Enhanced Antibacterial Efficiency and Anti-Hygroscopicity of Gum Arabic–ε-Polylysine Electrostatic Complexes: Effects of Thermal Induction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the Heated GA–ε-PL Electrostatic Complex
2.3. Determination of Encapsulation Efficiency
2.4. Determination of Particle Dimensions and Zeta Potential
2.5. Intermolecular Force Analysis
2.6. Characterization of the GA–ε-PL Complex
2.6.1. Fourier Transform Infrared (FTIR) Spectroscopy
2.6.2. X-ray Diffraction (XRD) Analysis
2.6.3. Differential Scanning Calorimeter (DSC) Analysis
2.6.4. Microstructure Analysis
2.7. Antibacterial Capability Evaluation
2.7.1. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC)
2.7.2. Time-Dependent Inhibition Curves
2.8. Hygroscopicity Assay
2.9. Statistical Analysis
3. Results and Discussion
3.1. Complex Formation
3.2. Intermolecular Force Analysis
3.3. Structure Analysis of the GA–ε-PL Complex
3.3.1. FTIR Analysis
3.3.2. XRD Determination
3.3.3. DSC Assay
3.3.4. TEM Observation
3.4. Antibacterial Properties
3.5. Moisture-Absorption Characteristics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Z.-H.; Zeng, X.-A.; Brennan, C.S.; Ma, H.; Aadil, R.M. Preparation and characterisation of novelty food preservatives by Maillard reaction between ε-polylysine and reducing sugars. Int. J. Food Sci. Technol. 2019, 54, 1824–1835. [Google Scholar] [CrossRef]
- Shima, S.; Matsuoka, H.; Iwamoto, T.; Sakai, H. Antimicrobial action of epsilon-poly-L-lysine. J. Antibiot. 1984, 37, 1449. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, C.; Zhang, J.; Rao, Z.; Xu, X.; Mao, Z.; Chen, X. Epsilon-poly-L-lysine: Recent advances in biomanufacturing and applications. Front. Bioeng. Biotechnol. 2021, 9, 748976. [Google Scholar] [CrossRef]
- Chang, Y.H.; McLandsborough, L.; McClements, D.J. Antimicrobial delivery systems based on electrostatic complexes of cationic ɛ-polylysine and anionic gum arabic. Food Hydrocoll. 2014, 35, 137–143. [Google Scholar] [CrossRef]
- Chang, Y.H.; McLandsborough, L.; McClements, D.J. Interaction of cationic antimicrobial (epsilon-polylysine) with food-grade biopolymers: Dextran, chitosan, carrageenan, alginate, and pectin. Food Res. Int. 2014, 64, 396–401. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Liao, X.; Surendhiran, D.; Cui, H.Y. Preparation of ε-polylysine/chitosan nanofibers for food packaging against Salmonella on chicken. Food Packag. Shelf Life 2018, 17, 134–141. [Google Scholar] [CrossRef]
- Ghobadi, M.; Varidi, M.J.; Koocheki, A.; Varidi, M. Effect of heat treatment on the structure and stability of Grass pea (Lathyrus sativus) protein isolate/Alyssum homolocarpum seed gum nanoparticles. Int. J. Biol. Macromol. 2021, 182, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Jones, O.G.; McClements, D.J. Recent progress in biopolymer nanoparticle and microparticle formation by heat-treating electrostatic protein–polysaccharide complexes. Adv. Colloid Interface Sci. 2010, 167, 49–62. [Google Scholar] [CrossRef]
- Dai, Q.; Zhu, X.; Abbas, S.; Karangwa, E.; Zhang, X.; Xia, S.; Feng, B.; Jia, C. Stable nanoparticles prepared by heating electrostatic complexes of whey protein isolate-dextran conjugate and chondroitin sulfate. J. Agric. Food Chem. 2015, 63, 4179–4189. [Google Scholar] [CrossRef]
- Xu, T.; Gao, C.; Feng, X.; Huang, M.; Yang, Y.; Shen, X.; Tang, X. Cinnamon and clove essential oils to improve physical, thermal and antimicrobial properties of chitosan-gum arabic polyelectrolyte complexed films. Carbohydr. Polym. 2019, 217, 116–125. [Google Scholar] [CrossRef]
