Obtention and Study of Polyurethane-Based Active Packaging with Curcumin and/or Chitosan Additives for Fruits and Vegetables—Part I: Analysis of Morphological, Mechanical, Barrier, and Migration Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Design of Experiments
2.3. Synthesis of Polyurethane Films
2.4. Morphological Tests: Stethoscope and Scanning Electron Microscope (SEM)
2.5. Color Measurement
2.6. Fourier Transform Infrared Spectra (FTIR)
2.7. Thermal Stability: Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC)
2.8. Water Contact Angle
2.9. Dynamic Mechanical Thermal Analysis (DMTA)
2.10. Oxygen Transmission Rate (OTR)
2.11. Water Vapor Transmission Rate (WVTR)
2.12. Overall Migration
2.13. Specific Migration: Determination of IPDI, Chitosan and Curcumin
2.14. Specific Migration: Determination of Molecular Weights
2.15. Statistical Analysis
3. Results and Discussion
3.1. Morphological Assays: Stereoscope and Scanning Electron Microscopy (SEM)
3.2. Color Analysis
3.3. Water Contact Angle
3.4. FTIR Studies of Polyurethane Films
3.5. Thermogravimetric Analysis (TGA) and Derivative Thermogravimetric Analysis (DGA)
3.6. Dynamic Mechanical Thermal Analysis (DMTA)
3.7. Mechanical Properties
3.8. Differential Scanning Calorimetry (DSC)
3.9. Overall and Specific Migration
3.10. Water Vapor Transmission Rate (WVTR)
3.11. Oxygen Transmission Rate (OTR)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Shlush, E.; Davidovich-Pinhas, M. Bioplastics for Food Packaging. Trends Food Sci. Technol. 2022, 125, 66–80. [Google Scholar] [CrossRef]
- Ministry of Health and Social Protection (Ministerio de Salud y Protección Social). Resolution 4143 of 2012 (December 7) [Resolución 4143 DE 2012 (Diciembre 7) D.O. 48.642, Diciembre 12 de 2012]; Ministry of Health and Social Protection: Bogota, Colombia, 2012.
- European Union. Commission Regulation (EU) No 10/2011 of 14 January 2011 on Plastic Materials and Articles Intended to Come into Contact with Food; European Union: Brussels, Belgium, 2011. [Google Scholar]
- Yu, Z.; Rao, G.; Wei, Y.; Yu, J.; Wu, S.; Fang, Y. Preparation, Characterization, and Antibacterial Properties of Biofilms Comprising Chitosan and ε-Polylysine. Int. J. Biol. Macromol. 2019, 141, 545–552. [Google Scholar] [CrossRef]
- Martins, V.G.; Romani, V.P.; Martins, P.C.; Filipini, G.D.S. Innovative Packaging That Saves Food. In Saving Food; Elsevier: Amsterdam, The Netherlands, 2019; pp. 171–202. ISBN 978-0-12-815357-4. [Google Scholar]
- Moradi, M.; Razavi, R.; Omer, A.K.; Farhangfar, A.; McClements, D.J. Interactions between Nanoparticle-Based Food Additives and Other Food Ingredients: A Review of Current Knowledge. Trends Food Sci. Technol. 2022, 120, 75–87. [Google Scholar] [CrossRef]
- Shrivastava, A. Additives for Plastics. In Introduction to Plastics Engineering; Elsevier: Amsterdam, The Netherlands, 2018; pp. 111–141. ISBN 978-0-323-39500-7. [Google Scholar]
