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Abstract: In this study, a series of three-point bending tests were carried out with notched beam
structures made of polyvinyl alcohol (PVA) fiber-reinforced ultra-high-performance concrete (UHPC)
to study the effect of volume fractions of PVA fibers on the fracture characteristics of the UHPC-PVAs.
Furthermore, in order to meet the increasing demand for time- and cost-saving design methods related
to research and design experimentation for the UHPC structures, a relevant hybrid finite element and
extended bond-based peridynamic numerical modeling approach is proposed to numerically analyze
the fracture behaviors of the UHPC-PVA structures in 3D. In the proposed method, the random
distribution of the fibers is considered according to their corresponding volume fractions. The
predicted peak values of the applied force agree well with the experimental results, which validates
the effectiveness and accuracy of the present method. Both the experimental and numerical results
indicate that, increasing the PVA fiber volume fraction, the strength of the produced UHPC-PVAs
will increase approximately linearly.

Keywords: ultra-high-performance concretes; polyvinyl alcohol fiber; fiber volume fraction; three-
point bending test; extended peridynamics; finite element method

1. Introduction

Ultra-high performance concrete (UHPC) has developed as one of the most promis-
ing types of concrete in the last 25 years. This vanguard product presents both ultra-
high compressive strength and remarkable durability, such as compressive strength of
150–200 MPa [1,2]. The superior performance is achieved by maximizing the packing
density with very fine minerals and reactive powders. Unlike the steel bars in the rein-
forced concrete, the complicated design of the reinforcement layout is not necessary for
UHPC elements.

It is generally accepted that the mechanical properties of UHPC can be remarkably
improved with various types of fibers. The fibers made of steel, glass, polymer (such as PVA,
PVC, PE), carbon, etc., mixed with high strength cement mortar could make the produced
composites present quite different mechanical behaviours in the loading situation [3]. The
performance is much influenced by a few parameters, e.g., the volume fraction and fiber
distribution. Many authors have pointed out that steel fiber orientation can be influenced
by flow patterns of mixture, rheological performance of mixture, casting methods, wall
effect of formworks, extrusion of mixture and external electromagnetic field. Folgar [4]
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revealed that the distribution of steel fibers can be affected by the plastic viscosity and
gradient of flow velocity of fresh mixture. Zhou and Uchida [5] reported that casting UHPC
at the center of a slab with 1.2 m diameter can result in significant difference in steel fiber
orientation value between the edge and center regions of the slab. Each of these factors
could be eliminated or reduced in PVA fiber-reinforced UHPC (UHPC-PVA) material. The
PVA fibers tend to develop very strong chemical bonding force with cement due to the
presence of the hydroxyl group in its molecular chains [6], which causes the material to
have more isotropic behaviour than other types of fiber-reinforced UHPCs. Although the
PVA fiber reinforcement can increase the fracture toughness of concrete, there are still
workability problems [7] to solve; an alcohol-based shrinkage reducing agent (ASRA) was
first made by the authors, as reported in [8,9], with the ice-replaced mixing procedure in
the production of UHPC and UHPC-PVA materials to reduce the shrinkage behavior and
improve the workability.

As a fiber-reinforced composite material, it is essential to test the mechanical perfor-
mance of the UHPC-PVA materials and the fracture behavior of the UHPC-PVA structures
before applying a new type of UHPC-PVA to practical engineering [10,11]. Testing is
the most commonly used method for revealing the mechanical properties of plain and
fiber-reinforced concretes and studying their failure behaviors [12–14]. As reported by
Yoo et al. [15], at low fiber volume fractions (Vf 6 1.0%), the twisted fibers provide the
highest flexural strength, but they exhibit similar strength and poorer toughness than the
straight fibers at a Vf equal to or higher than 1.5%. The three-point bending test on the
notched beam structures is another alternative to study the mechanical performance of
UHPC-PVA structures under flexure loading [9,11]. Critical stress intensity factor, tensile
strength and fracture energy can be estimated from the test results [16,17]. Although the
test method is visual and useful, it has its limitation in consuming a lot of material resources
and time.

