Innovative Biobased and Sustainable Polymer Packaging Solutions for Extending Bread Shelf Life: A Review
Abstract
:1. Introduction
2. The Bread: Characteristics and Problems Related to the Packaging
2.1. Main Features and Characteristics of the Bread Typologies
2.2. Current Packaging Technologies Employed for Bread Products
2.3. Volatile Compounds Involved in Bread Aroma: Their Development and Packaging-Related Problems
2.4. Factors Affecting Shelf Life of Bread and Bakery Products
2.5. Problems to Overcome for Slowing the Spoilage
3. Active Biomolecules for Improving Bread Shelf Life
3.1. Oxygen Barrier
3.2. Water Vapor Barrier
3.3. Antimicrobial Properties
3.4. Antioxidant Properties
3.5. Protective Agents and/or Biopreservatives for Bread Packaging
3.5.1. Essential Oils
3.5.2. Lactic Acid Bacteria and Their Metabolites
4. Promising Biobased Biopolymeric Matrices for Bread Packaging
4.1. Starch-Based Materials
4.2. Cellulose-Based and Lignin-Based Materials
4.3. Polylactic-Acid-Based Materials
4.4. PHA-Based Materials
4.5. Other Completely or Partially Biobased Polymeric Matrices
5. Market Challenges of Innovative Biobased/Biodegradable Packaging Solutions for Bread and Bakery Products
5.1. Current Status of Packaging Solutions for Bread and Barriers to Overcome for Biobased/Biosegradable Solutions
5.2. Examples of Biobased Innovative Solutions on the Market for Bread and Bakery Products
5.3. Material Savings for Improving Bread Shelf life through Personalized Design and/or Processing Optimization
5.4. Future Perspectives and Legislation for the Application of Biobased Materials in Bread-Packaging Fields
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Nicolosi, A.; Laganà, V.R.; Di Gregorio, D. Habits, Health and Environment in the Purchase of Bakery Products: Consumption Preferences and Sustainable Inclinations before and during COVID-19. Foods 2023, 12, 1661. [Google Scholar] [CrossRef]
- Apicella, A.; Scarfato, P.; Di Maio, L.; Incarnato, L. Sustainable Active PET Films by Functionalization with Antimicrobial Bio-Coatings. Front. Mater. 2019, 6, 243. [Google Scholar] [CrossRef]
- Bianchi, A.; Venturi, F.; Zinnai, A.; Taglieri, I.; Najar, B.; Macaluso, M.; Merlani, G.; Angelini, L.G.; Tavarini, S.; Clemente, C.; et al. Valorization of an Old Variety of Triticum Aestivum: A Study of Its Suitability for Breadmaking Focusing on Sensory and Nutritional Quality. Foods 2023, 12, 1351. [Google Scholar] [CrossRef]
- Estévez, M.; Li, Z.; Soladoye, O.P.; Van-Hecke, T. Health Risks of Food Oxidation. In Advances in Food and Nutrition Research; Toldrá, F., Ed.; Academic Press: Cambridge, MA, USA, 2017; Volume 82, pp. 45–81. [Google Scholar]
- Pascall, M.A.; DeAngelo, K.; Richards, J.; Arensberg, M.B. Role and Importance of Functional Food Packaging in Specialized Products for Vulnerable Populations: Implications for Innovation and Policy Development for Sustainability. Foods 2022, 11, 3043. [Google Scholar] [CrossRef] [PubMed]
- Sovacool, B.K.; Bazilian, M.; Griffiths, S.; Kim, J.; Foley, A.; Rooney, D. Decarbonizing the Food and Beverages Industry: A Critical and Systematic Review of Developments, Sociotechnical Systems and Policy Options. Renew. Sustain. Energy Rev. 2021, 143, 110856. [Google Scholar] [CrossRef]
- Beghetto, V.; Gatto, V.; Samiolo, R.; Scolaro, C.; Brahimi, S.; Facchin, M.; Visco, A. Plastics Today: Key Challenges and EU Strategies towards Carbon Neutrality: A Review. Environ. Pollut. 2023, 334, 122102. [Google Scholar] [CrossRef] [PubMed]
- Clodoveo, M.L.; Muraglia, M.; Fino, V.; Curci, F.; Fracchiolla, G.; Corbo, F.F.R. Overview on Innovative Packaging Methods Aimed to Increase the Shelf-Life of Cook-Chill Foods. Foods 2021, 10, 2086. [Google Scholar] [CrossRef] [PubMed]
- Meng, W.; Sun, H.; Su, G. Plastic Packaging-Associated Chemicals and Their Hazards—An Overview of Reviews. Chemosphere 2023, 331, 138795. [Google Scholar] [CrossRef] [PubMed]
- Stark, N.M.; Matuana, L.M. Trends in Sustainable Biobased Packaging Materials: A Mini Review. Mater. Today Sustain. 2021, 15, 100084. [Google Scholar] [CrossRef]
- Rahman, M.; Islam, R.; Hasan, S.; Zzaman, W.; Rana, M.R.; Ahmed, S.; Roy, M.; Sayem, A.; Matin, A.; Raposo, A.; et al. A Comprehensive Review on Bio-Preservation of Bread: An Approach to Adopt Wholesome Strategies. Foods 2022, 11, 319. [Google Scholar] [CrossRef]
- San, H.; Laorenza, Y.; Behzadfar, E.; Sonchaeng, U.; Wadaugsorn, K.; Sodsai, J.; Kaewpetch, T.; Promhuad, K.; Srisa, A.; Wongphan, P.; et al. Functional Polymer and Packaging Technology for Bakery Products. Polymer 2022, 14, 3793. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Karboune, S. A Review of Bread Qualities and Current Strategies for Bread Bioprotection: Flavor, Sensory, Rheological, and Textural Attributes. Compr. Rev. Food Sci. Food Saf. 2021, 20, 1937–1981. [Google Scholar] [CrossRef] [PubMed]
- Fraś, A.; Gołębiewska, K.; Gołębiewski, D.; Mańkowski, D.R.; Boros, D.; Szecówka, P. Variability in the Chemical Composition of Triticale Grain, Flour and Bread. J. Cereal Sci. 2016, 71, 66–72. [Google Scholar] [CrossRef]
- Cauvain, S.P. Bread and Other Bakery Products. In The Stability and Shelf Life of Food, 2nd ed.; Subramaniam, P., Ed.; Woodhead Publishing: Sawston, UK, 2016; pp. 431–459. ISBN 978-0-08-100435-7. [Google Scholar]
- Monteiro, J.S.; Farage, P.; Zandonadi, R.P.; Botelho, R.B.A.; de Oliveira, L.d.L.; Raposo, A.; Shakeel, F.; Alshehri, S.; Mahdi, W.A.; Araújo, W.M.C. A Systematic Review on Gluten-Free Bread Formulations Using Specific Volume as a Quality Indicator. Foods 2021, 10, 614. [Google Scholar] [CrossRef]
- Barbarisi, C.; De Vito, V.; Pellicano, M.P.; Boscaino, F.; Balsamo, S.; Laurino, C.; Sorrentino, G.; Volpe, M.G. Bread Chemical and Nutritional Characteristics as Influenced by Food Grade Sea Water. Int. J. Food Prop. 2019, 22, 280–289. [Google Scholar] [CrossRef]
- Giannou, V.; Kessoglou, V.; Tzia, C. Quality and Safety Characteristics of Bread Made from Frozen Dough. Trends Food Sci. Technol. 2003, 14, 99–108. [Google Scholar] [CrossRef]
- Cauvain, S.; Young, L. Current Approaches to the Classification of Bakery Products. In Baked Products; Wiley: Hoboken, NJ, USA, 2006; pp. 1–13. ISBN 9780470995907. [Google Scholar]
- Cauvain, S. Breadmaking: An Overview. In Breadmaking, 2nd ed.; Cauvain, S.P., Ed.; Woodhead Publishing: Sawston, UK, 2012; pp. 9–31. ISBN 978-0-85709-060-7. [Google Scholar]
- Melini, V.; Melini, F. Strategies to Extend Bread and GF Bread Shelf-Life: From Sourdough to Antimicrobial Active Packaging and Nanotechnology. Fermentation 2018, 4, 9. [Google Scholar] [CrossRef]
- Degirmencioglu, N.; Göcmen, D.; Inkaya, A.N.; Aydin, E.; Guldas, M.; Gonenc, S. Influence of Modified Atmosphere Packaging and Potassium Sorbate on Microbiological Characteristics of Sliced Bread. J. Food Sci. Technol. 2011, 48, 236–241. [Google Scholar] [CrossRef]
- Axel, C.; Zannini, E.; Arendt, E.K. Mold Spoilage of Bread and Its Biopreservation: A Review of Current Strategies for Bread Shelf Life Extension. Crit. Rev. Food Sci. Nutr. 2017, 57, 3528–3542. [Google Scholar] [CrossRef]
- Bhise, S.; Kaur, A. Baking Quality, Sensory Properties and Shelf Life of Bread with Polyols. J. Food Sci. Technol. 2014, 51, 2054–2061. [Google Scholar] [CrossRef] [PubMed]
- Alpers, T.; Kerpes, R.; Frioli, M.; Nobis, A.; Hoi, K.I.; Bach, A.; Jekle, M.; Becker, T. Impact of Storing Condition on Staling and Microbial Spoilage Behavior of Bread and Their Contribution to Prevent Food Waste. Foods 2021, 10, 76. [Google Scholar] [CrossRef] [PubMed]
