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Abstract: The particle size distribution (PSD) in emulsion polymerization (EP) has been modeled in
the past using either the pseudo bulk (PB) or the 0-1/0-1-2 approaches. There is some controversy
on the proper type of model to be used to simulate the experimental PSDs, which are apparently
broader than the theoretical ones. Additionally, the numerical technique employed to solve the model
equations, involving hyperbolic partial differential equations (PDEs) with moving and possibly steep
fronts, has to be precise and robust, which is not a trivial matter. A deterministic kinetic model for
the PSD evolution of ab initio EP of vinyl monomers was developed to investigate these issues. The
model considers three phases, micellar nucleation, and particles that can contain n ≥ 0 radicals. Finite
volume (FV) and weighted-residual methods are used to solve the system of PDEs and compared;
their limitations are also identified. The model was validated by comparing predictions with data
of monomer conversion and PSD for the batch emulsion homopolymerization of styrene (Sty) and
methyl methacrylate (MMA) using sodium dodecyl sulfate (SDS)/potassium persulfate (KPS) at
60 ◦C, as well as the copolymerization of Sty-MMA (50/50; mol/mol) at 50 and 60 ◦C. It is concluded
that the PB model has a structural problem when attempting to adequately represent PSDs with steep
fronts, so its use is discouraged. On the other hand, there is no generalized evidence of the need to
add a stochastic term to enhance the PSD prediction of EP deterministic models.

Keywords: emulsion polymerization; population balance equations; sustainable process; particle
size distribution

1. Introduction

Ab initio emulsion polymerizations (EPs) are complex multiphase processes composed
of key ingredients: water, monomers, initiator, surfactant, chain transfer agent, inhibitor,
and buffer [1,2]. A commercial recipe may contain more than twenty ingredients [1].
Some relevant products of industrial EP include adhesives, styrene-butadiene rubber
(SBR) for carpet backing, textile fibers, high impact strength materials, emulsion paints,
bone marrow transplantations, drug delivery systems, conducting polymers, sealants, and
cosmetic products [3]. Their average polymer characteristics can be controlled using on-line
monitoring techniques such as Raman, near-infrared (NIR), and photon density wave
(PDW) spectroscopy [4].

Population balance equations (PBEs) have been extensively employed to capture
distinct phenomena affecting the evolution of the particle size distribution (PSD) of entities
such as cells, droplets, crystals, and polymer particles [5–8]. PBEs are mathematically a set
of hyperbolic partial integro-differential equations (PDEs) whose solutions can be attained
by either deterministic or stochastic numerical methods [9,10]. In EPs, the number of
radicals per polymer particle may vary from zero to a maximum number (nmax), eventually
leading to an intractable set of PDEs. However, some simplifications are considered to
keep the problem tractable. On the one hand, some approaches neglect particles with two
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or more radicals: the 0-1 model (polymer particles contain either zero or one radical) and
the 0-1-2 model (a maximum of two radicals per particle). On the other hand, in another
approach, it is assumed that all particles of the same mass (or size) contain the same average
number of radicals, n(m, t). This hypothesis is used in the pseudo-bulk (PB) approach
and in an implementation using the Fokker–Planck equation (FPE) [11]. A third approach
has been built considering that small particles may follow the 0-1 model, whereas large
particles may obey the PB approach [12].

A brief summary of the main features of modeling approaches for emulsion homo-
and copolymerizations is presented in Table 1.

Table 1. Comprehensive mathematical models for emulsion homo- and copolymerizations of
vinyl/divinyl monomers.

Monomers Reactor Type PSD Model Numerical
Method

Monomer
Equilibrium Model

Experimental
PSD Reference

Vinyl acetate Semibatch FPE Galerkin Solubility data - [13]

Styrene-methyl
methacrylate CSTR PB OCM Partition coefficients - [14,15]

Vinyl acetate-butyl
acrylate Semibatch PB OCM Partition coefficients Yes [16]

Sty-butadiene,
acrylonitrile-butadiene CSTR 0-1-2 Method of

moments Partition coefficients - [17]

Vinyl chloride CSTR 0-1-2 Finite volume (not reported) - [18]

Vinyl chloride Batch 0-1-2 Finite volume Solubility data - [19]

Vinyl chloride Batch 0-1 Finite volume Partition coefficient Yes [20]

Styrene, butyl acrylate Batch 0-1/PB Backward finite
difference Solubility data Yes [12]

Styrene Semibatch FPE Finite volume Morton equation Yes [11]

Styrene-butyl acrylate Batch and
semibatch PB Fixed pivots Partition coefficients Yes [21]

The numerical solution of hyperbolic PDE’s is challenging due to the possible presence
of steep fronts as in the case of the inviscid Burger’s equation representing shock-waves [22].
One way to reduce the set of PDEs to a set of ordinary differential equations (ODEs) in time
is using the weighted residual method (MWR) on finite elements, in which the solution in
each element is approximated with either first-, second-, or third-order polynomials of the
internal coordinate (mass or diameter particle) with time-dependent coefficients [23]. Both
the orthogonal collocation on finite elements method (OCFE) and the Galerkin methods,
two kinds of MWR, are widely used in the estimation of PSD in EPs [5,24]. Increasing
the number of elements will improve estimates of the PSD, especially if sharp fronts are
expected [25]. Recently, the evolution of seeded EPs was studied by a multiscale model
built with kinetic Monte Carlo, the Fokker–Planck equation (FPE), and solved with the
Galerkin method, in conjunction with traditional mass and energy balances [13]. The shape
of the PSD was adjusted by varying the size-dependent diffusion coefficient in the FPE.
Another practical type of MWR is the method of moments (MMs), which is particularly
useful for the computation of relevant average properties such as the number average
particle diameter (Dp) and the average number of radicals per particle (n). Recently, a
model based on the MMs for the 0-1-2 model has captured the effect of the number of
reactors on the monomer conversion, molar mass, and copolymer composition of emulsion
copolymerization of styrene-butadiene rubber and acrylonitrile-butadiene rubber in a train
of CSTRs [17].
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Another technique that has been successfully used to solve the PDE’s representing the
PSD in EP is the finite volume (FV) method with a semi-discrete high-resolution scheme
that has been implemented to solve the 0-1 and 0-1-2 approaches [19,20]. Such models
accounted for homogenous nucleation and coagulation rates and were utilized, for instance,
to analyze the effect of initiator and surfactant concentrations on the broadness of the PSD
of poly(vinyl acetate) [20]. In another work, it was shown that the 0-1-2 and PB models
produce similar results for seeded polymerizations, whereas the 0-1 model underestimates
the growth rate [19]. As pointed out by Vale and McKenna, finite differences (FE) and FV
methods are closely related, although FV may present some advantages [26].