- Alifaki, Y.O.; Sakiyan, O.; Isci, A. Investigation of storage stability, baking stability, and characteristics of freeze-dried cranberrybush (Viburnum opulus L.) fruit microcapsules. Food Bioprocess Technol. 2022, 15, 1115–1132. [Google Scholar] [CrossRef]
- Liu, J.; Xiao, J.; Li, F.; Shi, Y.; Li, D.; Huang, Q. Chitosan-sodium alginate nanoparticle as a delivery system for ε-polylysine: Preparation, characterization and antimicrobial activity. Food Control 2018, 91, 302–310. [Google Scholar] [CrossRef]
- Zhao, J.; Peng, T.; Liang, S.; Ma, M.; Deng, S. Antibacterial activity and action mechanism of microencapsulated dodecyl gallate with methyl-β-cyclodextrin. Food Control 2019, 109, 106953. [Google Scholar] [CrossRef]
- Rao, S.-Q.; Sun, M.-L.; Hu, Y.; Zheng, X.-F.; Yang, Z.-Q.; Jiao, X.-A. ε-Polylysine-coated liposomes loaded with a β-CD inclusion complex loaded with carvacrol: Preparation, characterization, and antibacterial activities. LWT-Food Sci. Technol. 2021, 146, 111422. [Google Scholar] [CrossRef]
- Hazaveh, P.; Nafchi, A.M.; Abbaspour, H. The effects of sugars on moisture sorption isotherm and functional properties of cold water fish gelatin films. Int. J. Biol. Macromol. 2015, 79, 370–376. [Google Scholar] [CrossRef] [PubMed]
- Sybachin, A.V.; Lokova, A.Y.; Spiridonov, V.V.; Novoskol, O.A.; Yaroslavov, A.A. The effect of cationic polylysine on the release of an encapsulated substance from pH-sensitive anionic liposomes. Polym. Sci. Ser. A 2019, 61, 308–316. [Google Scholar] [CrossRef]
- Lee, K.H.; Lee, J.-S.; Kim, E.S.; Lee, H.G. Preparation, characterization, and food application of rosemary extract-loaded antimicrobial nanoparticle dispersions. LWT-Food Sci. Technol. 2018, 101, 138–144. [Google Scholar] [CrossRef]
- Loveday, S.M.; Ye, A.; Anema, S.G.; Singh, H. Tuning heat-induced colloidal aggregation of whey proteins, sodium caseinate and gum arabic: Effect of protein composition, preheating and gum arabic level. Food Res. Int. 2014, 62, 128–136. [Google Scholar] [CrossRef]
- Liu, Q.; Cui, H.P.; Muhoza, B.; Duhoranimana, E.; Xia, S.Q.; Hayat, K.; Hussain, S.; Tahir, M.U.; Zhang, X.M. Fabrication of low environment-sensitive nanoparticles for cinnamaldehyde encapsulation by heat-induced gelation method. Food Hydrocoll. 2020, 105, 105789. [Google Scholar] [CrossRef]
- Stounbjerg, L.; Andreasen, B.; Ipsen, R. Microparticles formed by heating potato protein—Polysaccharide electrostatic complexes. J. Food Eng. 2019, 263, 79–86. [Google Scholar] [CrossRef]
- Ma, Y.; Chen, S.; Liao, W.; Zhang, L.; Liu, J.; Gao, Y. Formation, physicochemical stability, and redispersibility of curcumin-loaded rhamnolipid nanoparticles using the pH-driven method. J. Agric. Food Chem. 2020, 68, 7103–7111. [Google Scholar] [CrossRef] [PubMed]
- Pieczykolan, E.; Kurek, M.A. Use of guar gum, gum arabic, pectin, beta-glucan and inulin for microencapsulation of anthocyanins from chokeberry. Int. J. Biol. Macromol. 2019, 129, 665–671. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.-R.; Lee, Y.-K.; Kim, Y.J.; Chang, Y.H. Characterization and storage stability of chlorophylls microencapsulated in different combination of gum Arabic and maltodextrin. Food Chem. 2019, 272, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Mao, Y.; Xiang, C.; Cao, M.; Ren, G.; Wang, K.; Ma, X.; Wu, D.; Xie, H. Preparation of β-lactoglobulin/gum arabic complex nanoparticles for encapsulation and controlled release of EGCG in simulated gastrointestinal digestion model. Food Chem. 2021, 354, 129516. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liang, Q.; Liu, X.; Raza, H.; Ma, H.; Ren, X. Treatment with ultrasound improves the encapsulation efficiency of resveratrol in zein-gum Arabic complex coacervates. LWT-Food Sci. Technol. 2022, 153, 112331. [Google Scholar] [CrossRef]
