hole
transport layer.

Therefore, determining the optimized thickness of the hole transport layer is a design
challenge for perovskite solar cells. In order to determine the optimal thickness of the hole
transport layer, each of the four devices was simulated as a function of hole transport layer
thickness, and a very similar photovoltaic response was observed. For simplicity, randomly
elected device D (BT-LIC) responses are shown in Figure 3. The photo current–voltage
response may be used to estimate the thickness of the hole transport layer for perovskite
solar cells with the maximum feasible efficiency. Therefore, the photovoltaic responses of
device D are depicted in Figure 3 as functions of the thickness of the hole transport layer,
which ranges from 10 nm to 90 nm. Based on Figure 3, it can be seen that device D exhibits
respectable photovoltaic behavior. However, when the thickness increases, the photovoltaic
responsiveness suffers, as the parameters are severely degraded.
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The photovoltaic parameters were calculated, and the results are shown in Figure 4
as a function of PEDOT: PSS thickness. Therefore, the photovoltaic parameters, such as
(i) open-circuit voltage, short-circuit current (Figure 4a), (ii) fill factor, and (iv) power
conversion efficiency (Figure 4b), follow more or less very similar trends, where all these
parameters are severely degraded. According to a previous report, PEDOT: PSS, like many
other organic/polymer semiconductors, inherently has a large number of traps that serve
as recombination centers. The density of traps exponentially rises as PEDOT:PSS thickness
increases, and photovoltaic characteristics rapidly deteriorate [78–80]. As power conversion
efficiency is a decisive parameter and it is maximum at 10 nm for each device (here only
device D is shown), it can be justified that 10 nm is the optimum thickness of the hole
transport layer for each device. This is because the optimal PEDOT:PSS doping density
for each proposed device is obtained at 1020 cm−3 through simulation, which is quite
comparable to our previous results [7,61,62,68–70].
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depends on the wavelength of the incident light and is often stated in terms of percentage.
Figure 5 shows the external quantum efficiency of device D (BT-BO-L4F) as a function of the
thickness of PEDOT: PSS. It also confirms that as thickness increases, the area under the QE
curve also decreases. It clearly demonstrates that the total charges collected at the respective
electrodes also decrease, and hence it can be inferred that more and more recombination
will take place at the higher thickness of PEDOT:PSS. Both power conversion efficiency
and external quantum efficiency are decisive factors in the selection of the thickness of
PEDOT:PSS for efficient photovoltaic response, and maximum power conversion efficiency
and quantum efficiency is observed at 10 nm of PEDOT:PSS, so it can be justified that 10 nm
is the most optimum thickness of PEDOT:PSS for the proposed devices.
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6.2. Thickness Optimization of the Absorber Layer

To increase the photo conversion efficiency of perovskite solar cells, the thickness of
the absorber layer of Cs2AgBi0.75Sb0.25Br6 must be optimized. The ideal thickness of the
perovskite absorber layer depends on a number of parameters, including the composition
of the perovskite material, the design of the photovoltaic device, and the thin-film depo-
sition process. Thick perovskite absorber layers can boost photon absorption, and on the
other hand, thin perovskite absorber layers can decrease recombination losses and lead to
improved power conversion efficiency [81,82]. In the literature, both experimental methods
and device simulation modeling can be used to determine the optimal thickness of the
perovskite absorber layer.

As discussed above, the optimization of perovskite layer thickness is a critical parame-
ter in determining the performance of a solar cell. In order to achieve a suitable balance
between light absorption and charge carrier extraction, it is often necessary to optimize the
thickness of the active layer. Increased thickness of the active layer facilitates enhanced
light absorption due to the greater availability of material for photon interaction. However,
a thick active layer increases the carrier recombination. In thicker active layers, the distance
that charge carriers need to travel to reach the electrodes increases. Conversely, when
the active layer is very thin, it may lead to inadequate light absorption, thus leading to
less production of photocurrent. Similarly, a thin active layer may also limit the ability to
extract charge carriers efficiently, leading to poor charge collection and reduced overall
performance.