In the last 2–3 decades, some groups have studied and contrasted numerical and
structural aspects of PSD modeling in EP, as well as their interactions. The hyperbolic
nature of the PDE’s may lead to numerical oscillations and numerical dispersion (spuri-
ous dispersion added to the solution) when steep fronts arise, but their presence and
severity will depend on the specific problem being solved: ab initio or seeded poly-
merizations and the presence or not of coagulation. Saldívar and Ray used OCFE in
a moving polymer-mass frame to solve the very challenging problem of (unseeded)
ab initio batch EP without coagulation terms (which smooth out the front) using a PB
model; they had to add a (small) artificial numerical diffusion term to avoid numerical
oscillations that otherwise would occur at the front [14]. Unfortunately, as far as we
know, no other group has attempted to solve this problem. Some other research groups
have published simulation results of PSD models that did not use adequate numerical
methods and therefore the simulated PSD shape generated is not reliable [11,27–29];
therefore, adequate numerical methods are needed to trust the solution and detect real
structural deficiencies of the models used [11]. Vale and McKenna (2005) concluded
that FV/FD methods coupled with high-resolution discretization schemes are the most
efficient ones in terms of computation time and provide enough precision of the solu-
tion, avoiding numerical oscillations and numerical dispersion [26]. On the other hand,
Hosseini et al. criticized deterministic PBE models arguing that they do not correctly pre-
dict the broadness of the distribution (theoretical predictions are too narrow compared
with actual experimental data); however, to prove their point, they use a pseudo-bulk
model and even though they mention that calculations were performed also with a 0-1
model, they do not show the results and apparently they only studied one case with this
alternative model [11]. On these bases, these authors conclude that deterministic models
are structurally inadequate and fix the problem by adding a stochastic term to the PDE,
turning it into the Fokker–Planck equation. Although these groups, particularly Vale
and McKenna, have studied a variety of cases (pure growth, nucleation and growth,
etc.) none of them have studied in detail the numerically demanding case of a batch ab
initio (nucleation) EP with no seed nor coagulation that presents a sharp front prone to
numerical instabilities, at least when a PB model is used [18,19,26].

From these studies, there seems to be agreement on the fact that FE/FV methods with a
high-resolution discretization scheme, as well as OCFE, are capable of providing sufficiently
precise numerical solutions of the PBE models, but an ultimate test to further explore some
limitations of these methods would be the solution of the ab initio batch EP with no
coagulation terms (presence of steep fronts), labeled from here on as ABIBEPNC [14]. It is
not clear if this steep front is present only when a PB model is used and if, as one could
guess, it smoothens when a 0-1 or 0-1-2 model is used.

With this panorama in mind, in this work, the following issues, aims, and related
questions will be addressed: (i) to further test different numerical techniques, in partic-
ular FV/FD and OCFE methods, to assess their suitability and limitations to solve the
PBEs arising in the modeling of the PSD in EP under different simulated conditions, in
particular for the challenging ABIBEPNC problem; (ii) to investigate if the steep front
in the ABIBEPNC problem, not experimentally observed, is a structural problem due to
the use of a PB model and if using a 0-1 or 0-1-2 model the front is smoothed out; and
(iii) to investigate if the apparently narrower broadness of the distribution predicted by
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theoretical models compared with experimental PSDs is a structural problem of the type of
(deterministic) models used so far, and if the models need to incorporate stochastic terms,
as suggested by Hosseini et al [11].

To answer these questions, in this contribution, we provide a mathematical model
for the ab initio EP of vinyl monomers in batch reactors by combining PBEs and kinetic
and thermodynamic models. From the modeling point of view, firstly, the model can
consider a maximum number of radicals per particle, nmax , which will allow the tracking
of the individual polymer particle populations, fn, whose evolution will render the
shape of the PSD. Secondly, in order to reduce numerical dispersion and dissipation, two
efficient numerical methods are implemented with fixed grids. The first method is the
orthogonal collocation method on finite elements (OCFE) using third-order polynomials
on each element, while the second method is the FV method with a high resolution
scheme. Finally, experimental PSDs measured by dynamic light scattering (DLS) for the
EP homopolymerizations of Sty and MMA at 60 ◦C, as well as the copolymerization of
Sty-MMA (50/50; mol/mol) at 50 and 60 ◦C, generated by our laboratory are included
for comparison with model predictions.

2. Materials and Methods

All reactants were obtained from Sigma-Aldrich. Sodium dodecyl sulfate (SDS,
≥98.5%) and potassium persulfate (KPS, ≥99.0%) were used as received. Styrene (Sty,
≥99%) and methyl methacrylate (MMA, 99%) were passed through a prepacked column
with inhibitor remover (tert-butylcatechol or hydroquinone, respectively). Deionized water
was obtained from an ionic exchange unit Milli-Q. Polymerizations were carried out in a
100-mL glass-jacketed reaction flask with a four-neck flask top, equipped with a mechanical
agitation system (45◦ pitched four-blade impeller), a reflux condenser, and inlets for argon
purging and sampling. An aqueous solution of surfactant (0.69 g of SDS in 75.0 g of water)
plus 20 g of monomer were charged to the reactor. Then, the mechanical stirring (500 rpm)
was started to form the emulsion and the reactor was purged with argon for 60 min to
eliminate oxygen. In the last 15 min of this step, the emulsion was heated to the reaction
temperature (50 or 60 ± 0.1 ◦C). The polymerization was started with the addition of an
aqueous solution of initiator (0.06 g of KPS in 5.0 g of water). Small latex samples (~1 g)
were withdrawn at given times to determine monomer conversion by gravimetric analysis.
At the same given times, samples were taken to measure the particle size by dynamic light
scattering (DLS) at 25 ◦C in a Nanotrac Wave II equipment. To prepare the samples for DLS,
one drop of latex (~0.1 g) was diluted in 2 mL of water. The average particle diameter (Dp)
used throughout this study is the Sauter average diameter (D32) and the complete PSDs are
reported as volume fraction distributions.

3. Mathematical Modeling
3.1. Kinetic Scheme

In our mathematical approach for ab initio EP, two reaction loci are considered: aque-
ous (aq) and polymer particle (p) phases. Monomer droplets supply monomer molecules
to both the continuous and polymer particle phases. The reaction mechanism is detailed in
Table 2. The species present in the aqueous phase, Iaq, Maq, Raq, Pl

aq, Dl
aq, and Taq represent

water-soluble initiator, monomer, primary free radical, propagating radical of chain length
l, dead polymer of chain length l, and chain transfer agent. fndm = fn(m, t)dm stands for
the number of particles per liter of water in a slice dm of mass m containing n radicals,
whereas Mic is the number of micelles per liter of aqueous phase.
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Table 2. Kinetic mechanism for EP of vinyl monomers.