In addition to experiments, numerical simulation is another effective and cost-saving
method to analyze the fracture mechanisms of the fiber-reinforced structures and to evaluate
their mechanical properties. In recent decades, numerical studies have been carried on the
fracture characteristics of plain and fiber-reinforced concrete. Most researchers used the
general finite element (FE) software with some modifications to analyze the beams and
slabs made of fiber-reinforced concretes. The earliest numerical study can be found in [18],
where the authors reported the simulation techniques and input parameters required to
accurately simulate the strengthened concrete structures. In [19], researchers also developed
a meso-scale FE model to predict the de-bonding process in fiber-reinforced concrete using
a fixed angle crack model. Chen et al. [20] investigated the effects of various modeling
assumptions on the interfaces between concrete, steel fiber reinforcement and shear stirrups.
These authors also stressed the importance of modeling the fibers’ random distribution
in the composite concrete to achieve good correlation with the measured experimental
results. However, these models were only applicable in the simulations of two dimensional
problems. In [21,22], ABAQUS, a general commercial FEA software, is used to perform
3D simulation of the failure of the fiber-reinforced UHPC structures under compression,
flexural and tension loading by using the built-in concrete plasticity damage (CDP) model.
In general, the existing relevant numerical studies did not present any techniques or
recommendations to describe the crack growth process in fiber-reinforced concretes [23–25].

Peridynamics (PD), first proposed by Silling in 2000 [26], is a newborn non-local
numerical theory, where integro-differential equations are used to describe the mechanical
behavior of continuous media and discontinuities can be considered without singularities.
As the earliest version of peridynamics, the bond-based peridynamics (BB-PD) theory
defines the interaction by pairwise forces acting along the deformed bond, which has a
limitation on the Poisson’s ration of 1/3 for plane stress and 1/4 for plane strain and 3D
problems. Then, state-based peridynamic models were introduced, including ordinary
and non-ordinary versions (OSB-PD and NOSB-PD), to simulate the materials with any
Poisson’s ratio [27–29]. In recent years, PD-based computational methods have been widely
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used to investigate the toughening mechanisms of innovative materials [30–33]. Some
relevant applications of PD-based tools to study the fracture mechanism of fiber-reinforced
concretes can be found in [9,34–41]. However, in the existing literature, the fracture analysis
on the fiber-reinforced concrete structures is only considered in plane stress or plane strain
conditions. In addition, due to its natural non-locality, the PD-based models share the
shortcoming of higher computing costs than those based on the local theory. To improve
the computational efficiency and make use of the flexibilities of the PD approach in the
simulation of fracture problems, coupling to the local models, such as the FE model [42–47],
has become a popular and convenient choice.

The mechanical properties and fracture characteristics of the UHPCs and UHPC-PVAs
produced following the manufacturing procedure reported in [8,9] have been investigated
with the experimental and numerical tools. However, the cases with different PVA fiber
volume fractions were not considered in the authors’ previous works. In this paper,
referring to [9], the three-point bending test is used to evaluate the fracture properties of the
UHPC-PVA materials. Different PVA fiber volume fractions are considered to investigate
the influence on the fracture process of the UHPC-PVA structures. To comprehensively
analyze the fracture behaviors of the UHPC-PVAs, a 3D hybrid FE/PD modeling approach
was developed. Different from that in [9], an extended bond-based peridynamic (XBB-PD)
model [29,48] equipped with an energy-based failure criterion was adopted to overcome
the limitation on the Poisson ratio of the classical BB-PD model.

The main contributions of this article with regard to numerical modeling are as follows:

• The XBB-PD model is adopted to describe the deformation and fracture behaviors of
UHPC-PVA structures without the limitation on the Poisson ratio;

• The PD model is coupled to the FE model to decrease the overall computational costs
and maintains its flexibility in simulating crack problems;

• The discrete-level modeling procedure of the UHPC-PVA materials and structures is
illustrated in detail;

• Three-dimensional simulations are carried out and the numerical results are compared
to the experimental results.

In addition to that, the experimental and numerical results will explain how the
strength of the UHPC-PVAs changes in cases with different volume fractions of PVA fibers.
The study is a supplement to those of [8,9]. The numerical modeling approach introduced
in this paper is more advanced and capable of simulating 3D crack initialization and
propagation with better computational efficiency.