Here, the optimal thickness of the perovskite absorber Cs2AgBi0.75Sb0.25Br6 layer was
estimated using simulation techniques. In order to start the simulation, the absorber layer
was initialized with random values extracted from Table 1. The photovoltaic response of
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device D is depicted in Figure 6 as a function of absorber layer thickness from 10 nm to
100 nm. According to the device’s photovoltaic response, unlike the thickness of the hole
transport layer, the photovoltaic response is degraded at lower absorber layer thicknesses,
increases up to when the absorber layer reaches its maximum photovoltaic response, and
then again gradually decreases; the above-discussed responses are more clearly observed
in Figure 7.
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Figure 7a,b illustrate the photovoltaic parameters of each device as a function of
absorber layer thickness, including open-circuit voltage, short-circuit current, fill factor, and
power conversion efficiency. Complex photovoltaic parameter patterns are observed, where
the open-circuit voltage and fill factor climb suddenly, peak, and then rapidly deteriorate.
While the short-circuit current and power conversion efficiency behavior are different for
a device as a function of absorber layer thickness, both of these photovoltaic parameters
increase gradually, and the power conversion efficiency in particular reaches its maximum
at 70 nm thickness of the absorber layer before beginning to slowly decline.

Figure 8 illustrates the quantum efficiency response of the proposed perovskite solar
cell for devices where the thickness of the absorber layer (Cs2AgBi0.75Sb0.25Br6) is varied
from 10 nm to 100 nm and the thickness of the PEDOT:PSS is optimized at 10 nm. It
is not clearly observed from the figure which thickness of the absorber layer gives the
maximum area under the quantum efficiency curve. However, with the help of software
calculations, it is found that at the thickness of 70 nm of the absorber layer, the device gives
the maximum quantum efficiency, which further supports the finding that 70 nm is the
optimum thickness of the absorber layer.
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In a Cs2AgBi0.75Sb0.25Br6-based solar cell, the redshift of the band edge impacts its
quantum efficiency, which is influenced by the thickness of the Cs2AgBi0.75Sb0.25Br6 ab-
sorber layer, as shown Figure 8. Increasing the absorber layer thickness causes the band
boundary to shift towards longer wavelengths, resulting from changes in the electrical
structure and optical properties of the perovskite absorber layer. The relationship between
electronic structure, optical properties, and thickness can be summarized as follows:

1. Thicker absorber layers enhance absorption efficacy by capturing more photons,
increasing the likelihood of photon absorption and charge carrier generation.

2. The thickness of the absorber layer affects charge carrier extraction. Excessive thick-
ness can lead to increased recombination or trapping of charge carriers, reducing the
quantum efficiency.

3. Thicker absorber layers may experience more light scattering or reflection at interfaces,
resulting in a loss of absorbed photons and potentially impacting the quantum efficiency.
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4. Thin absorber layers may exhibit limited charge transport and higher recombination
rates, while excessively thick layers can impede charge extraction due to longer carrier
transit times, both affecting the overall efficiency.

Therefore, to optimize the perovskite absorber, it is crucial to find the right thickness of
the Cs2AgBi0.75Sb0.25Br6 absorber layer that balances effective charge carrier extraction with
efficient photon absorption. Thus, it can be assumed that 70 nm is the optimal thickness of
the perovskite absorber layer that provides a balance between the above-stated variables.

6.3. Thickness Optimization of Electron Transport Layer

Another critical design factor for producing highly efficient perovskite solar cells is the
thickness optimization of the electron transport layer. Thickness optimization, particularly
for polymer-based electron layers, is very important because it affects several physical,
material, and photovoltaic parameters.

(a) Device architecture: The optimal electron transport layer thickness may vary accord-
ing to the specific device architecture, such as whether the solar cell has a planar or
mesoporous structure.

(b) Material characteristics: The ideal thickness for effective charge transfer and extraction
can be influenced by the electron transport layer’s material characteristics, such as
(i) electron transport, (ii) series resistance, (iii) shunt resistance, (iv) carrier lifetime,
(v) electron mobility, (vi) electron density, (vii) recombination losses, (viii) charge
extraction efficiency, (ix) optical absorption, and (x) interface energy level alignment,
among others.

(c) Thin-film deposition method: There are several thin-film deposition methods that
may be used to manage the electron transport layer’s thickness, and each has ad-
vantages and limitations of its own. Spin coating, for instance, is a very cheap and
simple method.