- Navas-Gómez, K.; Valero, M.F. Why Polyurethanes Have Been Used in the Manufacture and Design of Cardiovascular Devices: A Systematic Review. Materials 2020, 13, 3250. [Google Scholar] [CrossRef]
- Cui, M.; Chai, Z.; Lu, Y.; Zhu, J.; Chen, J. Developments of Polyurethane in Biomedical Applications: A Review. Resour. Chem. Mater. 2023, 2, 262–276. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Liang, H.; Zhou, X.; Fang, C.; Zhang, C.; Luo, Y. Synthesis and Properties of Castor Oil-Based Waterborne Polyurethane/Sodium Alginate Composites with Tunable Properties. Carbohydr. Polym. 2019, 208, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Fernández-d’Arlas, B.; Alonso-Varona, A.; Palomares, T.; Corcuera, M.A.; Eceiza, A. Studies on the Morphology, Properties and Biocompatibility of Aliphatic Diisocyanate-Polycarbonate Polyurethanes. Polym. Degrad. Stab. 2015, 122, 153–160. [Google Scholar] [CrossRef]
- Giroto, A.S.; Do Valle, S.F.; Ribeiro, T.; Ribeiro, C.; Mattoso, L.H.C. Towards Urea and Glycerol Utilization as “Building Blocks” for Polyurethane Production: A Detailed Study about Reactivity and Structure for Environmentally Friendly Polymer Synthesis. React. Funct. Polym. 2020, 153, 104629. [Google Scholar] [CrossRef]
- Comí, M.; Lligadas, G.; Ronda, J.C.; Galià, M.; Cádiz, V. Synthesis of Castor-Oil Based Polyurethanes Bearing Alkene/Alkyne Groups and Subsequent Thiol-Ene/Yne Post-Modification. Polymer 2016, 103, 163–170. [Google Scholar] [CrossRef]
- Biji, K.B.; Ravishankar, C.N.; Mohan, C.O.; Srinivasa Gopal, T.K. Smart Packaging Systems for Food Applications: A Review. J. Food Sci. Technol. 2015, 52, 6125–6135. [Google Scholar] [CrossRef]
- Sharma, R.; Jafari, S.M.; Sharma, S. Antimicrobial Bio-Nanocomposites and Their Potential Applications in Food Packaging. Food Control 2020, 112, 107086. [Google Scholar] [CrossRef]
- Cha, D.S.; Chinnan, M.S. Biopolymer-Based Antimicrobial Packaging: A Review. Crit. Rev. Food Sci. Nutr. 2004, 44, 223–237. [Google Scholar] [CrossRef] [PubMed]
- Duan, C.; Meng, X.; Meng, J.; Khan, M.I.H.; Dai, L.; Khan, A.; An, X.; Zhang, J.; Huq, T.; Ni, Y. Chitosan as A Preservative for Fruits and Vegetables: A Review on Chemistry and Antimicrobial Properties. J. Bioresour. Bioprod. 2019, 4, 11–21. [Google Scholar] [CrossRef]
- Mahmood, K.; Zia, K.M.; Zuber, M.; Salman, M.; Anjum, M.N. Recent Developments in Curcumin and Curcumin Based Polymeric Materials for Biomedical Applications: A Review. Int. J. Biol. Macromol. 2015, 81, 877–890. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Zhang, W.; Deng, Y.; Chu, Y.; Zhong, Y.; Wang, G.; Xiong, Y.; Liu, X.; Chen, L.; Li, H. Curcumin-Based Waterborne Polyurethane-Gelatin Composite Bioactive Films for Effective UV Shielding and Inhibition of Oil Oxidation. Food Control 2022, 141, 109199. [Google Scholar] [CrossRef]
- Athir, N.; Shah, S.A.A.; Shehzad, F.K.; Cheng, J.; Zhang, J.; Shi, L. Rutile TiO2 Integrated Zwitterion Polyurethane Composite Films as an Efficient Photostable Food Packaging Material. React. Funct. Polym. 2020, 157, 104733. [Google Scholar] [CrossRef]