2. Experimental Program
2.1. Preparation of the UHPC-PVA Materials

This study focuses on the effects of the volume fractions of the PVA fiber on the
fracture properties of the UHPC-PVA structures and materials. The UHPCs were prepared
following the same recipe as in [9]. As listed in Table 1, the main ingredients are as fol-
lows: ASTM Type-II Portland cement, sand (approximately 1000–1500 µm in diameter),
fine quartz sand (approximately 150–500 µm in diameter), EBS-S silica fume (approxi-
mately 0.1–0.5 µm in diameter), Sika polycarboxylate superplasticizer (water reducing
ratio ≥ 30%), sodium laurylsulfate and polyoxyethylene nonylphenolether compounded
with alcohol-based shrinkage reducing agent (ASRA, weight ratio of 2%). Alcohol was
used as a solvent to combine two additives (sodium laurylsulfate and polyoxyethylene
nonylphenolether), which can reduce the existence of macro-pores in the hardening ma-
trix [8]. More information on the ingredients can be found in [8,9]. Four cases with different
volume fractions of the PVA fiber (Vf ), 0.5%, 1%, 1.5% and 2%, were considered to produce
the UHPC-PVA materials.
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Table 1. Mixing ratios of main ingredients used in the production of the UHPC-PVA materials.

Items Mixing Ratio

Cement 1
Sand 1

Quartz sand 0.3
Silica fume 0.25

Polycarboxylate Superplasticizer 2.5%
Shrinkage reducing agent 2%

Water 0.2
Ice cube 0.02

A strict procedure described in [9] was carried out in the production of the UHPC-PVA
materials:

• Step 1: Mix the cement, quartz sand, manufactured sand and silica fume with a
prescribed mixing ratio;

• Step 2: Add ice cube and 10% water with superplasticizer and ASRA and mix for
3 min;

• Step 3: Add the remaining 90% water (mixed with PVA fibers) and process the mixture
unceasingly until smooth;

• Step 4: Pour the mixture into a selected mould and vibrate for 3 min on a vibrating
table;

• Step 5: Cure the specimens at room temperature for 48 h before demoulding and then
cure them in a fast curing box in hot water at 90◦C for an additional 72 h.

In the mixing operation, the PVA fibers were mixed with water and then gradually
added. Due to the excellent hydrophilicity, the PVA fibers can be uniformly dispersed into
the hardened matrix.

2.2. Test Procedure

In this study, a series of three-point bending tests are carried out with a notched beam
specimen to evaluate the fracture properties of the produced UHPC-PVA materials. The
geometry of the beam specimen and loading conditions of the test is presented in Figure 1.
The cuboid specimens were produced through the designed moulds with a size of 160 mm
× 40 mm × 40 mm (length × width × thickness) and then cut into the designed beam
specimens with a size of 160 mm × 40mm × 20mm (length × width × thickness). The
notches, with geometric parameters of Cl = 0 mm, 20 mm and 40 mm, were fabricated
by numerically controlled machine tools. All the produced notched beam specimens are
shown in Figure 2a–d. As found in [8,9], the produced UHPCs and UHPC-PVAs have
outstanding stable performance. Therefore, for the sake of saving material, we will use
only one specimen in each case and a total of twelve specimens shown in Figure 2 will be
involved in the experimental study.

100mm

4
0
m

m

160mm

Thickness:20mm

2mm

1
8

m
m

V=2 10-4mm/s

Cl

 

Figure 1. Geometry of the notched beam specimen and the loading conditions of the test.
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(a) Vf = 0.5% (b) Vf = 1%

(c) Vf = 1.5% (d) Vf = 2%

Figure 2. Photos of the notched UHPC-PVA beam specimens used for the three-point bending test.

The tests were carried out on a electromechanical compression testing machine
(WAW1000) shown in Figure 3a. The loading conditions are described as in Figures 1 and 3a.
The loading head forces the upper center of the beam specimens to gradually move
downward at a rate of ∆v = 2× 10−4 mm/s until the crack propagates and penetrates
the specimens.