- Caleb, O.J.; Mahajan, P.V.; Al-Said, F.A.-J.; Opara, U.L. Modified Atmosphere Packaging Technology of Fresh and Fresh-Cut Produce and the Microbial Consequences—A Review. Food Bioprocess Technol. 2013, 6, 303–329. [Google Scholar] [CrossRef] [PubMed]
- Van Long, N.N.; Dantigny, P. Fungal Contamination in Packaged Foods. In Antimicrobial Food Packaging; Barros-Velázquez, J., Ed.; Elsevier: San Diego, CA, USA, 2016; pp. 45–63. ISBN 978-0-12-800723-5. [Google Scholar]
- Thirupathi Vasuki, M.; Kadirvel, V.; Pejavara Narayana, G. Smart Packaging—An Overview of Concepts and Applications in Various Food Industries. Food Bioeng. 2023, 2, 25–41. [Google Scholar] [CrossRef]
- Gigante, V.; Panariello, L.; Coltelli, M.-B.; Danti, S.; Obisesan, K.A.; Hadrich, A.; Staebler, A.; Chierici, S.; Canesi, I.; Lazzeri, A.; et al. Liquid and Solid Functional Bio-Based Coatings. Polymer 2021, 13, 3640. [Google Scholar] [CrossRef]
- Chawla, R.; Sivakumar, S.; Kaur, H. Antimicrobial Edible Films in Food Packaging: Current Scenario and Recent Nanotechnological Advancements—A Review. Carbohydr. Polym. Technol. Appl. 2021, 2, 100024. [Google Scholar] [CrossRef]
- Salgado, P.R.; Di Giorgio, L.; Musso, Y.S.; Mauri, A.N. Recent Developments in Smart Food Packaging Focused on Biobased and Biodegradable Polymers. Front. Sustain. Food Syst. 2021, 5, 630393. [Google Scholar] [CrossRef]
- Yildirim, S.; Röcker, B.; Pettersen, M.K.; Nilsen-Nygaard, J.; Ayhan, Z.; Rutkaite, R.; Radusin, T.; Suminska, P.; Marcos, B.; Coma, V. Active Packaging Applications for Food. Compr. Rev. Food Sci. Food Saf. 2018, 17, 165–199. [Google Scholar] [CrossRef]
- Han, J.-W.; Ruiz-Garcia, L.; Qian, J.-P.; Yang, X.-T. Food Packaging: A Comprehensive Review and Future Trends. Compr. Rev. Food Sci. Food Saf. 2018, 17, 860–877. [Google Scholar] [CrossRef]
- Pico, J.; Bernal, J.; Gómez, M. Wheat Bread Aroma Compounds in Crumb and Crust: A Review. Food Res. Int. 2015, 75, 200–215. [Google Scholar] [CrossRef]
- Baardseth, P.; Kvaal, K.; Lea, P.; Ellekjær, M.R.; Færgestad, E.M. The Effects of Bread Making Process and Wheat Quality on French Baguettes. J. Cereal Sci. 2000, 32, 73–87. [Google Scholar] [CrossRef]
- Martínez-Anaya, M.A. Enzymes and Bread Flavor. J. Agric. Food Chem. 1996, 44, 2469–2480. [Google Scholar] [CrossRef]
- Cho, I.H.; Peterson, D.G. Chemistry of Bread Aroma: A Review. Food Sci. Biotechnol. 2010, 19, 575–582. [Google Scholar] [CrossRef]
- Schieberle, P.; Grosch, W. Potent Odorants of the Wheat Bread Crumb Differences to the Crust and Effect of a Longer Dough Fermentation. Z. Lebensm. Unters. Forsch. 1991, 192, 130–135. [Google Scholar] [CrossRef]
- Schieberle, P.; Grosch, W. Potent Odorants of Rye Bread Crust-Differences from the Crumb and from Wheat Bread Crust. Z. Lebensm. Unters. Forsch. 1994, 198, 292–296. [Google Scholar] [CrossRef]
- Pozo-Bayón, M.A.; Guichard, E.; Cayot, N. Flavor Control in Baked Cereal Products. Food Rev. Int. 2006, 22, 335–379. [Google Scholar] [CrossRef]
- Zhou, W.; Hui, Y.H.; De Leyn, I.; Pagani, M.A.; Rosell, C.M.; Selman, J.D.; Therdthai, N. Bakery Products Science and Technology, 2nd ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2014; pp. 1–761. ISBN 9781119967156. [Google Scholar] [CrossRef]
- Prost, C.; Poinot, P.; Rannou, C.; Arvisenet, G. Bread Aroma. In Breadmaking; Woodhead Publishing Ltd.: Cambridge, UK, 2012; pp. 523–561. [Google Scholar]
- Kotsianis, I.S.; Giannou, V.; Tzia, C. Production and Packaging of Bakery Products Using MAP Technology. Trends Food Sci. Technol. 2002, 13, 319–324. [Google Scholar] [CrossRef]
- Ju, J.; Xie, Y.; Yu, H.; Guo, Y.; Cheng, Y.; Zhang, R.; Yao, W. Synergistic Inhibition Effect of Citral and Eugenol against Aspergillus Niger and Their Application in Bread Preservation. Food Chem. 2020, 310, 125974. [Google Scholar] [CrossRef]
- Seiler, D.A.L. Bakery Products. In Principles and Applications of Modified Atmosphere Packaging of Foods; Springer: Boston, MA, USA, 1998; pp. 135–157. [Google Scholar]
- Qian, M.; Liu, D.; Zhang, X.; Yin, Z.; Ismail, B.B.; Ye, X.; Guo, M. A Review of Active Packaging in Bakery Products: Applications and Future Trends. Trends Food Sci. Technol. 2021, 114, 459–471. [Google Scholar] [CrossRef]
- Malathy, A.S.; Periyar, S.S.; Subramaniyan, V.; Subramanian, S.; Sathiavelu, M. Bread Packaging Techniques and Trends. Ital. J. Food Saf. 2022, 11, 28–35. [Google Scholar] [CrossRef]
- Garcia, M.V.; Copetti, M. Alternative methods for mould spoilage control in bread and bakery products. Int. Food Res. J. 2019, 26, 737–749. [Google Scholar]
- Li, H.; Wang, H.; D’Aoust, J.-Y.; Maurer, J. Salmonella Species. In Food Microbiology; ASM Press: Washington, DC, USA, 2012; pp. 223–261. ISBN 9781683670582. [Google Scholar]
- Hernández, A.; Pérez-Nevado, F.; Ruiz-Moyano, S.; Serradilla, M.J.; Villalobos, M.C.; Martín, A.; Córdoba, M.G. Spoilage Yeasts: What Are the Sources of Contamination of Foods and Beverages? Int. J. Food Microbiol. 2018, 286, 98–110. [Google Scholar] [CrossRef] [PubMed]
- Šmídová, Z.; Rysová, J. Gluten-Free Bread and Bakery Products Technology. Foods 2022, 11, 480. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo, J.M.; Munekata, P.E.; Dominguez, R.; Pateiro, M.; Saraiva, J.A.; Franco, D. Chapter 3—Main Groups of Microorganisms of Relevance for Food Safety and Stability: General Aspects and Overall Description. In Innovative Technologies for Food Preservation; Barba, F.J., Sant’Ana, A.S., Orlien, V., Koubaa, M., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 53–107. ISBN 978-0-12-811031-7. [Google Scholar]
- Santos, J.L.P.; Chaves, R.D.; Sant’Ana, A.S. Estimation of Growth Parameters of Six Different Fungal Species for Selection of Strains to Be Used in Challenge Tests of Bakery Products. Food Biosci. 2017, 20, 62–66. [Google Scholar] [CrossRef]
- Licciardello, F.; Giannone, V.; Del Nobile, M.A.; Muratore, G.; Summo, C.; Giarnetti, M.; Caponio, F.; Paradiso, V.M.; Pasqualone, A. Shelf Life Assessment of Industrial Durum Wheat Bread as a Function of Packaging System. Food Chem. 2017, 224, 181–190. [Google Scholar] [CrossRef]
- Grillo, O.; Rizzo, V.; Saccone, R.; Fallico, B.; Mazzaglia, A.; Venora, G.; Muratore, G. Use of Image Analysis to Evaluate the Shelf Life of Bakery Products. Food Res. Int. 2014, 62, 514–522. [Google Scholar] [CrossRef]
- Abdelhamid, A.G.; El-Dougdoug, N.K. Controlling Foodborne Pathogens with Natural Antimicrobials by Biological Control and Antivirulence Strategies. Heliyon 2020, 6, e05020. [Google Scholar] [CrossRef]
- Bitrus, J.; Amadi, O.C.; Nwagu, T.N.; Nnamchi, C.I.; Moneke, A.N. Application of Wild Yeast Isolates from Palm Wine and Honey in Baking of Cassava/Wheat Composite Bread. Food Nutr. Sci. 2020, 11, 895–911. [Google Scholar] [CrossRef]
- Saladino, F.; Quiles, J.M.; Luciano, F.B.; Mañes, J.; Fernández-Franzón, M.; Meca, G. Shelf Life Improvement of the Loaf Bread Using Allyl, Phenyl and Benzyl Isothiocyanates against Aspergillus Parasiticus. LWT 2017, 78, 208–214. [Google Scholar] [CrossRef]
- Lafuente, C.; Calpe, J.; Musto, L.; Nazareth, T.d.M.; Dopazo, V.; Meca, G.; Luz, C. Preparation of Sourdoughs Fermented with Isolated Lactic Acid Bacteria and Characterization of Their Antifungal Properties. Foods 2023, 12, 686. [Google Scholar] [CrossRef]