- Amna, T.; Yang, J.; Ryu, K.-S.; Hwang, I.H. Electrospun Antimicrobial Hybrid Mats: Innovative Packaging Material for Meat and Meat-Products. J. Food Sci. Technol. 2015, 52, 4600–4606. [Google Scholar] [CrossRef]
- Dong, H.; He, J.; Xiao, K.; Li, C. Temperature-sensitive Polyurethane (TSPU) Film Incorporated with Carvacrol and Cinnamyl Aldehyde: Antimicrobial Activity, Sustained Release Kinetics and Potential Use as Food Packaging for Cantonese-style Moon Cake. Int. J. Food Sci. Technol. 2020, 55, 293–302. [Google Scholar] [CrossRef]
- Turan, D.; Gunes, G. Assessment of Overall Migration and Specific Migration of 1,4-butanediol from a Thermoplastic Polyurethane Film Developed for Fresh Produce Packaging. J. Appl. Polym. Sci. 2020, 137, 48638. [Google Scholar] [CrossRef]
- Ilhan, I.; Kaya, M.; Turan, D.; Gunes, G.; Guner, F.S.; Kılıç, A. Thermoresponsive Polyurethane Films for Packaging Applications: Effects of Film Formulation on Their Properties. Food Packag. Shelf Life 2021, 29, 100695. [Google Scholar] [CrossRef]
- Turan, D. Water Vapor Transport Properties of Polyurethane Films for Packaging of Respiring Foods. Food Eng. Rev. 2019, 13, 54–65. [Google Scholar] [CrossRef]
- Saral Sarojini, K.; Indumathi, M.P.; Rajarajeswari, G.R. Mahua Oil-Based Polyurethane/Chitosan/Nano ZnO Composite Films for Biodegradable Food Packaging Applications. Int. J. Biol. Macromol. 2019, 124, 163–174. [Google Scholar] [CrossRef]
- Mulla, M.Z.; Ahmed, J.; Vahora, A.; Pathania, S. Effect of Pectin Incorporation on Characteristics of Chitosan Based Edible Films. Food Meas. 2023. [Google Scholar] [CrossRef]
- Kritchenkov, A.S.; Egorov, A.R.; Volkova, O.V.; Zabodalova, L.A.; Suchkova, E.P.; Yagafarov, N.Z.; Kurasova, M.N.; Dysin, A.P.; Kurliuk, A.V.; Shakola, T.V.; et al. Active Antibacterial Food Coatings Based on Blends of Succinyl Chitosan and Triazole Betaine Chitosan Derivatives. Food Packag. Shelf Life 2020, 25, 100534. [Google Scholar] [CrossRef]
- Ji, M.; Li, J.; Li, F.; Wang, X.; Man, J.; Li, J.; Zhang, C.; Peng, S. A Biodegradable Chitosan-Based Composite Film Reinforced by Ramie Fibre and Lignin for Food Packaging. Carbohydr. Polym. 2022, 281, 119078. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Xin, S.; Wei, Z.; Feng, F.; Yan, Q.; Xian, D.; Du, S.; Liu, W. Effect of Chitosan Nanoparticles Loaded with Curcumin on the Quality of Schizothorax Prenanti Surimi. Food Biosci. 2021, 42, 101178. [Google Scholar] [CrossRef]
- Yao, J.; Mao, L.; Wang, C.; Liu, X.; Liu, Y. Development of Chitosan/Poly (Vinyl Alcohol) Active Films Reinforced with Curcumin Functionalized Layered Clay towards Food Packaging. Prog. Org. Coat. 2023, 182, 107674. [Google Scholar] [CrossRef]