(d) Post-deposition method: By modifying the thickness of the electron transport layer
using post-deposition techniques like solvent or annealing, the morphology and
interface properties of the electron transport layer may be altered.

(e) Photovoltaic performance matrices: Depending on the device’s individual perfor-
mance metrics, such as power conversion efficiency, short-circuit current, and fill
factor, the ideal electron transport layer thickness may vary. These metrics may all be
influenced by the electron transport layer’s thickness.

(f) Trade-offs: When determining the ideal electron transport layer thickness, it is fre-
quently necessary to compromise between several device characteristics, such as
reducing leakage currents while increasing charge transfer efficiency.

(g) Interaction with other layers: The electron transport layer’s thickness can have an
impact on how the electrode, absorber layer, and hole transport layer interact with
other layers in the device.

(h) Energy level alignment: The energy level alignment between the ETL and the per-
ovskite layer exhibits some differences. Such differences can lead to a modification
of the energy levels inside the valence band (VB) and conduction band (CB) at the
interface separating the electron transport layer (ETL) and the perovskite material.
The determination of the energy level offset plays a crucial role in driving the process
of charge transfer and has a significant impact on the efficiency of charge extraction
and hence the efficiency of solar cells. This might make the optimization procedure
more challenging.

Overall, the complicated interactions between these variables make optimizing the
electron transport layer thickness a difficult iterative process that frequently calls for
simulation methods.

The photovoltaic parameters (i) open-circuit voltage, (ii) short-circuit current, (iii) fill
factor, and (iv) power conversion efficiency are shown in Figure 9 as functions of the
thickness of the electron transport layer for the devices (a) A (BT-LIC), (b) B (BT-BIC),



Polymers 2023, 15, 4387 12 of 21

(c) C (BT-L4F), and (d) D (BT-BO-L4F). Figure 9 demonstrates that although the open-circuit
voltage varies for each device, it does not change relatively as the thickness of the electron
transport layer increases. This is because the open-circuit voltage is generally determined
by the energy bandgap offset, and its value is generally unaffected by the thickness of the
electron transport layer [83,84], as observed in Figure 9. In addition, Figure 9 shows the
relative short-circuit responses for the devices as functions of the thickness of the electron
transport layer. The figure demonstrates that all devices behave in a consistent manner,
with the short-circuit current reducing as the thickness of the electron layer grows. Device
A’s behavior stands out, whereas other devices’ rates of decrease are very insignificant.
Similarly, when the thickness of the electron transport layer increases, the fill-factor behavior
of all devices likewise deteriorates. This could be because the devices experience increasing
series resistance and recombination losses as the thickness of the electron layer rises. The
power conversion efficiency responses, which are the resultant behavior of open-circuit
voltage, short-circuit current, and fill-factor responses, also behave in a very similar way,
while the power conversion efficiency deteriorates as a function of electron transport
layer thickness. The figure clearly demonstrates that device BT-LIC is sharply degraded,
while device BT-BIC shows a relatively excellent power conversion efficiency response as
a function of electron transport layer thickness. Power conversion efficiency is the most
important parameter, and all devices show maximum power conversion efficiency at 25 nm.
Thus, it can be inferred that 25 nm is the most optimal thickness of the corresponding
electron transport layer for each device.
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6.4. Doping Density Optimization of the Electron Transport Layer

The electron transport layer’s doping density can have a big influence on the electrical
conductivity of solar cells, charge carrier mobility, and overall power conversion efficiency.
Usually, organic or polymeric compounds with strong electron-withdrawing groups and
significant electron affinities are used as dopants to dope polymer-based electron trans-
port layers [85,86]. High doping of the electron transport layer (ETL) can improve the
power conversion efficiency of a perovskite solar cell by lowering the series resistance
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and electrode-transport layer interface losses, but on the other hand, excessive doping can
increase charge carrier recombination and degrade the device’s overall efficiency. Therefore,
doping optimization of the electron transport layer is crucial for the efficient design of the
proposed perovskite solar cells.

