Post-Polymerization Modification of Fluoropolymers via UV Irradiation in the Presence of a Photoacid Generator
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Instruments
2.2. Synthesis of 4-Vinylbenzyl Glycidyl Ether (VBGE)
2.3. Synthesis of 4-Vinylbenzyl Glycidyl Ether (VBGE) and Pentafluorophenyl Methacrylate (PFMA) Homopolymers
2.4. Synthesis of 4-Vinylbenzyl Glycidyl ether (VBGE) and Pentafluorophenyl Methacrylate (PFMA) Copolymers
2.5. Preparation of Resist Modified Substrates and Photolithography Procedure
2.6. Biomolecule Adsorption Protocol
3. Results and Discussion
3.1. Surface Characterization
3.1.1. FTIR Spectra
3.1.2. Contact Angle Measurements
3.1.3. ToF SIMS Spectra
3.2. Biomolecule Adsorption
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reddy, M.S.B.; Ponnamma, D.; Choudhary, R.; Sadasivuni, K.K. A comparative review of natural and synthetic biopolymer composite scaffolds. Polymers 2021, 13, 1105. [Google Scholar] [CrossRef] [PubMed]
- Perez-Puyana, V.; Jiménez-Rosado, M.; Romero, A.; Guerrero, A. Polymer-based scaffolds for soft-tissue engineering. Polymers 2020, 12, 1566. [Google Scholar] [CrossRef] [PubMed]
- Vanjur, L.; Carzaniga, T.; Casiraghi, L.; Zanchetta, G.; Damin, F.; Sola, L.; Chiari, M.; Buscaglia, M. Copolymer coatings for DNA biosensors: Effect of charges and immobilization chemistries on Yield, Strength and Kinetics of Hybridization. Polymers 2021, 13, 3897. [Google Scholar] [CrossRef] [PubMed]
- Kieviet, B.D.; Schön, P.M.; Vancso, G.J. Stimulus-responsive polymers and other functional polymer surfaces as components in glass microfluidic channels. Lab Chip 2014, 14, 4159–4170. [Google Scholar] [CrossRef]
- Agarwal, R.; García, A.J. Chapter 37-Surface Modification of Biomaterials. In Principles of Regenerative Medicine, 3rd ed.; Atala, A., Lanza, R., Mikos, A.G., Nerem, R., Eds.; Academic Press: Boston, MA, USA, 2019; p. 651. [Google Scholar]
- Lech, A.; Butruk-Raszeja, B.A.; Ciach, T.; Lawniczak-Jablonska, K.; Kuzmiuk, P.; Bartnik, A.; Wachulak, P.; Fiedorowicz, H. Surface modification of PLLA, PTFE and PVDF with extreme ultraviolet (EUV) to enhance cell adhesion. Int. J. Mol. Sci. 2020, 21, 9679. [Google Scholar] [CrossRef]
- Inam, U.A.; Bartnik, A.; Fiedorowicz, H.; Kostecki, J.; Korczyc, B.; Ciach, T.; Brabazon, D. Surface modification of polymers for biocompatibility via exposure to extreme ultraviolet radiation. J. Biomed. Mater. Res. A 2014, 102, 3298–3310. [Google Scholar]
- Poncin-Epaillard, F.; Vrlinic, T.; Debarnot, D.; Mozetic, M.; Coudreuse, A.; Legeay, G.; El Moualij, B.; Zorzi, W. Surface treatment of polymeric materials controlling the adhesion of biomolecules. J. Funct. Biomater. 2012, 3, 528–543. [Google Scholar] [CrossRef] [Green Version]
- Neděla, O.; Slepička, P.; Švorčík, V. Surface modification of polymer substrates for biomedical applications. Materials 2017, 10, 1115. [Google Scholar] [CrossRef]
- Jaganathan, S.K.; Balaji, A.; Vellayappan, M.V.; Subramanian, A.P.; John, A.A.; Asokan, M.K.; Supriyanto, E. Radiation-induced surface modification of polymers for biomaterial application. J. Mater. Sci. 2015, 50, 2007. [Google Scholar] [CrossRef]
- Chu, P.K.; Chen, J.Y.; Wang, L.P.; Huang, N. Plasma-surface modification of biomaterials. Mater. Sci. Eng. R. 2002, 36, 143–206. [Google Scholar] [CrossRef] [Green Version]
- McLeod, D.C.; Tsarevsky, N.V. 4-Vinylphenyl glycidyl ether: Synthesis, RAFT polymerization, and postpolymerization modifications with alcohols. Macromolecules 2016, 49, 1135. [Google Scholar] [CrossRef]