(a) (b)

Figure 3. The mechanical testing system and the loading head for the three-point bending test.
(a) Mechanical testing system, (b) Loading head for three-point bending test.
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3. Numerical Model

In this section, a 3D hybrid finite element method (FEM) and extended bond-based
peridynamic (XBB-PD) [29,48] modeling approach is introduced and applied to the numeri-
cal fracture analysis of UHPC-PVA materials and structures. Firstly, the governing equa-
tions of the local continuum model and the XBB-PD model are summarized. Subsequently,
the model discretization and numerical implementation, including the discrete-level mod-
eling procedure for the UHPC-PVAs, are described in detail.

3.1. Summary of the Mechanical Models
3.1.1. Governing Equations of the Local Continuum Model

In the classical continuum mechanics, the equation of motion can be expressed as:

ρü = ∇ · σ + b (1)

where ü is the acceleration and σ is the stress tensor, b is the external force density. Under
the assumption of small deformation, the stress tensor can be obtained as:

σ = C : ε (2)

where C is the elasticity tensor, ε is the strain tensor. Considering the definition of strains, if
the components of the continuous displacement field in the x, y and z directions are defined
as u, v and w, respectively, the strain components can be given as:{

ε11 = ∂u
∂x ; ε22 = ∂v

∂y ; ε33 = ∂w
∂z

ε21 = ε12 = ∂v
∂x + ∂u

∂y ; ε32 = ε23 = ∂w
∂y + ∂v

∂z ; ε31 = ε13 = ∂w
∂x + ∂u

∂z
(3)

3.1.2. Extended Bond-Based Peridynamic Model

As shown in Figure 4, a body B, marked as B0 and Bt in the initial and deformed
configurations, governed by the PD model, is usually seen to be composed of a series of
material points. We can assume that x is a point in B interacting with all the other points
over a prescribed domain Hx. If point x′ is a point within the domain Hx, the relative
position of x′ to x in the initial configuration can be described as:

ξ = x′ − x (4)

B0

Bt

x

x'

x'

x

y

0

x'

x

x

x

x'

Figure 4. Schematic diagram of the extended bond-based peridynamic model.

Then, Hx, the so-called neighbourhood, is usually a sphere space in 3D and a circle
surface in 2D, which can be described as a radius of length δ (the horizon radius) and
mathematically defined as:
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Hx = H(x, δ) = {‖ξ‖ ≤ δ : x′ ∈ B} (5)

where ‖·‖ denotes the Euclidean norm.
In the deformed configuration, the points x and x′ will be displaced by u and u′,

respectively. Consequently, the relative displacement vector between the two points can be
given as:

η = u′ − u (6)

and therefore the relative position vector in the deformed configuration can be given as
ξ + η.

In the extended bond-based PD theory, the equation of motion at point x can be
expressed as:

ρü(x, t) =
∫
Hx

f (η, ξ, t)dVx′ + b(x, t) (7)

where ρ is the mass density, ü(x, t) is the acceleration of point x at time instant t, dVx′ is the
mass volume associated with point x′, b(x, t) is the body force density to point x applied by
the external loads. f (η, ξ, t) is the pairwise force density exerted to point x by the deformed
bond, containing two contributions from the longitudinal and tangential deformations (see
Figure 4), which can be expressed by [48]:

f (η, ξ, t) = c`(η, ξ, t)n + κγ(η, ξ, t) (8)

where c and κ are the normal and tangential micro moduli of the bond, `(η, ξ, t) and γ(η, ξ, t)
are the longitudinal and tangential deformations of the bond. n is the unit directional vector
along the deformed bond and its formulae can be given as:

n =
η+ ξ

‖η+ ξ‖ (9)

The expressions of the normal and tangential micro moduli can be obtained from
a comparison with the strain energy of local continuum mechanics for homogeneous
deformation [29]. Their expressions in terms of the elastic constants of Young’s modulus E
and Poisson’s ratio ν of the material can be obtained by:{

c = 6E
πδ4(1−2ν)

κ = 6E(1−4v)
πδ4(1+ν)(1−2ν)

(10)

Referring to [29,48], based on the Cauchy–Born criterion, the relationships between
the local deformations of the bond and the macroscopic strain can be constructed as:

` = n · ε · n (11)

and
γ = n · ε · (I − n⊗ n) (12)

where ε is the strain tensor and I is the second order unit tensor.
Furthermore, the longitudinal deformation can also be formulated based on the geo-

metrical analyses [29]:

` =
1
ξ

η · n (13)

which is more efficient than Equation (11) and in this paper this formulae will be used to
evaluate the longitudinal deformation.