Therefore, the photovoltaic parameters (a) open-circuit voltage, (ii) short-circuit cur-
rent, (iii) fill factor, and (d) power conversion efficiency were estimated through simulation,
and the results are shown in Figure 10 as functions of the doping density of the electron
transport layer for the devices (a) A (BT-LIC), (b) B (BT-BIC), (c) C (BT-L4F), and (d) D
(BT-BO-L4F). The figure shows that all the photovoltaic parameters, open-circuit voltage,
short-circuit current, fill factor, and power conversion efficiency, are improving as the
doping density is increased in the corresponding electron transport layer. The thickness of
the electron transport layer is already optimized, and it can be assumed that the electron
transport layer offers very little recombination losses; therefore, the reduction in resistiv-
ity as a function of increasing doping density is the dominating factor for each device.
As power conversion efficiency is a decisive parameter and it is maximum at 1020 cm−3

for each device, it can be justified that 1020 cm−3 is the optimum doping of the electron
transport layer for each device.
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6.5. Photo Current–Voltage Response of the Optimized Devices

The influence of the electron transport layer on the overall performance of perovskite
solar cells may be further investigated by using the photo current–voltage responses of the
optimized perovskite solar cells. In Figure 11, the typical photo current–voltage responses
of the perovskite solar cells are observed. The figure offers important information about its
photovoltaic performance parameters such as open-circuit voltage, short-circuit current, fill
factor, and power conversion efficiency. Table 2 displays all these photovoltaic parameters
as estimated from Figure 11 for each device. The figure and Table 2 clearly reveal that all
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devices perform differently, while device B (BT-BIC) has the best photovoltaic response
(power conversion efficiency ~13.2%), and device A (BT-LIC) has the worst photovoltaic
response (power conversion efficiency ~6.8%). It is also observed that the improvements
in open-circuit voltage as well as fill factor are relatively higher for device B. This clearly
demonstrates that the photovoltaic device B fabricated with BT-BIC as an electron transport
layer may manage the optimum build-in potential and excellent interface quality, which in
turn improve the overall charge collection and charge transport and suppress recombination
losses [87–89] compared to the other electron transport layers for devices A, C, and D.
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Figure 11. The photo current–voltage responses of the proposed perovskite solar cells for the device
(i) BT-LIC, (ii) BT-BIC, (iii) BT-L4F, and (iv) BT-BO-L4F respectively.

Table 2. Optimized photovoltaic responses of (i) open-circuit voltage, (ii) short-circuit current, (iii) fill
factor, and (iv) power conversion efficiency of the proposed (a) device BT-LIC, (b) device BT-BIC,
(c) device BT-L4F, and (d) device BT-BO-L4F.

Device Open-Circuit Voltage
(Volts)

Short-Circuit Current
(mA.cm−2) Fill Factor (%) Power Conversion

Efficiency (%)

Device BT-LIC 1.23 11.2 50 6.8
Device BT-BIC 1.36 12.1 80 13.2
Device BT-L4F 1.26 12.01 71 10.7

Device BT-BO-L4F 1.24 12.5 78 12.09

6.6. External Quantum Efficiency Response of the Optimized Devices

The external quantum efficiency responses of the fully optimized devices may be used
to further examine the impact of the electron transport layer on the overall performance
of perovskite solar cells. The external quantum efficiency can be defined as the fraction
of the total number of collected charge carriers at the electrodes to the total number of
incident photons [90]. Mathematically, external quantum efficiency (QE) can be defined as a
function of either energy E or wavelength (λ), and therefore the relation between quantum
efficiency and short-circuit current (Jsc) can be expressed as

JSC = q
∫

∅(λ) QE(λ)dλ (1)
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whereϕ(λ) is the incident flux of photons per unit wavelength. Figure 12 shows the external
quantum efficiency responses of (i) device BT-LIC, (ii) device BT-BIC, (iii) device BT-L4F,
and (iv) device BT-BO-L4F as a function of incident photon wavelengths from 300 to 900 nm:
more or less very similar responses are observed for all devices. It can be seen in the figure
that for all devices, the quantum efficiency rises from photon wavelengths greater than
300 nm, while the highest QE is achieved in the 480–485 nm range of photon wavelengths
for all devices; then, the QE of devices gradually decreased, and the relative magnified
quantum efficiency responses for all devices are shown in the inset of Figure 12. This clearly
reveals that the device, which uses BT-BIC as its electron transport layer, exhibits relatively
improved quantum efficiency, and it also confirms the earlier simulation results that were
already discussed.
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Figure 12. The external quantum efficiency responses of the proposed perovskite solar cells for
the device (i) BT-LIC, (ii) BT-BIC, (iii) BT-L4F, and (iv) BT-BO-L4F as a function of incident photon
wavelengths from 300 to 900 nm. The inset of the figure shows the magnified responses of all the
devices for the incident photon wavelength range from 300 to 390 nm.