- Li, H.; Jiang, Y.; Yang, J.; Pang, R.; Chen, Y.; Mo, L.; Jiang, Q.; Qin, Z. Preparation of Curcumin-Chitosan Composite Film with High Antioxidant and Antibacterial Capacity: Improving the Solubility of Curcumin by Encapsulation of Biopolymers. Food Hydrocoll. 2023, 145, 109150. [Google Scholar] [CrossRef]
- O’Toole, M.G.; Soucy, P.A.; Chauhan, R.; Ramakrishnam Raju, M.V.; Patel, D.N.; Nunn, B.M.; Keynton, M.A.; Ehringer, W.D.; Nantz, M.H.; Keynton, R.S.; et al. Release-Modulated Antioxidant Activity of a Composite Curcumin-Chitosan Polymer. Biomacromolecules 2016, 17, 1253–1260. [Google Scholar] [CrossRef]
- Uscátegui, Y.L.; Arévalo-Alquichire, S.J.; Gómez-Tejedor, J.A.; Vallés-Lluch, A.; Díaz, L.E.; Valero, M.F. Polyurethane-Based Bioadhesive Synthesized from Polyols Derived from Castor Oil (Ricinus communis) and Low Concentration of Chitosan. J. Mater. Res. 2017, 32, 3699–3711. [Google Scholar] [CrossRef]
- Dai, Y.; Lu, Y.; Wu, W.; Lu, X.; Han, Z.; Liu, Y.; Li, X.; Dai, R. Changes in Oxidation, Color and Texture Deteriorations during Refrigerated Storage of Ohmically and Water Bath-Cooked Pork Meat. Innov. Food Sci. Emerg. Technol. 2014, 26, 341–346. [Google Scholar] [CrossRef]
- Ángel-Rendón, S.V.; Filomena-Ambrosio, A.; Hernández-Carrión, M.; Llorca, E.; Hernando, I.; Quiles, A.; Sotelo-Díaz, I. Pork Meat Prepared by Different Cooking Methods. A Microstructural, Sensorial and Physicochemical Approach. Meat Sci. 2020, 163, 108089. [Google Scholar] [CrossRef] [PubMed]
- Gama, N.; Ferreira, A.; Barros-Timmons, A. Cure and Performance of Castor Oil Polyurethane Adhesive. Int. J. Adhes. Adhes. 2019, 95, 102413. [Google Scholar] [CrossRef]
- ASTM D6370; Standard Test Method for Rubber—Compositional Analysis by Thermogravimetry (TGA). ASTM International: West Conshohocken, PA, USA, 2023.
- Uscátegui, Y.; Díaz, L.; Gómez-Tejedor, J.; Vallés-Lluch, A.; Vilariño-Feltrer, G.; Serrano, M.; Valero, M. Candidate Polyurethanes Based on Castor Oil (Ricinus communis), with Polycaprolactone Diol and Chitosan Additions, for Use in Biomedical Applications. Molecules 2019, 24, 237. [Google Scholar] [CrossRef]
- ASTM D7490-13; Standard Test Method for Measurement of the Surface Tension of Solid Coatings, Substrates and Pigments Using Contact Angle Measurements. ASTM International: West Conshohocken, PA, USA, 2022.
- Mills, D.J.; Jamali, S.S.; Paprocka, K. Investigation into the Effect of Nano-Silica on the Protective Properties of Polyurethane Coatings. Surf. Coat. Technol. 2012, 209, 137–142. [Google Scholar] [CrossRef]
- ASTM D3985-17; Standard Test Method for Oxygen Gas Transmission Rate Through Plastic Film and Sheeting Using a Coulometric Sensor. ASTM International: West Conshohocken, PA, USA, 2017.
- ASTM E 96/E96M; Standard Test Methods for Water Vapor Transmission of Materials. ASTM International: West Conshohocken, PA, USA, 2015.
- UNE-EN 1186-3:2023; Materials and Articles in Contact with Foodstuffs—Plastics—Part 3: Test Methods for Overall Migration in Evaporable Simulants. Spanish Association for Standardization: Madrid, Spain, 2023.