Reaction Representation

Initiator dissociation Iaq
f kd−−→ 2 Raq

Chain initiation Raq + Maq
kri,aq−−→ P1

aq

Propagation Pl
aq + Maq

kp,aq−−→ Pl+1
aq , l = 1, . . . ., cr− 1

Chain transfer to monomer Pl
aq + Maq

ktr,aq−−→ Dl
aq + P0

aq, l = 1, . . . ., cr− 1

Chain transfer to chain transfer agent (CTA) Pl
aq + Taq

kT,aq−−→ Dl
aq + P0

T,aq, l = 1, . . . ., cr− 1

Termination by coupling Pl
aq + Pm

aq
ktc,aq−−→ Dl+m

aq , l = 1, . . . ., cr− 1

Termination by disproportionation Pl
aq + Pm

aq

kw
tdij−−→ Dl

aq + Dm
aq, l = 1, . . . ., cr− 1

Micellar nucleation Pl
i,aq + Mic

kmic−−→ f1

Entry into nanoparticles Pl
iw
+ fn

kentry−−→ fn+1

Exit from nanoparticles fn
kdes−−→ fn−1 + P0

aq

Bimolecular termination of radicals in polymer particles fn
kt−→ fn−2

Once the initiator is added, primary free radicals and oligomeric species are generated
in the aqueous phase; subsequently, they can undergo propagation, chain transfer, termina-
tion, and entry into a micelle. The latter mechanism, known as heterogeneous or micellar
nucleation, leads to the creation of polymer particles with one radical, f1(mMic, t). New
or larger polymer particles are created by the entry, desorption, bimolecular termination,
and rate of growth phenomena. The mass balances for all species involved in batch EP are
summarized in Table 3 [15].

Table 3. Mass balances for species involved in batch EP.

Species Mass Balance

Initiator
[
Iaq
]
=
[
Iaq
]

0 exp
(
−kd,aqt

)
Monomer conversion M0

dX
dt = kp,aq

[
Maq

][
Paq
]
Vaq + kp,p

[
Mp
] Vw

NA
∑nmax

n=1
∫ mmax

mmin
n fndm

Primary free radicals

1
Vaq

d([Raq ]Vaq)
dt = 2 f kd,aq

[
Iaq
]
− kir,aq

[
Maq

][
Raq
]
− 4πr2

mickmm
[
Raq
]
Mic− kt,aq

[
Raq
]
[R]−

Vw ∑nmax
n=0

∫ mmax
mmin

4πr2(m) fn(m)kmR
[
Raq
]
dm; [R] =

[
Raq
]
+
[

P0
aq

]
+ ∑l

[
Pl

aq

]

Monomer radicals balance

d([P0
aq]Vaq)
dt = Vw

NA

nmax

∑
n=1

∫ mmax
mmic

ktr,p
[
Mp
]
n fn(m, t)dm− kp

[
Maq

][
P0

aq

]
Vaq − 4πr2

mickmm

[
P0

aq

]
MicVaq

−kt,aq

[
P0

aq

]
[R]Vaq −Vw

nmax

∑
n=0

∫ mmax
mmin

4πr2(m) fn(m)kmR

[
P0

aq

]
dm

Polymeric radicals

d([Pl
aq ]Vaq)
dt = kp,aq

[
Maq

](
[
[

Pl−1
aq

]
− Pl

aq]
)

Vaq − 4πr2kmm

[
Pl

aq

]
MicVaq − kt,aq

[
Pl

aq

]
[R]Vaq

−Vw
nmax

∑
n=0

∫ mmax
mmin

4πr2(m) fn(m)kmR

[
Pl

aq

]
dm

Number of particles
∂ fnVw

∂t +
∂( dm

dt )Vw fn

∂m = NAVwe{ fn−1 − fn}+ de{(n + 1) fn+1 − n fn}+ Vwkt
2vp
{(n + 2)(n + 1) fn+2−

n(n− 1) fn}, dm
dt =

kppn[Mp]Wm

NA
, e = 4πr2kmp[R], de = gψi, g = ktr

[
Mp
]
, vp = 4

3 πr3, ψi =

K0i
K0i+kpp[Mp]

, K0i =
12
d2

p

Dwi Dpi
mdi Dpi+2Dwi
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The first expression in Table 3 corresponds to the mass balance for Iaq, which is
analytically solved. The rate of polymerization (second expression in the table), in terms
of the monomer conversion, X, considers the contribution of the polymerization rate in
the aqueous phase of volume Vaq and the contribution of the polymerization rate in the
polymer particles with n radicals of polymer mass m ( fn(m, t)) per liter of water, Vw. The
domain of the internal coordinate is [mmin, mmax]; mmin was equated to the micelle mass
and mmax corresponds to a particle with a radius, r, of around 200 nm. n ranges from 0 to
a maximum number of radicals, nmax. The entry of a radical (Raq, P0

aq or Pl
aq) to polymer

particles is calculated by the integral of the product of the polymer particle surface area,
4πr2, the mass transfer coefficient for the radical in the aqueous phase, kmp, the radical
concentration, and fn(m, t). With regard to the rate of micellar nucleation, it is computed by
the product of the micelle surface area, 4πr2

mic (rmic is the micelle radius), the mass transport
coefficient for the radical entering micelles, kmm, and Mic. For the case of P0

aq, its mass
balance includes a term representing radical desorption from polymer particles, estimated
by the integral of the product of the kinetic rate coefficient for the transfer to monomer
reaction, ktr,p, the monomer concentration in the polymer particles,

[
Mp
]

and n fn(m, t).
The last equation of Table 3 represents the PBEs accounting for growth, entry, des-

orption, and termination phenomena. The left-hand side of the equation includes the
accumulation and growth term, in which

(
dm
dt

)
, Wm, and NA represent the growth rate,

monomer molar mass, and Avogadro number, respectively. The right-hand side for the
mass balance of fn(m, t) sums the contribution of radical entry from the aqueous phase
to the particles, desorption of radicals from the particles, and bimolecular termination of
radicals in the particles with rate coefficients, e, de, and Vwkt

2vp
, respectively, where vp(m, t) is

the volume of the polymer particle. The calculation of the desorption coefficient includes
the frequency of generation of monomeric radicals for monomer i, gi, and the probability
that a monomeric radical will desorb before undergoing chemical reaction, ψi, the diameter
of the particle, dp, a partition coefficient between the aqueous and polymer particle phases,
mdi, and the diffusion coefficients of monomeric radicals in the aqueous phase and particles,
Dwi and Dpi, respectively.

Additionally, the following list of assumptions is considered in the mathematical model:

(a) The batch reactor operates under isothermal conditions and is perfectly mixed;
(b) The minimum mass size is equal to the micelle mass (mMic);
(c) Instantaneous thermodynamic equilibrium for the monomer partitioning in the phases

is assumed. The partition coefficients model is implemented to calculate the monomer
concentration in all phases;

(d) A Langmuir-type adsorption isotherm is employed to estimate the amount of surfac-
tant adsorbed on the polymer particles’ surfaces;

(e) Kinetic rate coefficients are not chain-length dependent and are the same in both the
aqueous and polymer particle phases;

(f) The Trommsdorff–Norrish effect is accounted for the termination rate coefficient;
(g) Coagulation effects and homogeneous nucleation are neglected;
(h) A maximum number of radicals per particle, nmax = 2, is initially considered.