- Luo, W.; Huang, H.; Zhang, Y.; Wang, F.; Yu, J.; Liu, Y.; Li, X. Complex coacervation behavior and the mechanism between rice glutelin and gum arabic at pH 3.0 studied by turbidity, light scattering, fluorescence spectra and molecular docking. LWT-Food Sci. Technol. 2021, 150, 112084. [Google Scholar] [CrossRef]
- Buecker, S.; Grossmann, L.; Loeffler, M.; Leeb, E.; Weiss, J. Thermal and acidic denaturation of phycocyanin from Arthrospira platensis: Effects of complexation with lambda-carrageenan on blue color stability. Food Chem. 2022, 380, 132157. [Google Scholar] [CrossRef]
- Yuan, Y.; Li, H.; Liu, C.; Zhu, J.; Xu, Y.; Zhang, S.; Fan, M.; Zhang, D.; Zhang, Y.; Zhang, Z.; et al. Fabrication of stable zein nanoparticles by chondroitin sulfate deposition based on antisolvent precipitation method. Int. J. Biol. Macromol. 2019, 139, 30–39. [Google Scholar] [CrossRef]
- Hu, Q.; Wang, T.; Zhou, M.; Xue, J.; Luo, Y. Formation of redispersible polyelectrolyte complex nanoparticles from gallic acid-chitosan conjugate and gum arabic. Int. J. Biol. Macromol. 2016, 92, 812–819. [Google Scholar] [CrossRef]
- Baiocco, D.; Preece, J.A.; Zhang, Z. Encapsulation of hexylsalicylate in an animal-free chitosan-gum Arabic shell by complex coacervation. Colloids Surf. A Physicochem. Eng. Asp. 2021, 625, 126861. [Google Scholar] [CrossRef]
- Li, Z.; Kuang, H.; Yang, J.; Hu, J.; Ding, B.; Sun, W.; Luo, Y. Improving emulsion stability based on ovalbumin-carboxymethyl cellulose complexes with thermal treatment near ovalbumin isoelectric point. Sci. Rep. 2020, 10, 64–70. [Google Scholar] [CrossRef]
- Jia, H.; Zhang, Y.; Guo, Q.; Zeng, X.; Yuan, Y.; Wang, Z.; Gao, Z.; Yue, T. Epsilon-polylysine based magnetic nanospheres as an efficient and recyclable antibacterial agent for Alicyclobacillus acidoterrestris. Food Chem. 2021, 364, 130382. [Google Scholar] [CrossRef]
- Moghadam, A.; Mobarakeh, M.S.; Safaei, M.; Kariminia, S. Synthesis and characterization of novel bio-nanocomposite of polyvinyl alcohol-Arabic gum-magnesium oxide via direct blending method. Carbohydr. Polym. 2021, 260, 117802. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Sun, J.; Lu, Y.; Wu, T.; Pang, J.; Hu, Y. In situ self-assembly chitosan/ε-polylysine bionanocomposite film with enhanced antimicrobial properties for food packaging. Int. J. Biol. Macromol. 2019, 132, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Li, R.; Dong, F.; Tian, A.; Li, Z.; Dai, Y. Physical, mechanical and antimicrobial properties of starch films incorporated with ε-poly-L-lysine. Food Chem. 2015, 166, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Sabet, S.; Rashidinejad, A.; Melton, L.D.; Zujovic, Z.; Akbarinejad, A.; Nieuwoudt, M.; Seal, C.K.; McGillivray, D.J. The interactions between the two negatively charged polysaccharides: Gum Arabic and alginate. Food Hydrocoll. 2020, 112, 106343. [Google Scholar] [CrossRef]
- Jones, O.G.; Lesmes, U.; Dubin, P.; McClements, D.J. Effect of polysaccharide charge on formation and properties of biopolymer nanoparticles created by heat treatment of β-lactoglobulin–pectin complexes. Food Hydrocoll. 2009, 24, 374–383. [Google Scholar] [CrossRef]
- Su, R.; Li, T.; Fan, D.; Huang, J.; Zhao, J.; Yan, B.; Zhou, W.; Zhang, W.; Zhang, H. The inhibition mechanism of ε-polylysine against Bacillus cereus emerging in surimi gel during refrigerated storage. J. Sci. Food Agric. 2019, 99, 2922–2930. [Google Scholar] [CrossRef] [PubMed]