- López, P.; Sánchez, C.; Batlle, R.; Nerín, C. Development of Flexible Antimicrobial Films Using Essential Oils as Active Agents. J. Agric. Food Chem. 2007, 55, 8814–8824. [Google Scholar] [CrossRef]
- AENOR. Materials and Articles in Contact with Foodstuffs—Plastics—Part 1: Guide to the Selection of Conditions and Test Methods for Overall Migration [Materiales y Artículos en Contacto con Productos Alimenticios Parte 1]; AENOR: Madrid, Spain, 2002. [Google Scholar]
- Fonseca-Santos, B.; Gremião, M.P.D.; Chorilli, M. A Simple Reversed Phase High-Performance Liquid Chromatography (HPLC) Method for Determination of in Situ Gelling Curcumin-Loaded Liquid Crystals in in Vitro Performance Tests. Arab. J. Chem. 2017, 10, 1029–1037. [Google Scholar] [CrossRef]
- Cui, Z.; Yao, L.; Ye, J.; Wang, Z.; Hu, Y. Solubility Measurement and Thermodynamic Modelling of Curcumin in Twelve Pure Solvents and Three Binary Solvents at Different Temperature (T = 278.15–323.15 K). J. Mol. Liq. 2021, 338, 116795. [Google Scholar] [CrossRef]
- Mutsuga, M.; Yamaguchi, M.; Kawamura, Y. Quantification of Isocyanates and Amines in Polyurethane Foams and Coated Products by Liquid Chromatography–Tandem Mass Spectrometry. Food Sci. Nutr. 2014, 2, 156–163. [Google Scholar] [CrossRef]
- Driffield, M.; Bradley, E.L.; Castle, L. A Method of Test for Residual Isophorone Diisocyanate Trimer in New Polyester-Polyurethane Coatings on Light Metal Packaging Using Liquid Chromatography with Tandem Mass Spectrometric Detection. J. Chromatogr. A 2007, 1141, 61–66. [Google Scholar] [CrossRef]
- Miao, Q.; Cui, Y.; Zhang, J.; Mi, Y.; Tan, W.; Li, Q.; Gu, G.; Dong, F.; Guo, Z. Determination of Chitosan Content with Ratio Coefficient Method and HPLC. Int. J. Biol. Macromol. 2020, 164, 384–388. [Google Scholar] [CrossRef] [PubMed]
- García, R.S.; Silva, A.S.; Cooper, I.; Franz, R.; Losada, P.P. Revision of Analytical Strategies to Evaluate Different Migrants from Food Packaging Materials. Trends Food Sci. Technol. 2006, 17, 354–366. [Google Scholar] [CrossRef]
- Merck IR Spectrum Table. Available online: https://www.sigmaaldrich.com/CO/en/technical-documents/technical-article/analytical-chemistry/photometry-and-reflectometry/ir-spectrum-table (accessed on 4 May 2023).
- Liu, R.; Li, S.; Yao, N.; Xia, J.; Li, M.; Ding, H.; Xu, L.; Yang, X. Castor Oil-Based Polyurethane Networks Containing Diselenide Bonds: Self-Healing, Shape Memory, and High Flexibility. Prog. Org. Coat. 2022, 163, 106615. [Google Scholar] [CrossRef]
- Chen, X.; Zou, L.-Q.; Niu, J.; Liu, W.; Peng, S.-F.; Liu, C.-M. The Stability, Sustained Release and Cellular Antioxidant Activity of Curcumin Nanoliposomes. Molecules 2015, 20, 14293–14311. [Google Scholar] [CrossRef] [PubMed]
- Lustriane, C.; Dwivany, F.M.; Suendo, V.; Reza, M. Effect of Chitosan and Chitosan-Nanoparticles on Post Harvest Quality of Banana Fruits. J. Plant Biotechnol. 2018, 45, 36–44. [Google Scholar] [CrossRef]
- Narasagoudr, S.S.; Hegde, V.G.; Chougale, R.B.; Masti, S.P.; Vootla, S.; Malabadi, R.B. Physico-Chemical and Functional Properties of Rutin Induced Chitosan/Poly (Vinyl Alcohol) Bioactive Films for Food Packaging Applications. Food Hydrocoll. 2020, 109, 106096. [Google Scholar] [CrossRef]