3.2. Emulsion Binary Copolymerization of Vinyl Monomers

The proposed mathematical model was extended to the case of binary copolymeriza-
tion following the pseudo-homopolymerization approach [30]. To this end, the apparent
kinetic rate coefficients were modified, accounting for the fraction of type i radicals (ϕi) and
the molar fraction of monomer j, ( fmj), i, j = 1 and 2. Fmj is the instantaneous copolymer
composition for monomer j. The expressions used in the pseudo-homopolymerization
approach are presented in Table 4.
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Table 4. Apparent kinetic rate coefficients and parameters used in the pseudo-homopolymerization
approach.

Kinetic Coefficient or Parameter Expression

kp, kt, ktr, kmm = kmp

kp = ∑2
i=1 ∑2

j=1 kpij ϕi fmj, kt = ∑2
i=1 ∑2

j=1 ktij ϕi ϕj, ktrij = ∑2
i=1 ∑2

j=1 ktrij ϕi fmj,

kmm = ∑2
j=1 kmmj ϕj

ϕ1, ϕ2
ϕ1 =

kp21 ϕ2 f1
kp21 ϕ2 f1+kp12 ϕ1 f2

, ϕ2 = 1− ϕ1

fm1, fm2
d fm1

dt =
fm1−Fm1

1−x
dx
dt , fm2 = 1− fm1, Fm1 =

r1 f 2
m1+ fm1 fm2

r1 f 2
m1+2 fm1 fm2+r2 f 2

m2

3.3. Monomer Partitioning Equations

The partition coefficients for the monomer are defined by Equations (1) and (2) [15,31].

Kdw =
[Md][
Maq

] = ϕM,d

ϕM,aq
, (1)

Kpw =

[
Mp
][

Maq
] = ϕM,p

ϕM,aq
, (2)

ϕMd, ϕMp, and ϕMw are the volume fraction of monomer in the monomer droplets,
polymer nanoparticles, and aqueous phase, respectively. The global mass balances
for monomer, polymer, and water are established assuming volume additivity, (see
Equations (3)–(7)).

ϕMdVd + ϕM,aqVaq + ϕM,aqVp = VM, (3)

ϕwater,aq + ϕM,aq = 1, (4)

ϕpol,p + ϕMp = 1, (5)

ϕwater,aq =
Vw

Vaq
, (6)

ϕpol,p =
Vpol

Vp
. (7)

Upon combining material and partition coefficient equations, a minimum of three
equations with three unknowns (Vaq, total droplet volume, Vd, and Vp) are obtained, which
can be solved by employing iterative methods such as Newton–Raphson, bisection, and
hybrid methods [31,32]. The estimation of Vaq, Vd, and Vp was efficiently achieved following
the Armitage et al. algorithm [33,34]:

• Suppose initial values for Vaq, Vd, and Vp;
• Calculate the total monomer volume in the particles, VM,p, from the following equation;

VM,p =
VM

1 + Kdw
Kpw

Vd
Vp

+
Vaq

VpKpw

, (8)

• Compute total monomer volume in both the aqueous phase, VM,aq, and droplets VM,d;

VM,aq = ϕM,p
Vaq

Kpw
, (9)

VM,d = ϕM,p
Kdw
Kpw

Vd, (10)
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• New estimation for Vaq, Vd, and Vp;

Vd = VM,d, (11)

Vp = VM, p + Vpol , (12)

Vaq = VM, aq + Vw, (13)

• Repeat until convergence in Vaq, Vd, and Vp is reached.

3.4. Surfactant Partitioning and Micelle Concentration

The surfactant is solubilized in the aqueous phase (S f ) and adsorbed onto the surface
of polymer particles (Sa) and monomer droplets (Sd). The mass balance for surfactant is
given by Equations (14)–(17) [17].

S = S f + Sa + Sd, (14)

Sa =
SpΓ∞bsS f /Vaq

1 + bsS f /Vaq
, (15)

Sp = 4πVw ∑nmax
n=0

∫ ∞

0
fnr2(m)dm, (16)

Sd =
3Vd

aedrdNA
, (17)

Equation (15) is a Langmuir isotherm describing the adsorption of surfactant in
particles with parameters bs and Γ∞. In these equations, aed is the area stabilized on the
monomer droplets by one molecule of surfactant and rd is the average radius of the
monomer droplets. Sp is the total surface area of particles. A quadratic equation for S f is
obtained by combining Equations (14)–(16) neglecting Sd which is small (see Equation (18)):(

−bs

Vaq

)
S2

f +

(
Sbs

Vaq
−

SpΓ∞bs

Vaq
− 1
)

S f + S = 0. (18)

Micelles will be present when the free surfactant concentration exceeds the critical micellar
concentration, according to Equations (19) and (20):

Mic =

( S f
Vaq
− [S]cmc

)
NAaem

4πr2
m

i f
S f

Vaq
≥ [S]cmc, (19)

Mic = 0 i f
S f

Vaq
< [S]cmc. (20)

3.5. Diffusion-Controlled Kinetic Rate Coefficients

As in the case of bulk FRP, the Trommsdorff–Norrish effect (autoacceleration) has
been observed in EPs; the reaction locus viscosity increases as the polymer weight frac-
tion increases. Herein, a model based on the free volume theory is incorporated. The
effective kinetic rate coefficients, ki, are corrected by a temperature-dependent factor gi
(i = p, t, . . .). The analytical form of gi has been reported in the literature for the free radical
polymerization of vinyl monomers [35,36].
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3.6. 0-1-2 and 0-1 Model with Constant Coefficients (DM012 and DM01)

Some numerical comparisons were made using a previously reported 0-1-2 model
with constant coefficients (herein referred to as DM012) [18], but without coagulation terms.
The equations of the DM012 are presented in Equations (21) and (22):

∂

∂τ

 f ∗0
f ∗1
f ∗2

+
∂

∂V∗

 0
f ∗1

2 f ∗2

=

−α ακ 2αγ
α −α(1 + κ) α(1 + 2κ)
0 α −α(1 + 2κ + 2γ)

 f ∗0
f ∗1
f ∗2

+ Ω

 0
δ(V∗)

0

, (21)

f ∗ = f ∗0 + f ∗1 + f ∗2 , (22)

where α, κ, γ, and Ω are dimensionless ratios of entry to growth, desorption to entry, termina-
tion to entry, and nucleation to growth, respectively. f ∗m, V∗, and τ are dimensionless number
density functions for particles having m radicals, particle volume, and time, respectively.