- Heras-Mozos, R.; Muriel-Galet, V.; López-Carballo, G.; Catalá, R.; Hernández-Muñoz, P.; Gavara, R. Active EVOH/PE Bag for Sliced Pan Loaf Based on Garlic as Antifungal Agent and Bread Aroma as Aroma Corrector. Food Packag. Shelf Life 2018, 18, 125–130. [Google Scholar] [CrossRef]
- Bhaskar, R.; Zo, S.M.; Narayanan, K.B.; Purohit, S.D.; Gupta, M.K.; Han, S.S. Recent Development of Protein-Based Biopolymers in Food Packaging Applications: A Review. Polym. Test. 2023, 124, 108097. [Google Scholar] [CrossRef]
- Coltelli, M.-B.; Wild, F.; Bugnicourt, E.; Cinelli, P.; Lindner, M.; Schmid, M.; Weckel, V.; Müller, K.; Rodriguez, P.; Staebler, A.; et al. State of the Art in the Development and Properties of Protein-Based Films and Coatings and Their Applicability to Cellulose Based Products: An Extensive Review. Coatings 2015, 6, 1. [Google Scholar] [CrossRef]
- Farris, S.; Cozzolino, C.A.; Introzzi, L.; Piergiovanni, L. Development and Characterization of a Gelatin-Based Coating with Unique Sealing Properties. J. Appl. Polym. Sci. 2010, 118, 2969–2975. [Google Scholar] [CrossRef]
- Gennadios, A.; Brandenburg, A.H.; Park, J.W.; Weller, C.L.; Testin, R.F. Water Vapor Permeability of Wheat Gluten and Soy Protein Isolate Films. Ind. Crops Prod. 1994, 2, 189–195. [Google Scholar] [CrossRef]
- Tang, C.-H.; Xiao, M.-L.; Chen, Z.; Yang, X.-Q. Influence of Succinylation on the Properties of Cast Films from Red Bean Protein Isolate at Various Plasticizer Levels. J. Appl. Polym. Sci. 2011, 120, 1934–1941. [Google Scholar] [CrossRef]
- Farris, S.; Introzzi, L.; Piergiovanni, L. Evaluation of a Bio-Coating as a Solution to Improve Barrier, Friction and Optical Properties of Plastic Films. Packag. Technol. Sci. 2009, 22, 69–83. [Google Scholar] [CrossRef]
- Wu, F.; Misra, M.; Mohanty, A.K. Challenges and New Opportunities on Barrier Performance of Biodegradable Polymers for Sustainable Packaging. Prog. Polym. Sci. 2021, 117, 101395. [Google Scholar] [CrossRef]
- Tihminlioglu, F.; Atik, İ.D.; Özen, B. Water Vapor and Oxygen-Barrier Performance of Corn–Zein Coated Polypropylene Films. J. Food Eng. 2010, 96, 342–347. [Google Scholar] [CrossRef]
- Zhang, H.; Mittal, G. Biodegradable Protein-Based Films from Plant Resources: A Review. Environ. Prog. Sustain. Energy 2010, 29, 203–220. [Google Scholar] [CrossRef]
- Cazón, P.; Velazquez, G.; Ramírez, J.A.; Vázquez, M. Polysaccharide-Based Films and Coatings for Food Packaging: A Review. Food Hydrocoll. 2017, 68, 136–148. [Google Scholar] [CrossRef]
- Cherian, R.M.; Tharayil, A.; Varghese, R.T.; Antony, T.; Kargarzadeh, H.; Chirayil, C.J.; Thomas, S. A Review on the Emerging Applications of Nano-Cellulose as Advanced Coatings. Carbohydr. Polym. 2022, 282, 119123. [Google Scholar] [CrossRef]
- Herrera, M.A.; Mathew, A.P.; Oksman, K. Barrier and Mechanical Properties of Plasticized and Cross-Linked Nanocellulose Coatings for Paper Packaging Applications. Cellulose 2017, 24, 3969–3980. [Google Scholar] [CrossRef]
- Szymańska-Chargot, M.; Chylińska, M.; Pieczywek, P.M.; Walkiewicz, A.; Pertile, G.; Frąc, M.; Cieślak, K.J.; Zdunek, A. Evaluation of Nanocomposite Made of Polylactic Acid and Nanocellulose from Carrot Pomace Modified with Silver Nanoparticles. Polymer 2020, 12, 812. [Google Scholar] [CrossRef] [PubMed]
- Guivier, M.; Almeida, G.; Domenek, S.; Chevigny, C. Resilient High Oxygen Barrier Multilayer Films of Nanocellulose and Polylactide. Carbohydr. Polym. 2023, 312, 120761. [Google Scholar] [CrossRef] [PubMed]
- Coltelli, M.-B.; Panariello, L.; Vannozzi, A.; Gigante, V.; Gagliardini, A.; Morganti, P.; Cinelli, P.; Lazzeri, A.; De Bonise, A.; Falabella, P. Chitin and Its Derivatives: Nanostructured Materials from Different Marine and Terrestrial Sources. Chem. Eng. Trans. 2022, 93, 295–300. [Google Scholar] [CrossRef]
- Coltelli, M.; Aliotta, L.; Vannozzi, A.; Morganti, P.; Fusco, A.; Donnarumma, G.; Lazzeri, A. Properties and Skin Compatibility of Films Based on Poly (Lactic Acid) (PLA) Bionanocomposites Incorporating Chitin Nanofibrils (CN). J. Funct. Biomater. 2020, 11, 21. [Google Scholar] [CrossRef] [PubMed]
- Hahn, T.; Tafi, E.; Paul, A.; Salvia, R.; Falabella, P.; Zibek, S. Current State of Chitin Purification and Chitosan Production from Insects. J. Chem. Technol. Biotechnol. 2020, 95, 2775–2795. [Google Scholar] [CrossRef]
- Kopacic, S.; Walzl, A.; Zankel, A.; Leitner, E.; Bauer, W. Alginate and Chitosan as a Functional Barrier for Paper-Based Packaging Materials. Coatings 2018, 8, 235. [Google Scholar] [CrossRef]
- Priyadarshi, R.; Rhim, J.-W. Chitosan-Based Biodegradable Functional Films for Food Packaging Applications. Innov. Food Sci. Emerg. Technol. 2020, 62, 102346. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Sharma, N.; Sharma, V.; Alam, T.; Sahu, J.K.; Hamid, H. Assessing the Consumer Acceptance and Storability of Chitosan and Beeswax Coated Cellulose Packaging for Whole Wheat Bread. Food Control 2022, 133, 108682. [Google Scholar] [CrossRef]
- Ji, Y.; Waters, S.; Lim, E.; Lang, A.W.; Ciesielski, P.N.; Shofner, M.L.; Reynolds, J.R.; Meredith, J.C. Minimizing Oxygen Permeability in Chitin/Cellulose Nanomaterial Coatings by Tuning Chitin Deacetylation. ACS Sustain. Chem. Eng. 2022, 10, 124–133. [Google Scholar] [CrossRef]
- Benbettaïeb, N.; Kurek, M.; Bornaz, S.; Debeaufort, F. Barrier, Structural and Mechanical Properties of Bovine Gelatin–Chitosan Blend Films Related to Biopolymer Interactions. J. Sci. Food Agric. 2014, 94, 2409–2419. [Google Scholar] [CrossRef] [PubMed]
- Trinh, B.M.; Chang, B.P.; Mekonnen, T.H. The Barrier Properties of Sustainable Multiphase and Multicomponent Packaging Materials: A Review. Prog. Mater. Sci. 2023, 133, 101071. [Google Scholar] [CrossRef]
- Hirte, A.; Hamer, R.J.; Meinders, M.B.J.; Primo-Martín, C. Permeability of Crust Is Key to Crispness Retention. J. Cereal Sci. 2010, 52, 129–135. [Google Scholar] [CrossRef]
- Follain, N.; Chappey, C.; Dargent, E.; Chivrac, F.; Crétois, R.; Marais, S. Structure and Barrier Properties of Biodegradable Polyhydroxyalkanoate Films. J. Phys. Chem. C 2014, 118, 6165–6177. [Google Scholar] [CrossRef]
- Reddy, M.M.; Mohanty, A.K.; Misra, M. Biodegradable Blends from Plasticized Soy Meal, Polycaprolactone, and Poly (Butylene Succinate). Macromol. Mater. Eng. 2012, 297, 455–463. [Google Scholar] [CrossRef]
- Spotti, M.L.; Cecchini, J.P.; Spotti, M.J.; Carrara, C.R. Brea Gum (from Cercidium praecox) as a Structural Support for Emulsion-Based Edible Films. LWT Food Sci. Technol. 2016, 68, 127–134. [Google Scholar] [CrossRef]
- Bravin, B.; Peressini, D.; Sensidoni, A. Development and Application of Polysaccharide–Lipid Edible Coating to Extend Shelf-Life of Dry Bakery Products. J. Food Eng. 2006, 76, 280–290. [Google Scholar] [CrossRef]
- Simões, A.; Coelhoso, I.M.; Alves, V.D.; Brazinha, C. Recovery and Purification of Cutin from Tomato By-Products for Application in Hydrophobic Films. Membranes 2023, 13, 261. [Google Scholar] [CrossRef] [PubMed]
- Tedeschi, G.; Benitez, J.J.; Ceseracciu, L.; Dastmalchi, K.; Itin, B.; Stark, R.E.; Heredia, A.; Athanassiou, A.; Heredia-Guerrero, J.A. Sustainable Fabrication of Plant Cuticle-Like Packaging Films from Tomato Pomace Agro-Waste, Beeswax, and Alginate. ACS Sustain. Chem. Eng. 2018, 6, 14955–14966. [Google Scholar] [CrossRef]
- Manrich, A.; Moreira, F.K.V.; Otoni, C.G.; Lorevice, M.V.; Martins, M.A.; Mattoso, L.H.C. Hydrophobic Edible Films Made up of Tomato Cutin and Pectin. Carbohydr. Polym. 2017, 164, 83–91. [Google Scholar] [CrossRef]