- Szycher, M. Szycher’s Handbook of Polyurethanes, 2nd ed.; Taylor & Francis Group: Abingdon, UK, 2012; ISBN 978-1-4398-6313-8. [Google Scholar]
- Muzeza, C.; Ngole-Jeme, V.; Msagati, T.A.M. The Mechanisms of Plastic Food-Packaging Monomers’ Migration into Food Matrix and the Implications on Human Health. Foods 2023, 12, 3364. [Google Scholar] [CrossRef]
- Alamri, M.S.; Qasem, A.A.A.; Mohamed, A.A.; Hussain, S.; Ibraheem, M.A.; Shamlan, G.; Alqah, H.A.; Qasha, A.S. Food Packaging’s Materials: A Food Safety Perspective. Saudi J. Biol. Sci. 2021, 28, 4490–4499. [Google Scholar] [CrossRef]
- Zygoura, P.D.; Paleologos, E.K.; Kontominas, M.G. Changes in the Specific Migration Characteristics of Packaging–Food Simulant Combinations Caused by Ionizing Radiation: Effect of Food Simulant. Radiat. Phys. Chem. 2011, 80, 902–910. [Google Scholar] [CrossRef]
- Poças, F. Migration From Packaging and Food Contact Materials Into Foods. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2018; p. B9780081005965214601. ISBN 978-0-08-100596-5. [Google Scholar]
- Cruz, R.M.S.; Rico, B.P.M.; Vieira, M.C. Food Packaging and Migration. In Food Quality and Shelf Life; Elsevier: Amsterdam, The Netherlands, 2019; pp. 281–301. ISBN 978-0-12-817190-5. [Google Scholar]
- Petrovics, N.; Kirchkeszner, C.; Patkó, A.; Tábi, T.; Magyar, N.; Kovácsné Székely, I.; Szabó, B.S.; Nyiri, Z.; Eke, Z. Effect of Crystallinity on the Migration of Plastic Additives from Polylactic Acid-Based Food Contact Plastics. Food Packag. Shelf Life 2023, 36, 101054. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Y.; Dong, Q.; Xu, C.; Deng, S.; Kang, Y.; Fan, M.; Li, L. Application of Functionalized Chitosan in Food: A Review. Int. J. Biol. Macromol. 2023, 235, 123716. [Google Scholar] [CrossRef]
- Winotapun, C.; Hararak, B.; Treetong, A.; Chaloeijitkul, K.; Sane, A. Self-Assembly of Colloidal Lignin Nanosphere Particles Blended with Chitosan Composite Coated Bagasse Paper: An Eco-Friendly Food Packaging with Antimicrobial Properties. Colloids Surf. A Physicochem. Eng. Asp. 2022, 655, 130207. [Google Scholar] [CrossRef]
- Merino, D.; Bellassi, P.; Paul, U.C.; Morelli, L.; Athanassiou, A. Assessment of Chitosan/Pectin-Rich Vegetable Waste Composites for the Active Packaging of Dry Foods. Food Hydrocoll. 2023, 139, 108580. [Google Scholar] [CrossRef]
- Baysal, G.; Doğan, F. Investigation and Preparation of Biodegradable Starch-Based Nanofilms for Potential Use of Curcumin and Garlic in Food Packaging Applications. J. Biomater. Sci. Polym. Ed. 2020, 31, 1127–1143. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.; Ren, Y.; Wang, L. Investigation of Antioxidant Activity and Release Kinetics of Curcumin from Tara Gum/Polyvinyl Alcohol Active Film. Food Hydrocoll. 2017, 70, 286–292. [Google Scholar] [CrossRef]
- Center for Food Safety and Applied Nutrition. Inventory of Food Contact Substances Listed in 21 CFR. Available online: https://www.fda.gov/food/packaging-food-contact-substances-fcs/inventory-food-contact-substances-listed-21-cfr (accessed on 3 May 2023).