For the case of the 0-1 model with constant coefficients (herein referred to as DM01) [18],
the following equations are used:

∂

∂τ

(
f ∗0
f ∗1

)
+

∂

∂V∗

(
f ∗0
f ∗1

)
=

(
−α α(1 + κ)
α −α(1 + κ)

)(
f ∗0
f ∗1

)
+ Ω

(
0

δ(V∗)

)
, (23)

f ∗ = f ∗0 + f ∗1 . (24)

3.7. Numerical Implementation

The numerical methods used to calculate the PSD (the OCFE and FV methods) and
polymer particle properties lead to a set of ordinary algebraic-integro-differential equations
(ODEs). The set of ODEs was integrated using the ARKODE routine from the Sundials
package in the C programming language with both absolute and relative tolerances set
to 10−6 [37]. Most of the simulations took less than 5 min for the homopolymerization
cases and about 4 hours for the copolymerization cases using a laptop or desktop computer
with 16 GB of RAM. In the case of the OCFE, 150 elements were necessary to assure
the convergence of the PSD, whereas 200 nodes were utilized for the FV method (see
Figure 1). Definite integrals were calculated by using either Gauss–Legendre quadrature or
the trapezoidal rule.
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Figure 1. (a) Convergence of the FV method with a number of nodes (ND) for the PSD at t = 94 min
for AIBEPNC of STY with KPS/SDS at 60 ◦C (Case 1 as defined below utilizing our proposed
model; (b) convergence of the OCFE with number of elements (NE) for the AIBEPNC of hypothetical
monomer using DM012 with Ω = 0.1, α = 1, κ = 2.11, γ = 2, and τ = 0.5.

4. Results and Discussion
4.1. MWR on Finite Elements (OCFE) vs. the FV Method

As mentioned in the Section 1, PBEs can be solved by several numerical methods
including the MWR on finite elements and the FV method. However, predicted PSD
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calculated by some MWR may yield oscillations in the presence of nucleation sources for
particulate processes [38]. For illustration purposes, a simple case involving growth and
nucleation is solved by both the orthogonal collocation method on finite elements (OCFE)
and the FV method using DM012 (see Section 3.6) with α = 1, κ = 2.11, γ = 2, Ω = 0.1, and
τ = 0.5. This example describes an ABIBEPNC using DM012 with a constant nucleation rate,
a situation expected in the early stages of EPs, wherein a great amount of small polymer
particles are present (see Figure 2a). It is observed that oscillations are generated by the
OCFE method, especially for the first particles ( f1) created in the reaction volume. The
oscillations arise in the f1 distribution and are transferred to the total distribution. It has
been proposed that an artificial diffusion term (Da

∂2f
∂V2 ), where Da is a diffusion coefficient,

can be included in order to smooth out oscillations that appear in distributions with steep
moving fronts [5], and this device works fine, as shown in Figure 1b that compares the
OCFE + numerical diffusion solution with the FV method. It should be noted that the
artificial diffusion term is not required for the FV method solved with high-resolution
schemes such as the weighted essentially non-oscillatory (WENO) approximation [18].
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Figure 2. (a) PSD for ABIBEPNC of hypothetical monomer using DM012 with Ω = 0.1, α = 1,
κ = 2.11, γ = 2, and τ = 0.5, numerically solved by OCFE (NE = 200); (b) comparison of PSD
calculated with OCFE with diffusion, Da = 10−2, (NE = 200) and FV method (400 nodes) for
ABIBEPNC of hypothetical monomer with Ω = 0.1, α = 1, κ = 2.11, γ = 2, and τ = 0.5.

Given these results, from here on, unless otherwise indicated, all the simulations were
run using the FV technique with a high resolution scheme. Table 5 shows a summary of the
numerical experiments run with different problems and methods.

Table 5. Summary of results for numerical experiments with different numerical techniques (
√

indi-
cates a working solution).

Model, Problem FV + WENO on
Fixed Domain OCFE on Fixed Domain

OCFE on Fixed
Domain with

Numerical Diffusion

OCFE on Moving
Domain with

Numerical Diffusion

PB, ABIBEPNC No convergence No convergence NA Solution
√

0-1 or 0-1-2, ABIBEPNC Solution
√

Solution with initial
numerical oscillations in f1

that fade away at low
conversion

NA NA

0-1 or 0-1-2, seed +
nucleation Solution

√
Solution with initial

numerical oscillations in f1
that fade away at low

conversion

Solution
√

NA
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4.2. 0-1 Model vs. PB Approach

On the one hand, the PB approach involves a single PDE to be integrated and n(V, t)
is allowed to assume large values. On the other hand, PBEs considering polymer particles
with n ≥ 1 radicals per particle involve a system of n + 1 PDEs whose numerical solution
may be computationally demanding. As preliminary tests of the two models and before the
ABIBEPNC problem is addressed, as shown below, some cases may not be well represented
by the PB approach [9]. For instance, the PSD for two seeded EPs calculated by both
the DM01 and the PB approaches are compared using an initial exponential distribution
(see Figure 3a) and a Gaussian initial distribution (see Figure 3b). Since the PB approach
requires the estimation of n(V, t), the one generated by DM01 was employed at every
time step for the PB approach. The observed differences are due to the fact that particles
containing n < n(V, t) radicals will grow slower than particles containing n ≥ n(V, t)
radicals. Moreover, it has been suggested that adding a stochastic term will improve
the prediction of the PSD (see Figure 3c,d); however, this procedure requires additional
information on the diffusion coefficient for each case study [11].
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Figure 3. (a) Obtained PSDs using the DM01 and PB models with an initial exponential distribution;
(b) obtained PSDs using the DM01 and PB models with an initial Gaussian distribution; (c) obtained
PSDs using the DM01 and PB models with an initial exponential distribution with stochastic term;
(d) obtained PSDs using the DM01 and PB models with an initial Gaussian distribution with stochastic
term. All simulations were carried out with α = 1, κ = 2.11, and τ = 30 using OCFE with NE = 100.
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4.3. Parameter Values for Experimental Systems Studied

The kinetic coefficients and thermodynamic parameters used in the simulations are
listed in Tables 6 and 7 for Sty and MMA, respectively. The values of the kinetic rate
coefficients for propagation, chain transfer to monomer, and termination reactions (kp, ktr,
and kt, respectively) were equated to those reported for conventional free radical poly-
merization [39,40]. Regarding the constants (Kdw, Kpw) used in the partition coefficients
model, they were estimated from the solubility of the monomer in water and polymer [30].
The radius of a micelle (2.6 or 5 nm) has been reported in the literature [27,30]; however,
our calculations were not significantly affected when this parameter was varied from
2.5 to 7 nm. The desorption-related parameters (Dwm, Dwp, and md) have been previ-
ously estimated [30]. In the case of diffusion-controlled factors for Sty and MMA, the
corresponding correlations as a function of the monomer conversion, volume fraction, or
temperature were utilized [35,41]. The surfactant-related parameters (bs, Γ∞ and aem) and
the kinetic rate coefficient for micellar nucleation (kmm = kmp), in some cases, were used as
fitting parameters.