In addition, Figure 12 shows that the quantum efficiency of the BT-BIC device reaches
its optimum value, even though the short-circuit current does not. As shown in Figure 11,
the device BT-L4F displays the maximum short-circuit current. While there is a correlation
between short-circuit current and quantum efficiency, it is essential to recognize that
recombination losses can lead to such discrepancies. Quantum efficiency refers to the
measurement of the effectiveness of photon absorption and subsequent transformation
into charge carriers. In contrast, the short-circuit current density includes other variables,
such as recombination losses, resistive losses, and other internal variables. Consequently,
the presence of these losses may cause a slight decrease in the short-circuit current relative
to the theoretical quantum efficiency. Given the comparative nature of this study, it can
be argued that while the BT-LIC device has a slightly lower short-circuit current than
the BT-L4F device, it has superior electrical and optical properties. Figure 11 depicts the
enhanced photovoltaic response as evidence.

Based on the data presented in Table 3, it is evident that a majority of the efficient NFA
electron transport layers have been reported in association with the leading MAPbI3-based
perovskite solar cells, which are toxic in nature due to the presence of Pb. The power
conversion efficiency of other lead-free perovskites (having very close energy bandgaps
compared to Cs2AgBi0.75Sb0.25Br6) with an NFA electron transport layer is not up to the
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mark, as evident in Table 3. Comparing innovative electron transport layer materials,
such as BT-LIC, BT-BIC, BT-L4F, and BT-BO-L4F, for perovskite Cs2AgBi0.75Sb0.25Br6-based
solar cells with previously reported NFA-based lead-free perovskite solar cells, as shown
in Table 3, poses significant improvements. Such improvements may be due to their
distinctive electronic characteristics and customized energy levels, which enable effective
charge extraction and transportation throughout the device.

Table 3. Comparing innovative electron transport layer materials, such as BT-LIC, BT-BIC, BT-L4F,
and BT-BO-L4F, for perovskite Cs2AgBi0.75Sb0.25Br6-based solar cells with previously reported
solar cells.

Perovskite Layer Hole Transport
Layer

Electron
Transport

Layer (NFA)

Short-
Circuit
Current

Open-
Circuit
Voltage

Fill
Factor

Power
Conversion
Efficiency

Ref.

MAPbI3 PEDOT:PSS PDI 6.65 0.64 15.4 0.66 [90]
MAPbI3 PEDOT:PSS PDI 14.64 0.75 29.5 3.23 [90]
MAPbI3 NiOx HATNA 10.17 0.85 57.6 4.69 [91]
MAPbI3 PEDOT:PSS BPTI 15.28 0.88 56.04 7.54 [92]
MAPbI3 PCDTBT PDI2 21.29 1.06 69.57 15.75 [93]
MAPbI3 PEDOT:PSS NDI-PM 21.2 1.1 79.1 18.4 [94]

(MA0.8FA0.2)
Pb(I0.93Cl0.07)3

PEDOT:PSS NDIF3 22.11 0.91 56 11.17 [94]

MAPbI3−xClx PEDOT:PSS PDPT 22.9 0.76 44 7.6 [23]
MAPbI3 P3CT IT-4M 21.84 1.086 79.75 18.92 [95]
MAPbI3 NiOx TPA-3CN 22.5 1.05 81.1 19.2 [96]
Cs3Bi2I9 P3HT TiO2 0.34 0.31 38 0.4 [97]

Cs2AgBiBr6 PEDOT:PSS ZnO 11.2 1.05 43.97 5.16 [98]
Cs2AgBiBr6 Cu2O ZnO 11.2 0.972 47.43 5.15 [98]
Cs2AgBiBr6 P3HT ZnO 11.1027 0.92 44.02 4.48 [99]

BA2MA3Sn4I13 PTAA TiO2 24.1 0.229 45.7 2.53 [100]
MASnI3-xBrx PTAA TiO2 0.452 5.02 48.3 1.10 [101]
Cs2AgBiBr6 PTAA TiO2 1.24 1.06 78 1.02 [102]