- Righetti, G.I.C.; Nasti, R.; Beretta, G.; Levi, M.; Turri, S.; Suriano, R. Unveiling the Hidden Properties of Tomato Peels: Cutin Ester Derivatives as Bio-Based Plasticizers for Polylactic Acid. Polymer 2023, 15, 1848. [Google Scholar] [CrossRef] [PubMed]
- Mousavi Khaneghah, A.; Hashemi, S.M.B.; Limbo, S. Antimicrobial Agents and Packaging Systems in Antimicrobial Active Food Packaging: An Overview of Approaches and Interactions. Food Bioprod. Process. 2018, 111, 1–19. [Google Scholar] [CrossRef]
- Saranraj, P.; Sivasakthivelan, P. Microorganisms Involved in Spoilage of Bread and Its Control Measures. In Bread and Its Fortification: Nutrition and Health Benefits, 1st ed.; Rosell, C.M., Bajerska, J., El Sheikha, A.F., Eds.; CRC Press: Boca Raton, FL, USA, 2015; pp. 132–149. [Google Scholar]
- Thompson, J.M.; Dodd, C.E.R.; Waites, W.M. Spoilage of Bread by Bacillus. Int. Biodeterior. Biodegrad. 1993, 32, 55–66. [Google Scholar] [CrossRef]
- Nielsen, P.V.; Rios, R. Inhibition of Fungal Growth on Bread by Volatile Components from Spices and Herbs, and the Possible Application in Active Packaging, with Special Emphasis on Mustard Essential Oil. Int. J. Food Microbiol. 2000, 60, 219–229. [Google Scholar] [CrossRef]
- LaCoste, A.; Schaich, K.M.; Zumbrunnen, D.; Yam, K.L. Advancing Controlled Release Packaging through Smart Blending. Packag. Technol. Sci. 2005, 18, 77–87. [Google Scholar] [CrossRef]
- Brockgreitens, J.; Abbas, A. Responsive Food Packaging: Recent Progress and Technological Prospects. Compr. Rev. Food Sci. Food Saf. 2016, 15, 3–15. [Google Scholar] [CrossRef]
- Majid, I.; Ahmad Nayik, G.; Mohammad Dar, S.; Nanda, V. Novel Food Packaging Technologies: Innovations and Future Prospective. J. Saudi Soc. Agric. Sci. 2018, 17, 454–462. [Google Scholar] [CrossRef]
- Fadiji, T.; Rashvand, M.; Daramola, M.O.; Iwarere, S.A. A Review on Antimicrobial Packaging for Extending the Shelf Life of Food. Processes 2023, 11, 590. [Google Scholar] [CrossRef]
- Jideani, V.A.; Vogt, K. Antimicrobial Packaging for Extending the Shelf Life of Bread—A Review. Crit. Rev. Food Sci. Nutr. 2016, 56, 1313–1324. [Google Scholar] [CrossRef]
- Coban, H.B. Organic Acids as Antimicrobial Food Agents: Applications and Microbial Productions. Bioprocess. Biosyst. Eng. 2020, 43, 569–591. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Kim, J.Y.; Lee, Y.S. Phenolic Compounds in Active Packaging and Edible Films/Coatings: Natural Bioactive Molecules and Novel Packaging Ingredients. Molecules 2022, 27, 7513. [Google Scholar] [CrossRef] [PubMed]
- Coiai, S.; Campanella, B.; Paulert, R.; Cicogna, F.; Bramanti, E.; Lazzeri, A.; Pistelli, L.; Coltelli, M.-B. Rosmarinic Acid and Ulvan from Terrestrial and Marine Sources in Anti-Microbial Bionanosystems and Biomaterials. Appl. Sci. 2021, 11, 9249. [Google Scholar] [CrossRef]
- Baite, T.N.; Purkait, M.K.; Mandal, B. Synthesis of Lignin from Waste Leaves and Its Potential Application for Bread Packaging: A Waste Valorization Approach. Int. J. Biol. Macromol. 2023, 235, 123880. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Fortunati, E.; Dominici, F.; Giovanale, G.; Mazzaglia, A.; Balestra, G.M.; Kenny, J.M.; Puglia, D. Effect of Cellulose and Lignin on Disintegration, Antimicrobial and Antioxidant Properties of PLA Active Films. Int. J. Biol. Macromol. 2016, 89, 360–368. [Google Scholar] [CrossRef] [PubMed]
- Sachdeva, A.; Vashist, S.; Chopra, R.; Puri, D. Antimicrobial Activity of Active Packaging Film to Prevent Bread Spoilage. Int. J. Food Sci. Nutr. 2017, 2, 29–37. [Google Scholar]
- Wang, L.; Zhang, Y.; Xing, Q.; Xu, J.; Li, L. Quality and Microbial Diversity of Homemade Bread Packaged in Cinnamaldehyde Loaded Poly(Lactic Acid)/Konjac Glucomannan/Wheat Gluten Bilayer Film during Storage. Food Chem. 2023, 402, 134259. [Google Scholar] [CrossRef]
- Nionelli, L.; Wang, Y.; Pontonio, E.; Immonen, M.; Rizzello, C.G.; Maina, H.N.; Katina, K.; Coda, R. Antifungal Effect of Bioprocessed Surplus Bread as Ingredient for Bread-Making: Identification of Active Compounds and Impact on Shelf-Life. Food Control 2020, 118, 107437. [Google Scholar] [CrossRef]
- Panariello, L.; Coltelli, M.-B.; Buchignani, M.; Lazzeri, A. Chitosan and Nano-Structured Chitin for Biobased Anti-Microbial Treatments onto Cellulose Based Materials. Eur. Polym. J. 2019, 113, 328–339. [Google Scholar] [CrossRef]
- Panariello, L.; Coltelli, M.-B.; Hadrich, A.; Braca, F.; Fiori, S.; Haviv, A.; Miketa, F.; Lazzeri, A.; Staebler, A.; Gigante, V.; et al. Antimicrobial and Gas Barrier Crustaceans and Fungal Chitin-Based Coatings on Biodegradable Bioplastic Films. Polymer 2022, 14, 5211. [Google Scholar] [CrossRef]
- Malhotra, B.; Keshwani, A.; Kharkwal, H. Antimicrobial Food Packaging: Potential and Pitfalls. Front. Microbiol. 2015, 6, 611. [Google Scholar] [CrossRef]
- Motelica, L.; Ficai, D.; Ficai, A.; Oprea, O.C.; Kaya, D.A.; Andronescu, E. Biodegradable Antimicrobial Food Packaging: Trends and Perspectives. Foods 2020, 9, 1438. [Google Scholar] [CrossRef] [PubMed]
- Rangaraj, V.M.; Rambabu, K.; Banat, F.; Mittal, V. Natural Antioxidants-Based Edible Active Food Packaging: An Overview of Current Advancements. Food Biosci. 2021, 43, 101251. [Google Scholar] [CrossRef]
- Nanditha, B.; Prabhasankar, P. Antioxidants in Bakery Products: A Review. Crit. Rev. Food Sci. Nutr. 2008, 49, 1–27. [Google Scholar] [CrossRef]
- Cicogna, F.; Passaglia, E.; Benedettini, M.; Oberhauser, W.; Ishak, R.; Signori, F.; Coiai, S. Rosmarinic and Glycyrrhetinic Acid-Modified Layered Double Hydroxides as Functional Additives for Poly(Lactic Acid)/Poly(Butylene Succinate) Blends. Molecules 2023, 28, 347. [Google Scholar] [CrossRef] [PubMed]
- Lahaye, M.; Robic, A. Structure and Functional Properties of Ulvan, a Polysaccharide from Green Seaweeds. Biomacromolecules 2007, 8, 1765–1774. [Google Scholar] [CrossRef] [PubMed]
- Cindana Mo’o, F.R.; Wilar, G.; Devkota, H.P.; Wathoni, N. Ulvan, a Polysaccharide from Macroalga Ulva Sp.: A Review of Chemistry, Biological Activities and Potential for Food and Biomedical Applications. Appl. Sci. 2020, 10, 5488. [Google Scholar] [CrossRef]
- Kidgell, J.T.; Magnusson, M.; de Nys, R.; Glasson, C.R.K. Ulvan: A Systematic Review of Extraction, Composition and Function. Algal Res. 2019, 39, 101422. [Google Scholar] [CrossRef]
- Li, C.; Tang, T.; Du, Y.; Jiang, L.; Yao, Z.; Ning, L.; Zhu, B. Ulvan and Ulva Oligosaccharides: A Systematic Review of Structure, Preparation, Biological Activities and Applications. Bioresour. Bioprocess. 2023, 10, 66. [Google Scholar] [CrossRef]
- Gomaa, M.; Al-Badaani, A.A.; Hifney, A.F.; Adam, M.S. Utilization of Cellulose and Ulvan from the Green Seaweed Ulva Lactuca in the Development of Composite Edible Films with Natural Antioxidant Properties. J. Appl. Phycol. 2022, 34, 2615–2626. [Google Scholar] [CrossRef]
- Ramu Ganesan, A.; Shanmugam, M.; Bhat, R. Producing Novel Edible Films from Semi Refined Carrageenan (SRC) and Ulvan Polysaccharides for Potential Food Applications. Int. J. Biol. Macromol. 2018, 112, 1164–1170. [Google Scholar] [CrossRef] [PubMed]
- Burfield, T. Safety of Essential Oils. Int. J. Aromather. 2000, 10, 16–29. [Google Scholar] [CrossRef]
- Dima, C.; Dima, S. Essential Oils in Foods: Extraction, Stabilization, and Toxicity. Curr. Opin. Food Sci. 2015, 5, 29–35. [Google Scholar] [CrossRef]
- Food and Drug Administration. Code of Federal Regulations 182.20—Essential Oils, Oleoresins (Solvent-Free), and Natural Extractives (Including Distillates); Food and Drug Administration: Silver Spring, MD, USA, 2012.