Table 6. Kinetic coefficients for the EP of styrene, T in K.

Kinetic Coefficient or Parameter Value Reference

kd (s−1), f 1.8× 1017 exp(−37, 162/T), 0.5 [36]
kp,aq = kp,p (L mol−1 s−1) 4.27× 107 exp(−3909 /T) [39]
ktr,aq = ktr,p (L mol−1 s−1) 7× 10−5kp [36]
ktc,aq = ktc,p (L mol−1 s−1) 1.06× 109 exp(−753 /T) [39]
Kdw, Kpw (dimensionless) 3330, 2208 [30]

Dwm = Dwp

(
dm2 s−1

)
, md (dimensionless) 3.55× 10−13, 1 [30]

rMic(dm), CMC
(

mol L−1
)

5× 10−8, 1.73× 10−3 [30]

bs

(
L mol−1

)
, Γ∞

(
mol dm−2

)
, aem

(
dm2

)
2× 102, 6× 10−9, 6× 10−18 Fitted

kmm, kmp
(
dm s−1) 1.5× 10−6 [30]

gt exp
(
s1x + s2x2 + s3x3), s1 = −7.14 + 0.0101T, s2 = −19.12+

0.0352T, s3 = 6.06− 0.0157T
[41]

Table 7. Kinetic coefficients for the EP of MMA, T in K.

Kinetic Coefficient or Parameter Value Reference

kp,aq = kp,p (L mol−1 s−1) 2.39× 106 exp(−2669/T) [39]
ktr,aq = ktr,p (L mol−1 s−1) 2× 10−5kp [36]
kt,aq = kt,p (L mol−1 s−1) 5.2× 108 exp(−697/T) [39]
Kdw, Kpw (dimensionless) 59, 42 [30]

Dwm, Dwp

(
dm2 s−1

)
5.5× 10−10 [30]

md (dimensionless) 1 [30]
bs

(
L mol−1

)
, Γ∞

(
mol dm−2

)
, aem

(
dm2

)
2× 102, 6× 10−9, 1.2×10−17 Fitted

kmm, kmp

(
dm s−1

)
1× 10−6 Fitted

gt (Vf > Vf ,cr2,)
0.10575 exp

(
17.15Vf − 0.01715(T − 273.2)

)
,

Vf ,cr2 = 0.1856− 2.965× 10−4(T − 273.2)
[35]

gt (Vf ≤ Vf ,cr2,) 2.3× 10−6 exp
(

75Vf

)
[35]
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4.4. Simulation of Ab Initio Batch EP Homo- and Copolymerizations of Sty and MMA

The reaction conditions for EP of Sty and MMA are given in Table 8. The copoly-
merization experiments are directly comparable (same conditions) with those reported by
Saldívar and Ray [14].

Table 8. Initial conditions for the batch EP of vinyl monomers.

Case Study Monomer Temperature (◦C) M0/I0 Initial fm1 Solid Content (%)

1 Sty 60 10.7 - 20
2 MMA 60 10.7 - 20
3 Sty(1)/MMA(2) 60 10.7 0.5 20
4 Sty(1)/MMA(2) 50 10.7 0.5 20

Predicted profiles of (a) monomer conversion, (b) Sauter average particle diameter,
Dp, (c) average number of radicals per particle, n, and (d) fractional volume phases against
time for Sty and MMA are presented in Figures 4 and 5, respectively. It is shown in Figures
4a and 5a that the monomer conversion agrees reasonably well with experimental data for
both monomers. Even though the rate of polymerization of MMA is slower than that for
Sty during the first 30 min, a strong autoacceleration effect is observed for MMA and the
reaction is completed at 75 min, about 25 min earlier than that for Sty. Dp was calculated
following Equation (25) [42]:

Dp = D32 =
∑nmax

n=0
∫ mmax

mmin
d3(m) fndm

∑nmax
n=0

∫ mmax
mmin

d2(m) fndm
. (25)

Dp values increased with time until a constant value was reached. Dp for Sty were
about 20 units greater than those for MMA, as observed in Figures 4b and 5b. With respect
to the behavior of n, it starts at unity since most particles initially contain a single radical
due to micellar nucleation and, as the reaction proceeds, decreases until a relatively constant
value is reached. n is also affected by diffusion-controlled effects (see Figures 4c and 5c)
and the final value of n for MMA is slightly higher than that for Sty. The evolution of the
volume phases is illustrated in Figures 4d and 5d; the monomer droplets phase decreases as
the polymer particle phase increases, whereas the aqueous phase volume is kept constant.
The aforementioned results were not changed by considering nmax values greater than two.
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Figure 5. Predicted profiles of (a) monomer conversion, model (continuous line) vs. experiment
(symbols, gravimetry), (b) Dp, model (continuous line) vs. experiment (symbols, DLS), (c) average
number of radicals per particle n, and (d) volume phases against time for EP of MMA/SDS/KPS at
60◦ (Case 2 in Table 8). Simulation results were obtained with the FV technique and the 0-1-2 model.

Figure 4e shows the evolution of the number of particles, the slope of which indicates
the nucleation rate, while Figure 4f shows the evolution of the polymerization rate per
particle (Rpn), a quantity to which the rate of particle growth is proportional. During
interval 1, the nucleation period, particles are being nucleated and there is competition
for radicals generated in the aqueous phase between the micelles and the already formed
particles. Once the nucleation period is completed (around 15–20 min), there is no more
competition and all the newly formed radicals enter particles; therefore, the number of
particles reaches a plateau and the particle growth rate, which originally decreased due to
the competition between micelles and particles for radicals, is stabilized until the end of this
period and even during interval 2. Notice that interval 2 is rather short and finishes a little
before 25 min when the monomer droplets disappear (see Vd going to zero on Figure 4d).
The behavior of Rpn and the particle growth rate are closely linked to the average number
of radicals in particles (n) which decreases during interval 1 and is stabilized once the
nucleation stops (Figure 4c). Rpn and the particle growth rate are also strongly linked to the
monomer concentration in particles, which stays nearly constant during intervals 1 and 2.
When interval 2 finishes, the monomer concentration starts decreasing in the particles until
it is consumed (interval 3). This explains why the polymerization rate steadily decreases
from around 25 min until the end of the reaction (Figure 4f).