- Siracusa, V. Food Packaging Permeability Behaviour: A Report. Int. J. Polym. Sci. 2012, 2012, 302029. [Google Scholar] [CrossRef]
Run | Code | Formulation |
---|---|---|
1 | CH00CUR000 | Chitosan 0%, curcumin 0% |
2 | CH00CUR050 | Chitosan 0%, curcumin 0.5% |
3 | CH15CUR050 | Chitosan 1.5%, curcumin 0.5% |
4 | CH00CUR025 | Chitosan 0%, curcumin 0.25% |
5 | CH30CUR000 | Chitosan 3.0%, curcumin 0% |
6 | CH15CUR025 | Chitosan 1.5%, curcumin 0.25% |
7 | CH30CUR050 | Chitosan 3.0%, curcumin 0.5% |
8 | CH15CUR000 | Chitosan 1.5%, curcumin 0% |
9 | CH30CUR025 | Chitosan 3%, curcumin 0.25% |
Polyurethane Formulation | L* | a* | b* |
---|---|---|---|
CH00CUR000 | 89.13 ± 1.29 a | −0.93 ± 0.04 a | 6.79 ± 0.17 a |
CH00CUR050 | 83.84 ± 0.62 a | −12.29 ± 0.16 b | 50.92 ± 0.45 b |
CH15CUR050 | 84.32 ± 0.16 a | −14.34 ± 0.08 b | 47.30 ± 0.09 b |
CH00CUR025 | 86.96 ± 0.90 a | −15.71 ± 0.99 b | 44.29 ± 2.49 b |
CH30CUR000 | 81.22 ± 1.78 b | −4.69 ± 0.12 b | 22.12 ± 0.56 b |
CH15CUR025 | 89.66 ± 0.59 a | −16.56 ± 0.20 b | 41.24 ± 1.23 b |
CH30CUR050 | 87.85 ± 1.03 a | −15.41 ± 0.29 b | 44.72 ± 0.63 b |
CH15CUR000 | 88.79 ± 0.80 a | −0.47 ± 0.06 a | 6.18 ± 0.25 a |
CH30CUR025 | 85.02 ± 0.73 a | −15.51 ± 0.12 b | 41.21 ± 0.14 b |
Polyurethane Formulation | Young’s Modulus (MPa) | Tensile Strength (Mpa) | Elongation at Break (%) | Onset Temperature (°C) | WVTR (g/Pa.s.m2) |
---|---|---|---|---|---|
CH00CUR000 | 1.79 ± 0.18 a | 1.1 ± 0.08 a | 101.94 ± 28.49 a | 311.5 | 1.868 × 10−7 ± 7.496 × 10−8 |
CH00CUR050 | 2.17 ± 0.15 a | 1.2 ± 0.13 b | 77.48 ± 10.34 a | 310.17 | 2.442 × 10−7 ± 9.048× 10−8 a |
CH15CUR050 | 2.45 ± 0.19 a | 1.6 ± 0.15 c | 118.83 ± 18.30 a | 298.67 | 1.706 × 10−7 ± 3.326 × 10−8 a |
CH00CUR025 | 2.50 ± 0.09 a | 1.8 ± 0.19 d | 125.50 ± 26.72 a | 298.00 | 1.816 × 10−7 ± 4.594 × 10−8 a |
CH30CUR000 | 2.02 ± 0.14 a | 1.4 ± 0.16 a | 112.55 ± 18.71 a | 296.33 | 2.202 × 10−7 ± 6.912 × 10−8 a |
CH15CUR025 | 1.57 ± 0.12 a | 0.9 ± 0.09 a | 95.47 ± 16.18 a | 292.33 | 2.319 × 10−7 ± 4.05 × 10−8 a |
CH30CUR050 | 2.12 ± 0.25 a | 1.4 ± 0.19 a | 107.61 ± 14.11 a | 297.17 | 2.403 × 10−7 ± 1.136 × 10−7 a |
CH15CUR000 | 1.66 ± 0.09 b | 1.3 ± 0.15 e | 163.89 ± 32.85 b | 297.00 | 1.347 × 10−7 ± 5.521 × 10−8 a |
CH30CUR025 | 1.31 ± 0.10 a | 0.8 ± 0.13 a | 96.68 ± 24.15 a | 288.17 | 1.823 × 10−7 ± 7.106 × 10−8 a |
PVC | 147.64 ± 5.2 c | 29.78 ± 0.25 f | 185.43 ± 12.16 a | 240.8 | 9.817 × 10−7 ± 8.283 × 10−8 b |
Polyurethane Formulation | IPDI (mg/kg) | Curcumin (mg/kg) | Chitosan (mg/kg) | Percentage of Monomer Over Overall Migration |
---|---|---|---|---|