- Romeo, F.V.; De Luca, S.; Piscopo, A.; Poiana, M. Antimicrobial Effect of Some Essential Oils. J. Essent. Oil Res. 2008, 20, 373–379. [Google Scholar] [CrossRef]
- Lv, F.; Liang, H.; Yuan, Q.; Li, C. In Vitro Antimicrobial Effects and Mechanism of Action of Selected Plant Essential Oil Combinations against Four Food-Related Microorganisms. Food Res. Int. 2011, 44, 3057–3064. [Google Scholar] [CrossRef]
- El-Said, H.; Ashgar, S.S.; Bader, A.; AlQathama, A.; Halwani, M.; Ascrizzi, R.; Flamini, G. Essential Oil Analysis and Antimicrobial Evaluation of Three Aromatic Plant Species Growing in Saudi Arabia. Molecules 2021, 26, 959. [Google Scholar] [CrossRef]
- Wogiatzi, E.; Gougoulias, N.; Papachatzis, A.; Vagelas, I.; Chouliaras, N. Chemical Composition and Antimicrobial Effects of Greek Origanum Species Essential Oil. Biotechnol. Biotechnol. Equip. 2009, 23, 1322–1324. [Google Scholar] [CrossRef]
- Ghabraie, M.; Vu, K.D.; Tata, L.; Salmieri, S.; Lacroix, M. Antimicrobial Effect of Essential Oils in Combinations against Five Bacteria and Their Effect on Sensorial Quality of Ground Meat. LWT Food Sci. Technol. 2016, 66, 332–339. [Google Scholar] [CrossRef]
- Leonelli Pires de Campos, A.C.; Saldanha Nandi, R.D.; Scandorieiro, S.; Gonçalves, M.C.; Reis, G.F.; Dibo, M.; Medeiros, L.P.; Panagio, L.A.; Fagan, E.P.; Takayama Kobayashi, R.K.; et al. Antimicrobial Effect of Origanum vulgare (L.) Essential Oil as an Alternative for Conventional Additives in the Minas Cheese Manufacture. LWT 2022, 157, 113063. [Google Scholar] [CrossRef]
- Djenane, D.; Yangüela, J.; Amrouche, T.; Boubrit, S.; Boussad, N.; Roncalés, P. Chemical Composition and Antimicrobial Effects of Essential Oils of Eucalyptus globulus, Myrtus communis and Satureja hortensis against Escherichia coli O157:H7 and Staphylococcus Aureus in Minced Beef. Food Sci. Technol. Int. 2011, 17, 505–515. [Google Scholar] [CrossRef]
- Klein, G.; Rüben, C.; Upmann, M. Antimicrobial Activity of Essential Oil Components against Potential Food Spoilage Microorganisms. Curr. Microbiol. 2013, 67, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Suhr, K.I.; Nielsen, P.V. Antifungal Activity of Essential Oils Evaluated by Two Different Application Techniques against Rye Bread Spoilage Fungi. J. Appl. Microbiol. 2003, 94, 665–674. [Google Scholar] [CrossRef] [PubMed]
- Mani López, E.; Valle Vargas, G.P.; Palou, E.; López Malo, A. Penicillium expansum Inhibition on Bread by Lemongrass Essential Oil in Vapor Phase. J. Food Prot. 2018, 81, 467–471. [Google Scholar] [CrossRef] [PubMed]
- Krisch, J.; Rentskenhand, T.; Horváth, G.; Vágvölgyi, C. Acta Biologica Szegediensis Activity of Essential Oils in Vapor Phase against Bread Spoilage Fungi. Acta Biol. Szeged. 2013, 57, 9–12. [Google Scholar]
- Passarinho, A.T.P.; Dias, N.F.; Camilloto, G.P.; Cruz, R.S.; Otoni, C.G.; Moraes, A.R.F.; Soares, N.D.F.F. Sliced Bread Preservation through Oregano Essential Oil-Containing Sachet. J. Food Process Eng. 2014, 37, 53–62. [Google Scholar] [CrossRef]
- Otoni, C.G.; Pontes, S.F.; Medeiros, E.A.; Soares, N.D.F. Edible Films from Methylcellulose and Nanoemulsions of Clove Bud (Syzygium aromaticum) and Oregano (Origanum vulgare) Essential Oils as Shelf Life Extenders for Sliced Bread. J. Agric. Food Chem. 2014, 62, 5214–5219. [Google Scholar] [CrossRef] [PubMed]
- Balaguer, M.P.; Lopez-Carballo, G.; Catala, R.; Gavara, R.; Hernandez-Munoz, P. Antifungal Properties of Gliadin Films Incorporating Cinnamaldehyde and Application in Active Food Packaging of Bread and Cheese Spread Foodstuffs. Int. J. Food Microbiol. 2013, 166, 369–377. [Google Scholar] [CrossRef]
- Lopes, F.A.; De Fátima, N.; Soares, F.; De Cássia, C.; Lopes, P.; Azevedo Da Silva, W.; Carlos, J.; Júnior, B.; Antonio, E.; Medeiros, A. Conservation of Bakery Products through Cinnamaldehyde Antimicrobial Films. Packag. Technol. Sci. 2014, 27, 293–302. [Google Scholar] [CrossRef]
- Gutiérrez, L.; Sánchez, C.; Batlle, R.; Nerín, C. New Antimicrobial Active Package for Bakery Products. Trends Food Sci. Technol. 2009, 20, 92–99. [Google Scholar] [CrossRef]
- Suhr, K.I.; Nielsen, P.V. Inhibition of Fungal Growth on Wheat and Rye Bread by Modified Atmosphere Packaging and Active Packaging Using Volatile Mustard Essential Oil. J. Food Sci. 2005, 70, M37–M44. [Google Scholar] [CrossRef]
- Ju, J.; Chen, X.; Xie, Y.; Yu, H.; Guo, Y.; Cheng, Y.; Qian, H.; Yao, W. Application of Essential Oil as a Sustained Release Preparation in Food Packaging. Trends Food Sci. Technol. 2019, 92, 22–32. [Google Scholar] [CrossRef]
- Sharafi, H.; Divsalar, E.; Rezaei, Z.; Liu, S.-Q.; Moradi, M. The Potential of Postbiotics as a Novel Approach in Food Packaging and Biopreservation: A Systematic Review of the Latest Developments. Crit. Rev. Food Sci. Nutr. 2023, 1–31. [Google Scholar] [CrossRef] [PubMed]
- Zapaśnik, A.; Sokołowska, B.; Bryła, M. Role of Lactic Acid Bacteria in Food Preservation and Safety. Foods 2022, 11, 1283. [Google Scholar] [CrossRef] [PubMed]
- Salminen, S.; Collado, M.C.; Endo, A.; Hill, C.; Lebeer, S.; Quigley, E.M.M.; Sanders, M.E.; Shamir, R.; Swann, J.R.; Szajewska, H.; et al. The International Scientific Association of Probiotics and Prebiotics (ISAPP) Consensus Statement on the Definition and Scope of Postbiotics. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 649–667. [Google Scholar] [CrossRef] [PubMed]
- Moradi, M.; Kousheh, S.A.; Almasi, H.; Alizadeh, A.; Guimarães, J.T.; Yılmaz, N.; Lotfi, A. Postbiotics Produced by Lactic Acid Bacteria: The next Frontier in Food Safety. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3390–3415. [Google Scholar] [CrossRef]
- El oirdi, S.; Lakhlifi, T.; Bahar, A.A.; Yatim, M.; Rachid, Z.; Belhaj, A. Isolation and Identification of Lactobacillus Plantarum 4F, a Strain with High Antifungal Activity, Fungicidal Effect, and Biopreservation Properties of Food. J. Food Process Preserv. 2021, 45, e15517. [Google Scholar] [CrossRef]
- Muhialdin, B.J.; Hassan, Z.; Sadon, S.K. Antifungal Activity of Lactobacillus fermentum Te007, Pediococcus pentosaceus Te010, Lactobacillus pentosus G004, and L. paracasi D5 on Selected Foods. J. Food Sci. 2011, 76, M493–M499. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Nie, W.; Xu, J.; Zhang, H.; Liang, X.; Chen, Z. Characterization of Antifungal Cyclic Dipeptides of Lacticaseibacillus paracasei ZX1231 and Active Packaging Film Prepared with Its Cell-Free Supernatant and Bacterial Nanocellulose. Food Res. Int. 2022, 162, 112024. [Google Scholar] [CrossRef]