The evolution of the calculated PSD at different times is presented in Figures 6 and 7
for Sty and MMA, respectively. DLS measurements, in terms of volume, normalized at peak
height were incorporated for comparison purposes. At the beginning of the reaction, small
particles of about 10 nm in diameter are created through micellar nucleation; therefore,
most polymer particles are concentrated at the low particle diameter region, as observed
in Figures 6a and 7a. In the time period of about 0 to 40 min, polymer particles with
zero and one radical ( f0 and f1) completely composed the total number of particles; after
that, an important presence of polymer particles with two radicals ( f2) was observed (see
Figures 6d and 7d). However, DLS measurements indicate that larger polymer particles
may be present in the reaction medium, a situation that is not predicted by the model. The
failure of DLS to account for small particles has been pointed out by several authors in the
past [43].



Polymers 2023, 15, 4467 16 of 23
Polymers 2023, 15, x FOR PEER REVIEW 16 of 23 
 

 

  
(a) (b) 

  
(c) (d) 

Figure 6. PSD at (a) 15, (b) 30, (c) 60, and (d) 90 min for EP of Sty/SDS/KPS at 60 °C (Case 1 in Table 
8). Simulations run with the 0-1-2 model and solved by the FV technique. 

  
(a) (b) 

Figure 6. PSD at (a) 15, (b) 30, (c) 60, and (d) 90 min for EP of Sty/SDS/KPS at 60 ◦C (Case 1 in
Table 8). Simulations run with the 0-1-2 model and solved by the FV technique.

Polymers 2023, 15, x FOR PEER REVIEW 16 of 23 
 

 

  
(a) (b) 

  
(c) (d) 

Figure 6. PSD at (a) 15, (b) 30, (c) 60, and (d) 90 min for EP of Sty/SDS/KPS at 60 °C (Case 1 in Table 
8). Simulations run with the 0-1-2 model and solved by the FV technique. 

  
(a) (b) 

Figure 7. Cont.



Polymers 2023, 15, 4467 17 of 23
Polymers 2023, 15, x FOR PEER REVIEW 17 of 23 
 

 

  
(c) (d) 

Figure 7. PSD at (a) 15, (b) 30, (c) 40, and (d) 60 min for EP of MMA/SDS/KPS at 60 °C (Case 2 in 
Table 8). Simulations run with the 0-1-2 model and solved by the FV technique. 

From Figure 6, it is clear that the broadness of the PSD predicted by the model in the 
Sty case is in general lower than the distribution estimated by DLS, as also observed by 
other authors for several systems. This is particularly marked for the last two distributions 
(at 60 and 94 min) corresponding to the largest particles, and less pronounced for the PSD 
at 30 min. It is important to notice, however, that the complete PSD provided by DLS is 
estimated using a model (the method of cumulants [44]) and it is only indicative of the 
true PSD, as it is well known that this estimation requires a mathematical inversion tech-
nique in which the problem is ill conditioned [45]. Also, during styrene EP, it is common 
to find the formation of coagulum around the stirrer, which suggests that limited coagu-
lation is present that could lead to broader experimental PSDs; this could be accounted 
for by including coagulation terms in the model.  

In general, the PSDs estimated by DLS must be taken with caution. Although most 
of the publications cited in the introduction resort to DLS to estimate the complete PSD, it 
is debatable how suitable this technique is to provide a reliable estimation of this latex 
feature; however, most of the existing evidence points to the conclusion that, for mono-
modal latexes, DLS can provide a reasonably good estimation of the PSD [11,26,46]. Since 
our work discusses issues raised by authors that used DLS to measure the PSD, it was 
decided to also use this technique at this stage of our research, in spite of its limitations. 
Nevertheless, recognizing that there is still debate as to how reliable DLS is for estimating 
the latex PSD and that this subject by itself deserves a detailed separate analysis, compar-
isons with TEM measurements will be carried out in a future publication. 

In the case of MMA (Figure 7), the experimental and model-predicted curves have 
similar (apparent) broadness (at least for the first three curves), although the DLS curves 
are shifted towards higher values, which is not surprising given the tendency of DLS to 
underestimate the contribution of small particles, as mentioned above.  

4.5. Simulation of Batch Emulsion Copolymerization of MMA with Sty 
This system is particularly interesting because it reproduces the experiments per-

formed by Saldívar and Ray and their modeling results using a PB model solved with 
OCFE in a moving mesh domain with numerical diffusion [14]. For the emulsion copoly-
merization of MMA(1) with Sty(2), reactivity ratios (𝑟ଵ = 0.46 and 𝑟ଶ = 0.52) were ob-
tained from the literature [30] (notice that in this paragraph, the order of monomers used 
in Saldívar and Ray for the reactivity ratios is used for easy comparison). The kinetic rate 
coefficients used in the simulation are identical to those reported in Tables 6 and 7. Pre-
dicted profiles of (a) monomer conversion, (b) Sauter average particle diameter, 𝐷𝑝, (c) 
average number of radicals per particle, 𝑛ത, and (d) fractional volume phases against time 
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From Figure 6, it is clear that the broadness of the PSD predicted by the model in the
Sty case is in general lower than the distribution estimated by DLS, as also observed by
other authors for several systems. This is particularly marked for the last two distributions
(at 60 and 94 min) corresponding to the largest particles, and less pronounced for the PSD
at 30 min. It is important to notice, however, that the complete PSD provided by DLS is
estimated using a model (the method of cumulants [44]) and it is only indicative of the true
PSD, as it is well known that this estimation requires a mathematical inversion technique
in which the problem is ill conditioned [45]. Also, during styrene EP, it is common to find
the formation of coagulum around the stirrer, which suggests that limited coagulation
is present that could lead to broader experimental PSDs; this could be accounted for by
including coagulation terms in the model.

In general, the PSDs estimated by DLS must be taken with caution. Although most of
the publications cited in the introduction resort to DLS to estimate the complete PSD, it is
debatable how suitable this technique is to provide a reliable estimation of this latex feature;
however, most of the existing evidence points to the conclusion that, for monomodal
latexes, DLS can provide a reasonably good estimation of the PSD [11,26,46]. Since our
work discusses issues raised by authors that used DLS to measure the PSD, it was decided to
also use this technique at this stage of our research, in spite of its limitations. Nevertheless,
recognizing that there is still debate as to how reliable DLS is for estimating the latex PSD
and that this subject by itself deserves a detailed separate analysis, comparisons with TEM
measurements will be carried out in a future publication.

In the case of MMA (Figure 7), the experimental and model-predicted curves have
similar (apparent) broadness (at least for the first three curves), although the DLS curves
are shifted towards higher values, which is not surprising given the tendency of DLS to
underestimate the contribution of small particles, as mentioned above.