- Heitz, J.; Olbrich, M.; Romanin, C.; Frischauf, I.; Svorcik, V.; Kubova, O.; Peterbauer, T. Photochemical surface modification of polymers for biomedical applications. Proc. SPIE 2006, 6261, 669345. [Google Scholar]
- Shi, T.; Liang, J.; Li, X.; Zhang, C.; Yang, H. Improving the corrosion resistance of aluminum alloy by creating a superhydrophobic surface structure through a two-step process of etching followed by polymer modification. Polymers 2022, 14, 4509. [Google Scholar] [CrossRef] [PubMed]
- Kanioura, A.; Constantoudis, V.; Petrou, P.; Kletsas, D.; Tserepi, A.; Gogolides, E.; Chatzichristidi, M.; Kakabakos, S. Oxygen plasma micro-nanostructured PMMA plates and microfluidics for increased adhesion and proliferation of cancer versus normal cells: The role of surface roughness and disorder. Micro Nano Eng. 2020, 8, 100060. [Google Scholar] [CrossRef]
- Primc, G. Strategies for improved wettability of polyetheretherketone (PEEK) polymers by non-equilibrium plasma treatment. Polymers 2022, 14, 5319. [Google Scholar] [CrossRef] [PubMed]
- Pavli, P.; Petrou, P.S.; Niakoula, D.; Douvas, A.M.; Chatzichristidi, M.; Kakabakos, S.E.; Dimotikali, D.; Argitis, P. Chemical binding of biomolecules to micropatterned epoxy modified surfaces for biosensing applications. Microelectron. Eng. 2009, 86, 1473–1476. [Google Scholar] [CrossRef]
- Heitz, J.; Olbrich, M.; Moritz, S.; Romanin, C.; Svorcik, V.; Bäuerle, D. Surface modification of polymers by UV-irradiation: Applications in micro- and biotechnology. Proc. SPIE 2005, 5958, 620816. [Google Scholar]
- Kourti, D.; Kanioura, A.; Manouras, T.; Vamvakaki, M.; Argitis, P.; Chatzichristidi, M.; Kakabakos, S.; Petrou, P. Photolithographically patterned cell-repellent PEG-b-PTHPMA diblock copolymer for guided cell adhesion and crowth. Macromol. Biosci. 2022, 2022, 2200301. [Google Scholar]
- Ming, Z.; Ruan, X.; Bao, C.; Lin, Q.; Yang, Y.; Zhu, L. Micropatterned Protein for Cell Adhesion through Phototriggered Charge Change in a Polyvinylpyrrolidone Hydrogel. Adv. Funct. Mater. 2017, 27, 1606258. [Google Scholar] [CrossRef]
- Battistella, C.; Yang, Y.; Chen, J.; Klok, H.-A. Synthesis and postpolymerization modification of fluorine-end-labeled poly(pentafluorophenyl methacrylate) obtained via RAFT polymerization. ACS Omega 2018, 3, 9710–9721. [Google Scholar] [CrossRef]
- Gibson, M.I.; Fröhlich, E.; Klok, H.-A. Postpolymerization modification of poly(pentafluorophenyl methacrylate): Synthesis of a diverse water-soluble polymer library. J. Polym. Sci. A 2009, 47, 4332–4345. [Google Scholar] [CrossRef]
- Günay, K.A.; Schüwer, N.; Klok, H.-A. Synthesis and post-polymerization modification of poly(pentafluorophenyl methacrylate) brushes. Polym. Chem. 2012, 3, 2186. [Google Scholar] [CrossRef]
- Rajajeyaganthan, R.; Kessler, F.; de Moura Leal, P.H.; Kuhn, S.; Weibel, D.E. Surface modification of synthetic polymers using UV photochemistry in the presence of reactive vapours. Macromol. Symp. 2011, 299, 175. [Google Scholar] [CrossRef]
- Wieckiewicz, M.; Wolf, E.; Richter, G.; Meissner, H.; Boening, K. New concept of polymethyl methacrylate (PMMA) and polyethylene terephthalate (PET) surface coating by chitosan. Polymers 2016, 8, 132. [Google Scholar] [CrossRef]
- Améduri, B. The promising future of fluoropolymers. Macromol. Chem. Phys. 2020, 221, 1900573. [Google Scholar] [CrossRef] [Green Version]
- Lv, J.; Cheng, Y. Fluoropolymers in biomedical applications: State-of-the-art and future perspectives. Chem. Soc. Rev. 2021, 50, 5435–5467. [Google Scholar] [CrossRef] [PubMed]