- Galić, K.; Ćurić, D.; Gabrić, D. Shelf Life of Packaged Bakery Goods—A Review. Crit. Rev. Food Sci. Nutr. 2009, 49, 405–426. [Google Scholar] [CrossRef]
- Pasqualone, A. Bread Packaging: Features and Functions. In Flour and Breads and Their Fortification in Health and Disease Prevention; Academic Press: Cambridge, MA, USA, 2019; pp. 211–222. [Google Scholar] [CrossRef]
- Nilsen-Nygaard, J.; Fernández, E.N.; Radusin, T.; Rotabakk, B.T.; Sarfraz, J.; Sharmin, N.; Sivertsvik, M.; Sone, I.; Pettersen, M.K. Current Status of Biobased and Biodegradable Food Packaging Materials: Impact on Food Quality and Effect of Innovative Processing Technologies. Compr. Rev. Food Sci. Food Saf. 2021, 20, 1333–1380. [Google Scholar] [CrossRef]
- Perera, K.Y.; Jaiswal, A.K.; Jaiswal, S. Biopolymer-Based Sustainable Food Packaging Materials: Challenges, Solutions, and Applications. Foods 2023, 12, 2422. [Google Scholar] [CrossRef]
- Reichert, C.L.; Bugnicourt, E.; Coltelli, M.B.; Cinelli, P.; Lazzeri, A.; Canesi, I.; Braca, F.; Martínez, B.M.; Alonso, R.; Agostinis, L.; et al. Bio-Based Packaging: Materials, Modifications, Industrial Applications and Sustainability. Polymers 2020, 12, 1558. [Google Scholar] [CrossRef]
- Vázquez, A.; Foresti, M.L.; Cyras, V. Production, Chemistry and Degradation of Starch-Based Polymers. In Biopolymers—New Materials for Sustainable Films and Coatings; Wiley: Hoboken, NJ, USA, 2011; pp. 15–42. ISBN 9780470683415. [Google Scholar]
- Jiang, T.; Duan, Q.; Zhu, J.; Liu, H.; Yu, L. Starch-Based Biodegradable Materials: Challenges and Opportunities. Adv. Ind. Eng. Polym. Res. 2020, 3, 8–18. [Google Scholar] [CrossRef]
- Navasingh, R.J.H.; Gurunathan, M.K.; Nikolova, M.P.; Królczyk, J.B. Sustainable Bioplastics for Food Packaging Produced from Renewable Natural Sources. Polymer 2023, 15, 3760. [Google Scholar] [CrossRef]
- Kechichian, V.; Ditchfield, C.; Veiga-Santos, P.; Tadini, C.C. Natural Antimicrobial Ingredients Incorporated in Biodegradable Films Based on Cassava Starch. LWT Food Sci. Technol. 2010, 43, 1088–1094. [Google Scholar] [CrossRef]
- Jha, P. Effect of Grapefruit Seed Extract Ratios on Functional Properties of Corn Starch-Chitosan Bionanocomposite Films for Active Packaging. Int. J. Biol. Macromol. 2020, 163, 1546–1556. [Google Scholar] [CrossRef] [PubMed]
- Romainor, A.N.; Chin, S.F.; Lihan, S. Antimicrobial Starch-Based Film for Food Packaging Application. Starch Stärke 2022, 74, 2100207. [Google Scholar] [CrossRef]
- Promhuad, K.; Bumbudsanpharoke, N.; Wadaugsorn, K.; Sonchaeng, U.; Harnkarnsujarit, N. Maltol-Incorporated Acetylated Cassava Starch Films for Shelf-Life-Extension Packaging of Bakery Products. Polymer 2022, 14, 5342. [Google Scholar] [CrossRef]
- Araújo, M.N.P.; Grisi, C.V.B.; Duarte, C.R.; de Almeida, Y.M.B.; Vinhas, G.M. Active Packaging of Corn Starch with Pectin Extract and Essential Oil of Turmeric Longa Linn: Preparation, Characterization and Application in Sliced Bread. Int. J. Biol. Macromol. 2023, 226, 1352–1359. [Google Scholar] [CrossRef] [PubMed]
- Syafiq, R.; Sapuan, S.M.; Zuhri, M.Y.M.; Ilyas, R.A.; Nazrin, A.; Sherwani, S.F.K.; Khalina, A. Antimicrobial Activities of Starch-Based Biopolymers and Biocomposites Incorporated with Plant Essential Oils: A Review. Polymer 2020, 12, 2403. [Google Scholar] [CrossRef] [PubMed]
- Putranda, Y. Impact of Biobased Packaging Materials on Quality of Fully-Baked Frozen Bread. Master Thesis, Lund University, Lund, Sweden, 2017. [Google Scholar]
- Rajeswari, A.; Christy, E.J.S.; Swathi, E.; Pius, A. Fabrication of Improved Cellulose Acetate-Based Biodegradable Films for Food Packaging Applications. Environ. Chem. Ecotoxicol. 2020, 2, 107–114. [Google Scholar] [CrossRef]
- Yaradoddi, J.S.; Banapurmath, N.R.; Ganachari, S.V.; Soudagar, M.E.M.; Mubarak, N.M.; Hallad, S.; Hugar, S.; Fayaz, H. Biodegradable Carboxymethyl Cellulose Based Material for Sustainable Packaging Application. Sci. Rep. 2020, 10, 21960. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Ding, H.; Puglia, D.; Kenny, J.M.; Liu, T.; Guo, J.; Wang, Q.; Ou, R.; Xu, P.; Ma, P.; et al. Bio-Renewable Polymers Based on Lignin-Derived Phenol Monomers: Synthesis, Applications, and Perspectives. SusMat 2022, 2, 535–568. [Google Scholar] [CrossRef]
- Avella, A.; Ruda, M.; Gioia, C.; Sessini, V.; Roulin, T.; Carrick, C.; Verendel, J.; Lo Re, G. Lignin Valorization in Thermoplastic Biomaterials: From Reactive Melt Processing to Recyclable and Biodegradable Packaging. Chem. Eng. J. 2023, 463, 142245. [Google Scholar] [CrossRef]
- Botta, L.; Titone, V.; Teresi, R.; Scarlata, M.C.; Lo Re, G.; La Mantia, F.P.; Lopresti, F. Biocomposite PBAT/Lignin Blown Films with Enhanced Photo-Stability. Int. J. Biol. Macromol. 2022, 217, 161–170. [Google Scholar] [CrossRef]
- Noshirvani, N.; Ghanbarzadeh, B.; Mokarram, R.R.; Hashemi, M. Novel Active Packaging Based on Carboxymethyl Cellulose-Chitosan-ZnO NPs Nanocomposite for Increasing the Shelf Life of Bread. Food Packag. Shelf Life 2017, 11, 106–114. [Google Scholar] [CrossRef]
- Soares, N.F.F.; Rutishauser, D.M.; Melo, N.; Cruz, R.S.; Andrade, N.J. Inhibition of Microbial Growth in Bread through Active Packaging. Packag. Technol. Sci. 2002, 15, 129–132. [Google Scholar] [CrossRef]
- Fernandes, F.G.; Grisi, C.V.B.; Costa Araújo, R.; Botrel, D.A.; Sousa, S. Active Cellulose Acetate-oregano Essential Oil Films to Conservation of Hamburger Buns: Antifungal, Analysed Sensorial and Mechanical Properties. Packag. Technol. Sci. 2022, 35, 175–182. [Google Scholar] [CrossRef]
- Aliotta, L.; Cinelli, P.; Coltelli, M.B.; Righetti, M.C.; Gazzano, M.; Lazzeri, A. Effect of Nucleating Agents on Crystallinity and Properties of Poly (Lactic Acid) (PLA). Eur. Polym. J. 2017, 93, 822–832. [Google Scholar] [CrossRef]
- Rojas, A.; Velásquez, E.; Vidal, C.P.; Guarda, A.; Galotto, M.J.; de Dicastillo, C.L. Active PLA Packaging Films: Effect of Processing and the Addition of Natural Antimicrobials and Antioxidants on Physical Properties, Release Kinetics, and Compostability. Antioxidants 2021, 10, 1976. [Google Scholar] [CrossRef]
- Suwanamornlert, P.; Kerddonfag, N.; Sane, A.; Chinsirikul, W.; Zhou, W.; Chonhenchob, V. Poly(Lactic Acid)/Poly(Butylene-Succinate-Co-Adipate) (PLA/PBSA) Blend Films Containing Thymol as Alternative to Synthetic Preservatives for Active Packaging of Bread. Food Packag. Shelf Life 2020, 25, 100515. [Google Scholar] [CrossRef]
- Lukic, I.; Vulic, J.; Ivanovic, J. Antioxidant Activity of PLA/PCL Films Loaded with Thymol and/or Carvacrol Using ScCO2 for Active Food Packaging. Food Packag. Shelf Life 2020, 26, 100578. [Google Scholar] [CrossRef]