4.5. Simulation of Batch Emulsion Copolymerization of MMA with Sty

This system is particularly interesting because it reproduces the experiments per-
formed by Saldívar and Ray and their modeling results using a PB model solved with
OCFE in a moving mesh domain with numerical diffusion [14]. For the emulsion copoly-
merization of MMA(1) with Sty(2), reactivity ratios (r1 = 0.46 and r2 = 0.52) were
obtained from the literature [30] (notice that in this paragraph, the order of monomers
used in Saldívar and Ray for the reactivity ratios is used for easy comparison). The kinetic
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rate coefficients used in the simulation are identical to those reported in Tables 6 and 7.
Predicted profiles of (a) monomer conversion, (b) Sauter average particle diameter, Dp,
(c) average number of radicals per particle, n, and (d) fractional volume phases against
time are presented in Figure 8 for the experiment at 60 ◦C. Even though the simulations
results follow the experimental trends, the monomer conversion and Dp are somewhat
overestimated at the high monomer conversion range, as observed in Figure 8a,b.
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Figure 8. Predicted profiles of (a) monomer conversion, model (continuous line) vs. experiment
(symbols, gravimetry), (b) Dp, model (continuous line) vs. experiment (symbols, DLS), (c) n, and
(d) volume phases against time for EP of Sty-MMA/SDS/KPS at 60◦ (Case 3 in Table 8). Simulated
predictions with the 0-1-2 model.

Notably, in this case (60 ◦C), the broadness of the experimental and model-predicted
PSDs are visually similar, although the initial experimental (DLS) curve (a) is shifted
towards higher diameter values. Another interesting feature of the PSDs in Figure 9 is
that the experimental DLS curves show tails at the high-diameter end of the distribution,
while the theoretical curves exhibit higher densities than the experimental ones at
low diameters.
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tion, that of steep fronts in the ABIBEPNC problem exhibited by the PB model but not 
experimentally observed. As shown in the figure, this is a structural problem associated 
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mean that a specific particle will grow faster or slower during different times, tending to 
average out the rate of growth and, therefore, smoothen out the front.  

Figure 9. PSD at (a) 15, (b) 30, (c) 60, and (d) 90 min for EP of Sty-MMA/SDS/KPS at 60 ◦C (Case 3
in Table 8). Simulations run with the 0-1-2 model and solved by the FV technique.

The last case study deals with the EP of Sty-MMA at 50 ◦C. The simulations of the
monomer conversion and the PSD are presented in Figure 10. This case had been previously
studied using the PB model solved by the OCFE method in a moving mesh with numerical
diffusion, whose predicted PSD profile showed a sharp front (see Figure 10c redrawn from
ref. [14]). In contrast, it is shown in Figure 10b that a smooth profile is obtained with
the 0-1-2 model. This case addresses the second issue raised in the introduction, that of
steep fronts in the ABIBEPNC problem exhibited by the PB model but not experimentally
observed. As shown in the figure, this is a structural problem associated with the use of
a PB model; once a 0-1-2 model is used, the front predicted by the model is smoothed
out. This is apparently due to the interchange of particles between the 0-1-2 categories
that move from one to another depending on the entry, desorption, or termination events
occurring in particles of a given category; the interchange of categories will mean that a
specific particle will grow faster or slower during different times, tending to average out
the rate of growth and, therefore, smoothen out the front.
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the numerical techniques to solve the PBE equations, our findings confirm those of previ-
ous researchers; the FV method with a high resolution scheme provides non-oscillatory 
computation-time-efficient solutions for 0-1 and 0-1-2 models; however, this technique is 
not capable of solving the challenging ABIBEPNC problem when a PB model is used. On 
the other hand, OCFE on a fixed mesh with an artificial numerical diffusion term can pro-
vide non-oscillatory solutions for 0-1 and 0-1-2 models, but it cannot solve the ABIBEPNC 

Figure 10. (a) Monomer conversion against time using the 0-1-2 model and the FV method with 200 nodes
(continuous line) vs. experimental data (symbols, gravimetry), (b) PSD for EP of Sty-MMA /SDS/KPS
at 50 ◦C (Case 4 in Table 8) using the 0-1-2 model and the FV method with 200 nodes, and (c) evolution
of PSD with time using the PB model and OCFE on a moving polymer mass domain with numerical
diffusion (redrawn from Figure 4 from reference [14]).

5. Conclusions

In this work, we built a deterministic mathematical model to analyze the polymer reac-
tion kinetics and PSD development of ab initio EP of vinyl monomers. The model combines
kinetic and thermodynamic models with population balance equations. Four experimental
cases obtained from our laboratory were addressed involving homopolymerization of Sty
and MMA using sodium SDS/KPS at 60 ◦C, as well as copolymerization of Sty-MMA at 50
and 60 ◦C, in a 100 mL reactor operated under batch conditions. The computation times
were relatively short for the homopolymerization cases, whereas the copolymerization
cases required considerably larger CPU times (4–5 h). The model quantitatively matched
quite well with the experimental data of monomer conversion and Sauter average particle
diameter with minimal parameter fitting. The study allowed us to make progress in answer-
ing the issues defined in the introduction of this work. Regarding the numerical techniques
to solve the PBE equations, our findings confirm those of previous researchers; the FV
method with a high resolution scheme provides non-oscillatory computation-time-efficient
solutions for 0-1 and 0-1-2 models; however, this technique is not capable of solving the
challenging ABIBEPNC problem when a PB model is used. On the other hand, OCFE
on a fixed mesh with an artificial numerical diffusion term can provide non-oscillatory
solutions for 0-1 and 0-1-2 models, but it cannot solve the ABIBEPNC problem with a PB
model unless a moving mass domain is used. More numerical experiments are needed
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to have a complete map of the applicability and limitations of the available numerical
techniques for this type of problems. Concerning the steep front exhibited by the solution
of the ABIBEPNC problem with a PB model, which is not experimentally observed, we
conclude that this is a structural problem associated with the use of a PB model consisting
of a single hyperbolic PDE; when a 0-1 or 0-1-2 model is used, the front is smoothed out
due to the exchange of particles among the different classes. Regarding the last issue
investigated, partially challenging the conclusion of Hosseini et al., we conclude that for
some problems, the broadness of the model-predicted PSD is similar to the experimental
one, although for some other cases, the predicted PSD seems to be narrower than the
experimental one. However, it seems premature to conclude that this discrepancy requires
a stochastic term to fix the problem, especially considering the limitations of experimental
PSDs estimated by DLS. Our comparisons of model-predicted and experimental PSDs
have been based on distributions estimated by DLS. These will have to be confirmed by
TEM measurements that are currently being conducted in our lab and will be discussed
in a future publication. Although some comparisons of experimental PSDs estimated by
DLS and electron microscopy (scanning and transmission) have been made [11,29], this
is limited to a few cases, so additional comparisons between these techniques should be
made to reach robust conclusions.

In general, when using 0-1 and 0-1-2 models, the PSD exhibits smooth fronts that
follow the experimental trends. A value of nmax = 2 was initially considered; however,
greater values for nmax did not improve the observed trends. If realistic PSDs are to be
predicted, the use of PB models is discouraged as they suffer from a structural problem
associated with the use of a single hyperbolic PDE to represent the PSD, which is more
evident in some problems, e.g., the ABIBEPNC problem.
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