CH00CUR000 | 3.36 | Out of minimum detection (x < 0.09) | Out of minimum detection (x < 0.01) | Monomer (74.31%) |
CH00CUR050 | 2.17 | Out of minimum detection (x < 0.09) | Out of minimum detection (x < 0.01) | Monomer I (19.3%) Monomer II (15.96%) |
CH15CUR050 | 3.83 | Out of minimum detection (x < 0.09) | Out of minimum detection (x < 0.01) | Monomer I (11.18%) Monomer II (25.23) |
CH00CUR025 | 2.00 | Out of minimum detection (x < 0.09) | Out of minimum detection (x < 0.01) | Monomer I (30.59%) Monomer II (7.33%) |
CH30CUR000 | 2.73 | Out of minimum detection (x < 0.09) | 0.1 | Monomer I (42.97%) Monomer II (8.08%) |
CH15CUR025 | 2.46 | Out of minimum detection (x < 0.09) | 0.19 | Monomer I (33.10%) Monomer II (13.9%) |
CH30CUR050 | 3.85 | 0.10 | 0.02 | Monomer I (32.52%) Monomer II (14.41%) |
CH15CUR000 | 2.85 | Out of minimum detection (x < 0.09) | 0.03 | Monomer I (21.39%) Monomer II (15.17%) |
CH30CUR025 | 3.34 | Out of minimum detection (x < 0.09) | 0.11 | Monomer I (6.24%) Monomer II (9.95%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz, D.; Uscátegui, Y.L.; Diaz, L.; Arrieta-Pérez, R.R.; Gómez-Tejedor, J.A.; Valero, M.F. Obtention and Study of Polyurethane-Based Active Packaging with Curcumin and/or Chitosan Additives for Fruits and Vegetables—Part I: Analysis of Morphological, Mechanical, Barrier, and Migration Properties. Polymers 2023, 15, 4456. https://doi.org/10.3390/polym15224456
Ruiz D, Uscátegui YL, Diaz L, Arrieta-Pérez RR, Gómez-Tejedor JA, Valero MF. Obtention and Study of Polyurethane-Based Active Packaging with Curcumin and/or Chitosan Additives for Fruits and Vegetables—Part I: Analysis of Morphological, Mechanical, Barrier, and Migration Properties. Polymers. 2023; 15(22):4456. https://doi.org/10.3390/polym15224456
Chicago/Turabian StyleRuiz, David, Yomaira L. Uscátegui, Luis Diaz, Rodinson R. Arrieta-Pérez, José A. Gómez-Tejedor, and Manuel F. Valero. 2023. "Obtention and Study of Polyurethane-Based Active Packaging with Curcumin and/or Chitosan Additives for Fruits and Vegetables—Part I: Analysis of Morphological, Mechanical, Barrier, and Migration Properties" Polymers 15, no. 22: 4456. https://doi.org/10.3390/polym15224456
APA StyleRuiz, D., Uscátegui, Y. L., Diaz, L., Arrieta-Pérez, R. R., Gómez-Tejedor, J. A., & Valero, M. F. (2023). Obtention and Study of Polyurethane-Based Active Packaging with Curcumin and/or Chitosan Additives for Fruits and Vegetables—Part I: Analysis of Morphological, Mechanical, Barrier, and Migration Properties. Polymers, 15(22), 4456. https://doi.org/10.3390/polym15224456