To describe the material failure and crack propagation, a bond failure criterion is
essential for the PD models. The critical bond-stretch criterion is the first introduced and
most commonly used criterion to judge the bond breakage in the classical bond-based and
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state-based PD simulations. However, there are two deformation components in the micro-
constitutive law and a failure criterion associated only with the bond stretch (longitudinal
deformation) will not be able to reflect the effect of the tangential deformation on the failure
behaviours. Thus, inspired by [49], an energy-based failure criterion will be adopted for
the XBB-PD model to simulate the fracture problems.

The strain energy density stored in the deformed bond ξ can be computed by:

w(ξ) = w(`, γ) =
1
2

c`2ξ +
1
2

κγ · γξ (14)

Following the derivations in [48,49], the critical strain energy density of the bond can
be given as:

wc =
4Gc

πδ4 (15)

which means that the bond will be broken when its strain energy density w(ξ) becomes
greater than wc and accordingly, a scalar variable is defined to indicate the connection state
of the bond [50,51]:

%(ξ) =

{
1 , if w(ξ) < wc
0 , otherwise

(16)

Consequently, the damage level at point x can be defined as:

ϕx = 1−
∫
Hx

%(ξ)dVx′∫
Hx

dVx′
(17)

where ϕx ∈ [0, 1] and the cracks are usually identified wherever ϕx > 0.5.

3.2. Discretization and Numerical Implementation

To obtain an acceptable numerical solution, a suitable discretization process is neces-
sary. This section will introduce the numerical discretization of the FE and PD equations
and their coupled modeling strategy for the UHPC-PVA materials and structures. In order
to obtained a quasi-static solution of the coupled model and compare with the experimental
observations, the adaptive dynamic relaxation algorithm is also briefly summarized.

3.2.1. FEM Discretization of the Governing Equations Based on Local Theory

The Galerkin finite element method [52] is adopted here to discretize the governing
equations of the continuum mechanical model. The FE equation of motion can be written
as the following matrix form:

MFEMÜ + KFEMU = F (18)

where MFEM and KFEM are the mass and stiffness matrices of the FE domain. Given the
shape function Nu for the displacement, the stiffness matrices in Equation (18) can be
obtained by:

MFEM =
∫

Ω
NT

u ρNudΩ (19)

and
KFEM =

∫
Ω
(LNu)

T D(LNu)dΩ (20)

in which L is the differential operator defined as:
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L =



∂
∂x 0 0
0 ∂

∂y 0
0 0 ∂

∂z
∂

∂y
∂

∂x 0
0 ∂

∂z
∂

∂y
∂
∂z 0 ∂

∂x


(21)

and D is the elastic matrix given as:

D =
E(1− v)

(1 + v)(1− 2v)



1 v
1−v

v
1−v 0 0 0

v
1−v 1 v

1−v 0 0 0
v

1−v
v

1−v 1 0 0 0
0 0 0 1−2v

2(1−v) 0 0
0 0 0 0 1−2v

2(1−v) 0
0 0 0 0 0 1−2v

2(1−v)


(22)

where E and ν are the Young’s modulus and Poisson’s ratio of the material.

3.2.2. Discretization of the XBB-PD Equations

After discretization, the spatial integrals in the XBB-PD equations will be written into
forms of summation over nodes in the neighbourhood. Then, the equation of motion of
node xi at time t will be:

ρüt
i =

NHi

∑
j=1

f t
(

ξij

)
Vj + bt

i (23)

where NHi is the number of family nodes in xi’s horizon. xj represents xi’s family node and

Vj is its volume. bt
i is the body force density of node xi. f t

(
ξij

)
is the internal force density

exerted to node xi via the deformed bond ξij, which can be computed by:

f t
(

ξij

)
=
[

f ij

]
=
[

f `ij
]
+
[

f γ
ij

]
= c`ij

[
nij
]
+ κ
[
γij

]
(24)

in which `ij and
[
γij

]
are the longitudinal and tangential deformation components of the

bond ξij and
[
nij
]

is the longitudinal unit vector. The two vectors can be defined as:

[
nij
]
= [n1 n2 n3]

T and
[
γij

]
= [γ1 γ2 γ3]

T (25)

if the displacement vectors of nodes xi and xj are given as [U i] =
[
U1

i U2
i U3

i
]T and

[U j] =
[
U1

j U2
j U3

j

]T
. According to Equation (13), the stretch (longitudinal deformation)

of the bond ξij can be obtained by:

`ij =
[
C`

ij

][ U i
U j

]
(26)

where
[
C`

ij

]
can be given as:

[
C`

ij

]
=

1
ξij

[
−n1 −n2 −n3 n1 n2 n3

]
(27)
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Marking the strains at nodes xi and xj as [εi] and [εj], they can be written in vector
forms as:

[εi] =
[
ε1

i ε2
i ε3

i ε12
i ε13

i ε23
i
]T and [εj] =

[
ε1

j ε2
j ε3

j ε12
j ε13

j ε23
j

]T
, (28)

respectively.
According to Equation (12), the tangential deformation vector of the bond ξij can be

obtained by: [
γij

]
=
[
Cγ

ij

][
εij
]

(29)

where
[
Cγ

ij

]
is given as:

[
Cγ

ij

]
=

 n1 − n3
1 −n1n2

2 −n1n2
3 n2 − 2n2

1n2 n3 − 2n2
1n3 −2n1n2n3

−n2
1n2 n2 − n3

2 −n2n2
3 n1 − 2n1n2

2 −2n1n2n3 n3 − 2n2
2n3

−n2
1n3 −n2

2n3 n3 − n3
3 −2n1n2n3 n1 − 2n1n2

3 n2 − 2n2n2
3

 (30)

and
[
εij
]

is the average strain of the bond ξij defined as:

[εij] =
[εi] + [εj]

2
(31)

Based on the above notions, the PD force density exerted to node xi by the bond ξij
can be obtained by:[

f ij

]
= c
[
nij
][

C`
ij

][ U i
U j

]
+

1
2

κ
[

Cγ
ij Cγ

ij

][ εi
εj

]
(32)

Consequently, the equations of motion of the XBB-PD model can be assembled and
written in the following matrix form:

MPDÜ + cN`C`U + κCγE = F (33)

where MPD is the diagonal mass matrix, N`, C` and Cγ are matrices assembled from the
matrices of Equations (25), (27) and (30). Ü, U, E and F are the acceleration, displacement,
strain and force vectors of the nodes, respectively.

As described in Equation (3), the strain components are the spatial partial derivatives
of the displacement field. In the PD framework, the peridynamic differential operator
(PDDO) proposed in [53] can be used to evaluate derivatives. Referring to [48], the global
relationship between the displacement field and the strain field can be written in the
following form:

E = GU (34)

where G is the non-local strain coefficient matrix [48].
Therefore, substitution of Equation (34) into Equation (33) converts the PD equations

of motion into the following concise form:

MPDÜ + KPDU = F (35)

where KPD = cN`C` + κCγG is the assembled stiffness matrix of the XBB-PD model.

3.2.3. Hybrid FEM and PD Modelling Approach for the UHPC-PVA Materials
and Structures

The approach introduced in [9] is adopted here to model the UHPC-PVA materials
and structures, where the interaction between the PVA fibers and the matrix is considered
in the discrete level. The hybrid FEM/PD modeling procedure of UHPC-PVA materials
and structures is described in Figure 5.
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As shown in Figure 5a, the beam specimen is divided into FE and PD domains. Then,
the hybrid model will be generated according to the following steps:

• Step 1: Discretize the FE and PD domains by using the FE mesh and PD grid with the
same grid size; see Figure 5b;

• Step 2: Generate the PD bonds connecting all the FE and PD nodes; see Figure 5c;
• Step 3: Randomly select a certain number of bonds and set their parameters as the

mechanical parameters of the PVA material; then, the rest are the matrix bonds with
the mechanical parameters of the UHPC materials. The obtained model is shown in
Figure 5d. The ratio of the total length of fiber bonds to the total length of all bonds,
which is called the global numerical volume fraction of PVA fibers (Vg

f ), is approxi-
mately equal to the volume fraction of fibers in the modeled UHPC-PVA material;

• Step 4: Determine the final FE/PD model, as shown in Figure 5e, where the reinforce-
ment at the FE and coupling elements is considered based on the local numerical
volume fraction of PVA fibers (V l

f ).