- Altan, A.; Aytac, Z.; Uyar, T. Carvacrol Loaded Electrospun Fibrous Films from Zein and Poly(Lactic Acid) for Active Food Packaging. Food Hydrocoll. 2018, 81, 48–59. [Google Scholar] [CrossRef]
- Cavalli, L.R.; Klein, J.M.; Sandri, I.G.; Brandalise, R. Este Trabajo Se Centró En El Desarrollo de Envases Activos Biodegradables Con Mezclas de Poli (Ácido Láctico) (PLA), Poli (Etileno-Co-Acetato de Vinilo) (EVA), Polietilenglicol (PEG) y Quitosano (QUI). Se Investigaron Las Características Morfológicas Térm. Res. Soc. Dev. 2021, 10, e50010916964. [Google Scholar] [CrossRef]
- Kongkaoroptham, P.; Piroonpan, T.; Pasanphan, W. Chitosan Nanoparticles Based on Their Derivatives as Antioxidant and Antibacterial Additives for Active Bioplastic Packaging. Carbohydr. Polym. 2021, 257, 117610. [Google Scholar] [CrossRef]
- Srisa, A.; Harnkarnsujarit, N. Antifungal Films from Trans-Cinnamaldehyde Incorporated Poly(Lactic Acid) and Poly(Butylene Adipate-Co-Terephthalate) for Bread Packaging. Food Chem. 2020, 333, 127537. [Google Scholar] [CrossRef]
- Klinmalai, P.; Srisa, A.; Laorenza, Y.; Katekhong, W.; Harnkarnsujarit, N. Antifungal and Plasticization Effects of Carvacrol in Biodegradable Poly (Lactic Acid) and Poly(Butylene Adipate Terephthalate) Blend Films for Bakery Packaging. LWT 2021, 152, 112356. [Google Scholar] [CrossRef]
- Natesan, S.; Samuel, J.S.; Srinivasan, A.K. Design and Development of Schiff’s Base (SB)-Modified Polylactic Acid (PLA) Antimicrobial Film for Packaging Applications. Polym. Bull. 2022, 79, 4627–4646. [Google Scholar] [CrossRef]
- Sudesh, K.; Abe, H. Practical Guide to Microbial Polyhydroxyalkanoates; ISmithers: Shropshire, UK, 2010; ISBN 1847351182. [Google Scholar]
- Sharma, P.; Ahuja, A.; Dilsad Izrayeel, A.M.; Samyn, P.; Rastogi, V.K. Physicochemical and Thermal Characterization of Poly (3-Hydroxybutyrate-Co-4-Hydroxybutyrate) Films Incorporating Thyme Essential Oil for Active Packaging of White Bread. Food Control 2022, 133, 108688. [Google Scholar] [CrossRef]
- Mittal, M.; Ahuja, S.; Yadav, A.; Aggarwal, N.K. Development of Poly(Hydroxybutyrate) Film Incorporated with Nano Silica and Clove Essential Oil Intended for Active Packaging of Brown Bread. Int. J. Biol. Macromol. 2023, 233, 123512. [Google Scholar] [CrossRef]
- Bumbudsanpharoke, N.; Wongphan, P.; Promhuad, K.; Leelaphiwat, P.; Harnkarnsujarit, N. Morphology and Permeability of Bio-Based Poly(Butylene Adipate-Co-Terephthalate) (PBAT), Poly(Butylene Succinate) (PBS) and Linear Low-Density Polyethylene (LLDPE) Blend Films Control Shelf-Life of Packaged Bread. Food Control 2022, 132, 108541. [Google Scholar] [CrossRef]
- Petchwattana, N.; Naknaen, P.; Cha-Aim, B.K.; Suksri, C.; Sanetuntikul, J. Controlled Release Antimicrobial Sachet Prepared from Poly(Butylene Succinate)/Geraniol and Ethylene Vinyl Alcohol Coated Paper for Bread Shelf-Life Extension Application. Int. J. Biol. Macromol. 2021, 189, 251–261. [Google Scholar] [CrossRef] [PubMed]
- Kwee, B.; Lim, H.; Thian, S. Effects of Molecular Weight of Chitosan in a Blend with Polycaprolactone and Grapefruit Seed Extract for Active Packaging and Biodegradation. Food Packag. Shelf Life 2022, 34, 100931. [Google Scholar] [CrossRef]
- Oliveira, M.A.; Gonzaga, M.L.C.; Bastos, M.S.R.; Magalhães, H.C.R.; Benevides, S.D.; Furtado, R.F.; Zambelli, R.A.; Garruti, D.S. Packaging with Cashew Gum/Gelatin/Essential Oil for Bread: Release Potential of the Citral. Food Packag. Shelf Life 2020, 23, 100431. [Google Scholar] [CrossRef]
- González-López, M.E.; Calva-Estrada, S.d.J.; Gradilla-Hernández, M.S.; Barajas-Álvarez, P. Current Trends in Biopolymers for Food Packaging: A Review. Front. Sustain. Food Syst. 2023, 7, 1225371. [Google Scholar] [CrossRef]
- Martins, I.E.; Shittu, T.A.; Onabanjo, O.O.; Adesina, A.D.; Soares, A.G.; Okolie, P.I.; Kupoluyi, A.O.; Ojo, O.A.; Obadina, A.O. Effect of Packaging Materials and Storage Conditions on the Microbial Quality of Pearl Millet Sourdough Bread. J. Food Sci. Technol. 2021, 58, 52–61. [Google Scholar] [CrossRef]
- Ghali-Zinoubi, Z. Examining Drivers of Environmentally Conscious Consumer Behavior: Theory of Planned Behavior Extended with Cultural Factors. Sustainability 2022, 14, 8072. [Google Scholar] [CrossRef]
- Tarazona, N.A.; Machatschek, R.; Balcucho, J.; Castro-Mayorga, J.L.; Saldarriaga, J.F.; Lendlein, A. Opportunities and Challenges for Integrating the Development of Sustainable Polymer Materials within an International Circular (Bio)Economy Concept. MRS Energy Sustain. 2022, 9, 28–34. [Google Scholar] [CrossRef]
- Morashti, J.; An, Y.; Jang, H. A Systematic Literature Review of Sustainable Packaging in Supply Chain Management. Sustainability 2022, 14, 4921. [Google Scholar] [CrossRef]
- Prieto-Sandoval, V.; Torres-Guevara, L.E.; García-Díaz, C. Green Marketing Innovation: Opportunities from an Environmental Education Analysis in Young Consumers. J. Clean. Prod. 2022, 363, 132509. [Google Scholar] [CrossRef]
- Agarwal, A.; Shaida, B.; Rastogi, M.; Singh, N.B. Food Packaging Materials with Special Reference to Biopolymers-Properties and Applications. Chem. Afr. 2023, 6, 117–144. [Google Scholar] [CrossRef]
- Joseph, T.M.; Unni, A.B.; Joshy, K.S.; Kar Mahapatra, D.; Haponiuk, J.; Thomas, S. Emerging Bio-Based Polymers from Lab to Market: Current Strategies, Market Dynamics and Research Trends. C 2023, 9, 30. [Google Scholar] [CrossRef]
- Filho, W.L.; Barbir, J.; Abubakar, I.R.; Paço, A.; Stasiskiene, Z.; Hornbogen, M.; Christin Fendt, M.T.; Voronova, V.; Klõga, M. Consumer Attitudes and Concerns with Bioplastics Use: An International Study. PLoS ONE 2022, 17, e0266918. [Google Scholar] [CrossRef] [PubMed]
- C-Bag. Available online: https://Bakeryproduction.Co.Uk/Earth-Wheat-Launch-New-Compostable-Bags-for-Wonky-Bread/ (accessed on 10 December 2023).
- Eureka. Available online: https://www.Packagingdigest.Com/Sustainability/Bread-Company-Goes-Green-Bio-Based-Packaging (accessed on 10 December 2023).
- Amerplast. Available online: https://amerplast.Com/Products-Packaging-Solutions/Food-Packaging-Labels/Amerbakery/ (accessed on 10 December 2023).
- BioPack. Available online: https://www.biopacktech.com/wholesale-price-clear-pla-biodegradable-bakery-bread-bags-for-sale.html (accessed on 10 December 2023).
- BioPack. Available online: https://www.Biopacktech.Com/Food-Safe-Self-Adhesive-Home-Compostable-Cellophane-Baking-Bread-Loaf-Bags.Html (accessed on 10 December 2023).