- Machairioti, F.; Petrou, P.; Oh, H.T.; Lee, J.K.; Kakabakos, S.; Argitis, P.; Chatzichristidi, M. Bio-orthogonal fluorinated resist for biomolecules patterning applications. Colloid Surf. B Biointerfaces 2019, 178, 208–213. [Google Scholar] [CrossRef]
- Midthun, K.M.; Taylor, P.G.; Newby, C.; Chatzichristidi, M.; Petrou, P.S.; Lee, J.-K.; Kakabakos, S.E.; Baird, B.A.; Ober, C.K. Orthogonal patterning of multiple biomolecules using an organic fluorinated resist and imprint lithography. Biomacromolecules 2013, 14, 993–1002. [Google Scholar] [CrossRef] [Green Version]
- Kang, E.T.; Zhang, Y. Surface Modification of Fluoropolymers via Molecular Design. Adv. Mater. 2000, 12, 1481–1494. [Google Scholar] [CrossRef]
- Francesch, L.; Borros, S.; Knoll, W.; Förch, R. Surface reactivity of pulsed-plasma polymerized pentafluorophenyl methacrylate (PFM) toward amines and proteins in solution. Langmuir 2007, 23, 3927. [Google Scholar] [CrossRef]
- Duque, L.; Queralto, N.; Francesch, L.; Bumbu, G.G.; Borros, S.; Berger, R.; Förch, R. Reactions of plasma-polymerised pentafluorophenyl methacrylate with simple amines. Plasma Proc. Polym. 2010, 7, 915. [Google Scholar] [CrossRef]
- Duque, L.; Menges, B.; Borros, S.; Förch, R. Immobilization of Biomolecules to Plasma Polymerized Pentafluorophenyl Methacrylate. Biomacromolecules 2010, 11, 2818–2823. [Google Scholar] [CrossRef] [PubMed]
- Argitis, P.; Boyatzis, S.; Raptis, I.; Glezos, N.; Hatzakis, M. Post-Exposure Bake Kinetics in Epoxy Novolac-Based Chemically Amplified Resists. ACS Symp. Ser. 1998, 706, 345. [Google Scholar]
- Shaw, J.M.; Gelorme, J.D.; LaBianca, N.C.; Conley, W.E.; Holmes, S.J. Negative photoresists for optical lithography. IBM J. Res. Dev. 1997, 41, 81–94. [Google Scholar] [CrossRef]
Feed Ratio (%mol) a [PFMA]/[VBGE] | Composition (mol%) b [PFMA]/[VBGE] | Mn,SEC c (kg mol−1) | Mw/Mn c | Yield (%) |
---|---|---|---|---|
0/100 | 0/100 | 81.7 | 3.77 | 87 |
100/0 | 100/0 | 58.7 d | 3.14 d | 93 |
50/50 | 48/52 | 93.5 | 3.26 | 90 |
75/25 | 77/23 | 77.2 | 3.46 | 89 |
Polymer | WCA Unexposed (°) | WCA Exposed 40 min (°) |
---|---|---|
PFMA | 99 ± 4 | 98 ± 5 |
VBGE | 66 ± 3 | 50 ± 4 |
PFMA/VBGE 1:1 | 84 ± 4 | 72 ± 3 |
PFMA/VBGE 3:1 | 94 ± 4 | 82 ± 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nika, A.; Gkioka, C.; Machairioti, F.; Bilalis, P.; Xu, J.; Gajos, K.; Awsiuk, K.; Petrou, P.; Chatzichristidi, M. Post-Polymerization Modification of Fluoropolymers via UV Irradiation in the Presence of a Photoacid Generator. Polymers 2023, 15, 493. https://doi.org/10.3390/polym15030493
Nika A, Gkioka C, Machairioti F, Bilalis P, Xu J, Gajos K, Awsiuk K, Petrou P, Chatzichristidi M. Post-Polymerization Modification of Fluoropolymers via UV Irradiation in the Presence of a Photoacid Generator. Polymers. 2023; 15(3):493. https://doi.org/10.3390/polym15030493
Chicago/Turabian StyleNika, Anastasia, Christina Gkioka, Fotini Machairioti, Panayiotis Bilalis, Jiaxi Xu, Katarzyna Gajos, Kamil Awsiuk, Panagiota Petrou, and Margarita Chatzichristidi. 2023. "Post-Polymerization Modification of Fluoropolymers via UV Irradiation in the Presence of a Photoacid Generator" Polymers 15, no. 3: 493. https://doi.org/10.3390/polym15030493
APA StyleNika, A., Gkioka, C., Machairioti, F., Bilalis, P., Xu, J., Gajos, K., Awsiuk, K., Petrou, P., & Chatzichristidi, M. (2023). Post-Polymerization Modification of Fluoropolymers via UV Irradiation in the Presence of a Photoacid Generator. Polymers, 15(3), 493. https://doi.org/10.3390/polym15030493