- Silva, F.C.D.; Fonseca, C.R.D.; Alencar, S.M.D.; Thomazini, M.; Balieiro, J.C.D.C.; Pittia, P.; Favaro-Trindade, C.S. Assessment of production efficiency, physicochemical properties and storage stability of spray-dried propolis, a natural food additive, using gum Arabic and OSA starch-based carrier systems. Food Bioprod. Process. 2013, 91, 28–36. [Google Scholar] [CrossRef]
- Lopez-Pena, C.L.; McClements, D.J. Optimizing delivery systems for cationic biopolymers: Competitive interactions of cationic polylysine with anionic κ-carrageenan and pectin. Food Chem. 2014, 153, 9–14. [Google Scholar] [CrossRef]
- Yu, Z.; Rao, G.; Wei, Y.; Yu, J.; Wu, S.; Fang, Y. Preparation, characterization, and antibacterial properties of biofilms comprising chitosan and ε-polylysine. Int. J. Biol. Macromol. 2019, 141, 545–552. [Google Scholar] [CrossRef] [PubMed]
- Adetoro, A.O.; Opara, U.L.; Fawole, O.A. Effect of carrier agents on the physicochemical and technofunctional properties and antioxidant capacity of freeze-dried pomegranate juice (Punica granatum) powder. Foods 2020, 9, 1388. [Google Scholar] [CrossRef] [PubMed]
Sample | Mass Ratio (ε-PL:GA) | Particle Size (nm) | PDI | Zeta Potential (mV) | Encapsulation Efficiency (%) |
---|---|---|---|---|---|
GA/ε-PL | 1:1 | n.d. | n.d. | 25.10 ± 1.01 b | 83.74 ± 1.66 f |
1:2 | n.d. | n.d. | 20.60 ± 0.79 cd | 82.88 ± 1.40 f | |
1:3 | 170.80 ± 13.79 e | 0.58 ± 0.10 b | 19.30 ± 0.37 d | 90.47 ± 1.20 d | |
1:4 | 194.90 ± 12.35 d | 0.35 ± 0.07 c | 15.00 ± 0.47 e | 91.88 ± 0.72 cd | |
1:5 | 255.00 ± 14.55 c | 0.47 ± 0.06 bc | 12.80 ± 0.53 f | 94.92 ± 0.78 b | |
H-GA/ε-PL | 1:1 | 126.00 ± 14.77 f | 0.86 ± 0.19 a | 27.00 ± 0.66 a | 88.84 ± 0.66 e |
1:2 | 199.00 ± 63.74 d | 0.80 ± 0.21 a | 22.00 ± 0.59 c | 90.27 ± 0.99 d | |
1:3 | 277.30 ± 22.59 c | 0.53 ± 0.22 b | 23.60 ± 0.60 bc | 95.64 ± 1.10 b | |
1:4 | 350.30 ± 5.95 b | 0.26 ± 0.04 c | 18.90 ± 1.03 d | 93.29 ± 0.83 c | |
1:5 | 465.60 ± 9.74 a | 0.18 ± 0.01 d | 16.40 ± 0.61 e | 97.74 ± 1.10 a |
Strains | MIC (μg/mL) | MBC (μg/mL) | ||
---|---|---|---|---|
S. enterica | L. monocytogenes | S. enterica | L. monocytogenes | |
ε-PL | 31.3 ± 2.33 a | 125.0 ± 8.41 a | 62.5 ± 6.51 a | 312.5 ± 12.17 a |
GA/ε-PL | 31.3 ± 4.82 a | 125.0 ± 6.98 a | 62.5 ± 7.19 a | 312.5 ± 9.84 a |
H-GA/ε-PL | 15.6 ± 1.51 b | 62.5 ± 4.12 b | 31.3 ± 3.75 b | 156.3 ± 8.73 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, R.-Y.; Wang, P.-F.; Li, H.-X.; Yang, Y.-J.; Rao, S.-Q. Enhanced Antibacterial Efficiency and Anti-Hygroscopicity of Gum Arabic–ε-Polylysine Electrostatic Complexes: Effects of Thermal Induction. Polymers 2023, 15, 4517. https://doi.org/10.3390/polym15234517
Zhang R-Y, Wang P-F, Li H-X, Yang Y-J, Rao S-Q. Enhanced Antibacterial Efficiency and Anti-Hygroscopicity of Gum Arabic–ε-Polylysine Electrostatic Complexes: Effects of Thermal Induction. Polymers. 2023; 15(23):4517. https://doi.org/10.3390/polym15234517
Chicago/Turabian StyleZhang, Ru-Yi, Peng-Fei Wang, Hua-Xiang Li, Yan-Jun Yang, and Sheng-Qi Rao. 2023. "Enhanced Antibacterial Efficiency and Anti-Hygroscopicity of Gum Arabic–ε-Polylysine Electrostatic Complexes: Effects of Thermal Induction" Polymers 15, no. 23: 4517. https://doi.org/10.3390/polym15234517
APA StyleZhang, R. -Y., Wang, P. -F., Li, H. -X., Yang, Y. -J., & Rao, S. -Q. (2023). Enhanced Antibacterial Efficiency and Anti-Hygroscopicity of Gum Arabic–ε-Polylysine Electrostatic Complexes: Effects of Thermal Induction. Polymers, 15(23), 4517. https://doi.org/10.3390/polym15234517