- ThePureOption. Available online: https://www.Thepureoption.Com/Paper--Pla-Biodegradable-Compostable-Bakery-Bread-Bags-24066-p.Asp (accessed on 10 December 2023).
- Mohanty, A.K.; Wu, F.; Mincheva, R.; Hakkarainen, M.; Raquez, J.-M.; Mielewski, D.F.; Narayan, R.; Netravali, A.N.; Misra, M. Sustainable Polymers. Nat. Rev. Methods Primers 2022, 2, 46. [Google Scholar] [CrossRef]
- Gigante, V.; Aliotta, L.; Dal Pont, B.; Titone, V.; Botta, L.; La Mantia, F.P.; Lazzeri, A. Tailoring Morphology and Mechanical Properties of PLA/PBSA Blends Optimizing the Twin-Screw Extrusion Processing Parameters Aided by a 1D Simulation Software. Polym. Test. 2023, 129, 108294. [Google Scholar] [CrossRef]
- Poyatos-Racionero, E.; Ros-Lis, J.V.; Vivancos, J.-L.; Martínez-Máñez, R. Recent Advances on Intelligent Packaging as Tools to Reduce Food Waste. J. Clean. Prod. 2018, 172, 3398–3409. [Google Scholar] [CrossRef]
- Rodríguez-Parada, L.; Mayuet, P.; Gámez, A. Custom Design of Packaging through Advanced Technologies: A Case Study Applied to Apples. Materials 2019, 12, 467. [Google Scholar] [CrossRef]
- Rodríguez-Parada, L.; Mayuet, P.F.; Gámez, A.J. Evaluation of Reliefs’ Properties on Design of Thermoformed Packaging Using Fused Deposition Modelling Moulds. Materials 2019, 12, 478. [Google Scholar] [CrossRef]
- Boz, Z.; Korhonen, V.; Koelsch Sand, C. Consumer Considerations for the Implementation of Sustainable Packaging: A Review. Sustainability 2020, 12, 2192. [Google Scholar] [CrossRef]
- Moshood, T.D.; Nawanir, G.; Mahmud, F.; Mohamad, F.; Ahmad, M.H.; AbdulGhani, A. Sustainability of Biodegradable Plastics: New Problem or Solution to Solve the Global Plastic Pollution? Curr. Res. Green. Sustain. Chem. 2022, 5, 100273. [Google Scholar] [CrossRef]
- Aliotta, L.; Gigante, V.; Lazzeri, A. Volcanic Ash as Filler in Biocomposites: An Example of Circular Economy in Volcanic Areas. Sustain. Mater. Technol. 2023, 37, e00660. [Google Scholar] [CrossRef]
- Weinstein, J.E.; Dekle, J.L.; Leads, R.R.; Hunter, R.A. Degradation of Bio-Based and Biodegradable Plastics in a Salt Marsh Habitat: Another Potential Source of Microplastics in Coastal Waters. Mar. Pollut. Bull. 2020, 160, 111518. [Google Scholar] [CrossRef]
- Upasen, S.; Wattanachai, P. Packaging to Prolong Shelf Life of Preservative-Free White Bread. Heliyon 2018, 4, e00802. [Google Scholar] [CrossRef]
- Versino, F.; Ortega, F.; Monroy, Y.; Rivero, S.; López, O.V.; García, M.A. Sustainable and Bio-Based Food Packaging: A Review on Past and Current Design Innovations. Foods 2023, 12, 1057. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Chen, W.; Zhu, W.; McClements, D.J.; Liu, X.; Liu, F. A Review of Multilayer and Composite Films and Coatings for Active Biodegradable Packaging. NPJ Sci. Food 2022, 6, 18. [Google Scholar] [CrossRef] [PubMed]
- Alias, A.R.; Wan, M.K.; Sarbon, N.M. Emerging Materials and Technologies of Multi-Layer Film for Food Packaging Application: A Review. Food Control 2022, 136, 108875. [Google Scholar] [CrossRef]
- Vasile, C.; Baican, M. Progresses in Food Packaging, Food Quality, and Safety—Controlled-Release Antioxidant and/or Antimicrobial Packaging. Molecules 2021, 26, 1263. [Google Scholar] [CrossRef] [PubMed]
- Fico, D.; Rizzo, D.; De Carolis, V.; Montagna, F.; Esposito Corcione, C. Sustainable Polymer Composites Manufacturing through 3D Printing Technologies by Using Recycled Polymer and Filler. Polymer 2022, 14, 3756. [Google Scholar] [CrossRef]
- Guillard, V.; Gaucel, S.; Fornaciari, C.; Angellier-Coussy, H.; Buche, P.; Gontard, N. The Next Generation of Sustainable Food Packaging to Preserve Our Environment in a Circular Economy Context. Front. Nutr. 2018, 5, 121. [Google Scholar] [CrossRef]
- Feliciano, R.J.; Guzmán-Luna, P.; Boué, G.; Mauricio-Iglesias, M.; Hospido, A.; Membré, J.-M. Strategies to Mitigate Food Safety Risk While Minimizing Environmental Impacts in the Era of Climate Change. Trends Food Sci. Technol. 2022, 126, 180–191. [Google Scholar] [CrossRef]
Matrix | Additives and/or Active Compounds Added | Bread-Packaging Improvements Registered | Ref. |
---|---|---|---|
CMC | Chitosan/zinc oxide nanoparticles | The antimicrobial properties of chitosan–CMC films were tested, and the shelf life of sliced bread increased from 3 to 35 days. | [171] |
CA | Sodium propionate | Reduced bread mold growth of bread slices. | [172] |
Methylcellulose | Clove oil and oregano nanoemulsions | Inhibition of yeasts and molds in sliced bread stored for 15 days. | [138] |
Cellulose-derived polymer | Cinnamaldehyde | Protection of the bread against aerobic mesophiles, yeast, and mold. | [140] |
CA | Natural additives and oregano essential oil | Improved antifungal properties of hamburger buns. | [173] |
PVA | Lignin | Inhibition of mold growth on bread samples after 3rd day. | [105] |
PLA-Based Matrix | Additives and/or Active Compounds Added | Bread-Packaging Improvements Registered | Ref. |
---|---|---|---|
PLA | Chitosan | Improved capacity to inhibit S. aureus on sliced bread. Moreover, the oxygen permeability and the film elongation at break were also improved. | [180] |
PLA/PBAT | Trans-cinnamaldehyde | Inhibition of mold and yeast growth in sliced bread without altering the sensorial bread properties. | [181] |
PLA/PBSA | Thymol | Inhibition of fungal growth for bread up to 9 days. Moreover, an improvement of thermal and barrier properties of the film was achieved. | [176] |
PLA/PBAT | Carvacrol | The PLA/PBAT ratio was optimized to control the films’ strength, permeability, and release behavior of carvacrol. A delay in the fungal growth and sporulation of Penicillium sp. and Rhizopus on the bread was also achieved. | [182] |
PLA | Schiff | Delayed growth of fungi on bread slices to day 5 compared with the control system. | [183] |
Matrix | Additives and/or Active Compounds Added | Bread-Packaging Improvements Registered | Ref. |
---|---|---|---|
PBAT/PBS | - | The formation of oriented fibrous networks subsequently controlled mechanical and barrier properties of the blend films. Blending PBAT and PBS modified the morphology and permeability of biobased films and increased the shelf life of packaged bread. | [187] |
PBS | Geraniol essential oil | Shelf-life extension study informed that the spoilage of bread stored with an antimicrobial sachet was delayed by more than three weeks. | [188] |
PCL | Grapefruit seed extract/chitosan | Inhibition of the mold growth on packaged bread with film containing >1.0 mL/g grapefruit seed extract after 7 days. | [189] |
Cashew-gum-gelatin film | Carvacrol | Extension of the bread shelf life to 6 days with respect to the 3 days of the control system. | [190] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gigante, V.; Aliotta, L.; Ascrizzi, R.; Pistelli, L.; Zinnai, A.; Batoni, G.; Coltelli, M.-B.; Lazzeri, A. Innovative Biobased and Sustainable Polymer Packaging Solutions for Extending Bread Shelf Life: A Review. Polymers 2023, 15, 4700. https://doi.org/10.3390/polym15244700
Gigante V, Aliotta L, Ascrizzi R, Pistelli L, Zinnai A, Batoni G, Coltelli M-B, Lazzeri A. Innovative Biobased and Sustainable Polymer Packaging Solutions for Extending Bread Shelf Life: A Review. Polymers. 2023; 15(24):4700. https://doi.org/10.3390/polym15244700
Chicago/Turabian StyleGigante, Vito, Laura Aliotta, Roberta Ascrizzi, Laura Pistelli, Angela Zinnai, Giovanna Batoni, Maria-Beatrice Coltelli, and Andrea Lazzeri. 2023. "Innovative Biobased and Sustainable Polymer Packaging Solutions for Extending Bread Shelf Life: A Review" Polymers 15, no. 24: 4700. https://doi.org/10.3390/polym15244700
APA StyleGigante, V., Aliotta, L., Ascrizzi, R., Pistelli, L., Zinnai, A., Batoni, G., Coltelli, M. -B., & Lazzeri, A. (2023). Innovative Biobased and Sustainable Polymer Packaging Solutions for Extending Bread Shelf Life: A Review. Polymers, 15(24), 4700. https://doi.org/10.3390/polym15244700