Cs2AgBi0.875Sb0.125Br6 PTAA TiO2 0.94 0.59 51 0.28 [102]
Cs2AgBi0.8Sb0.2Br6 PTAA TiO2 0.48 0.78 44 0.16 [102]

Cs2AgBi0.75Sb0.25Br6 PTAA TiO2 0.55 0.25 50 0.08 [102]
Cs2AgBi0.75Sb0.25Br6 PEDOT:PSS BT-LIC 11.2 1.23 50 6.8

This
Study

Cs2AgBi0.75Sb0.25Br6 PEDOT:PSS BT-BIC 12.1 1.36 80 13.2
Cs2AgBi0.75Sb0.25Br6 PEDOT:PSS BT-L4F 12.01 1.26 71 10.7
Cs2AgBi0.75Sb0.25Br6 PEDOT:PSS BT-BO-L4F 12.5 1.24 78 12.09

The electron transport layers (ETLs), namely BT-LIC, BT-BIC, BT-L4F, and BT-BO-
L4F, are likely comprised of organic or mixed materials. These materials seek to facilitate
charge transport within the electron transport layer for Cs2AgBi0.75Sb0.25Br6-based lead-
free perovskite materials, which are still not so efficient. This is because the mobility of
the abovementioned ETL, which falls within the range of 10−4 cm2/V.sec, is lower when
compared to the mobility of C60-based thin films, which is measured at 0.5± 0.2 cm2/V.sec.
The limited mobility exhibited by these non-fullerene acceptors (NFAs) has the potential
to lower the efficiency of electron collection, increase recombination rates, and contribute
to increased series resistance. Consequently, all these factors collectively contribute to the
deterioration of the photovoltaic responses of the proposed devices.

The use of innovative electron transport layers, including BT-LIC, BT-BIC, BT-L4F,
and BT-BO-L4F, in perovskite solar cells has resulted in a notable improvement in power
conversion efficiency when compared to other lead-free solar cell technologies based
on non-fullerene acceptors (NFAs). The use of the novel BT-BIC in ETL materials and
design facilitates increased photon absorption and charge carrier mobility, hence leading to
improved power conversion efficiency. Based on our limited information, no experimental
or even modeling findings have been published for the use of the innovative above-listed
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electron transport layers with Cs2AgBi0.75Sb0.25Br6-based perovskite in the context of solar
cell applications. In general, the research exhibits significant promise in terms of developing
the domain of solar energy harvesting.

7. Conclusions

In this comparative study, four non-fullerene acceptors (NFAs), (i) BT-LIC, (ii) BT-BIC,
(iii) BT-L4F, and (iv) BT-BO-L4F, were used as electron transport layers for novel proposed
solar devices, i.e., FTO/PEDOT: PSS/Cs2AgBi0.75Sb0.25Br6/ETL/Au. All these devices were
comprehensively investigated through simulation to determine the most efficient electron
transport layer for the proposed devices. For this purpose, comprehensive simulations
were carried out to optimize each layer with respect to film thickness and doping density,
and then the photovoltaic responses of all the optimized devices were simulated as a
function of the electron transport layer, and open-circuit voltage, short-circuit current, fill
factor, and power conversion efficiency were determined. It is observed that all devices
show reasonable photovoltaic responses, and the device containing BT-BIC as an electron
transport layer shows the highest power conversion efficiency of ~13.2% (open-circuit
voltage = ~1.36 V, short-circuit current = ~12.1 mA/cm2, and fill factor = ~80%). The BT-LIC
device shows the lowest power conversion efficiency of approximately ~6.8% (open-circuit
voltage = ~1.23 V, short-circuit current = ~11.2 mA/cm2, and fill factor = ~50%). It is
also observed that the improvements in open-circuit voltage and fill factor are relatively
higher for device B. This clearly demonstrates that the photovoltaic device B fabricated with
BT-BIC as an electron transport layer may manage high build-in potential and excellent
interface quality, which in turn improve the overall charge collection and charge transport
and suppress recombination losses compared to the other electron transport layers BT-LIC,
BT-L4F, and BT-BO-L4F.
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