The global numerical volume fraction of PVA fibers can be calculated by:

Vg
f =

Nn
∑

i=1

N f
i

∑
j=1

∥∥∥ξij

∥∥∥
Nn
∑

i=1

Ni
∑

j=1

∥∥∥ξij

∥∥∥ (36)

where Nn is the number of nodes in the discrete model; NHi is the number of xi’s family

nodes, while N f
i is the number of xi’s family nodes connected by the fiber bonds. Conse-

quently, the local numerical volume fraction of PVA fibers at node xi can be obtained by:

V li
f =

N f
i

∑
j=1

∥∥∥ξij

∥∥∥
Ni
∑

j=1

∥∥∥ξij

∥∥∥ (37)

Given the V l
f value at each node, the reinforcement of the PVA fibers on the UHPC

matrix will be expressed by:

Pi = Pm(1−V li
f ) + Pf V li

f (38)

where Pi represents the mechanical parameters at node i; Pm and Pf are the parameters of
the UHPC and PVA materials, respectively. Therefore, the reinforcement of the PVA fibers
on the matrix will be considered in the calculation of the elastic matrix of Equation (22).

The system matrix of the hybrid FEM and PD model can be expressed by:

MCoupÜ + KCoupU = F (39)

Note that, instead of the formation in Equation (19), the mass density matrix of the FE
domain will use a diagonal form to maintain consistency with the PD domain.

3.2.4. Quasi-Static Solution Algorithm

The adaptive dynamic relaxation (ADR) algorithm was first proposed by Underwood
in [54] to obtain the quasi-static solutions of non-linear problems. Later in [45,55–57], the
ADR algorithm was successfully applied to solve the static or quasi-static solutions of
PD models.
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Figure 5. The diagrammatic sketch for the illustration of the hybrid FE/PD modeling procedure of
the UHPC-PVA structures. Note that the size of the grid does not represent the real one used in the
simulations. (a) Modelling schematic of a beam specimen; (b) Step 1: the hybrid FE/PD discretization;
(c) Step 2: PD bond connections for all nodes; (d) Step 3: random selection of fiber bonds; (e) Step 4:
the complete hybrid FE/PD model.

In accordance with our experience in [9], the tests described above adopted a quasi-
static loading process. Therefore, the ADR algorithm will be equipped with the hybrid
FEM/XBB-PD model to analyze the fracture process of the UHPC-PVA beams under the
three-point bending load.

By introducing a damping term, the global governing equation of the hybrid model at
the nth time increment can be written in the following form:

MÜn
+ CdU̇n

+ KUn = Fn (40)
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where M, Cd and K are the fictitious mass, damping and stiffness matrices. F is the external
force vector. Subsequently, the central time difference form will be adopted in the ADR
algorithm and the displacement at the (n + 1)th iteration can be obtained by:

Un+1 = Un + U̇n+1/2∆t (41)

where the velocity at the (n + 1/2)th iteration can be calculated by:

U̇n+1/2
=

M/∆t− 1
2 Cd

M/∆t + 1
2 Cd

U̇n−1/2
+

[F − KUn]∆t
M/∆t + 1

2 Cd
(42)

where ∆t is the time increment.
In order to solve Equation (42) explicitly, a diagonal fictitious mass matrix is required.

Mii is the ith principal value of the fictitious mass matrix M, which needs to satisfy the
following inequality:

Mii >
1
4

∆t2 ∑j

∣∣Kij
∣∣ (43)

where Kij are the elements of the global stiffness matrix K. To simplify the time integral
process, the damping matrix is usually defined as multiples of the fictitious mass matrix:

Cd = cd M (44)

where cd is a system damping coefficient that needs to be updated during the iterations.
The value of cd at the nth iteration can be computed by:

cn
d = 2

√√√√ (Un)TKn
t Un

(Un)TMUn
(45)

where Kn
t is the “local” diagonal tangent stiffness matrix at the nth iteration and its diagonal

entries are defined as:

(Kn
t )ii =

KUn − KUn−1

U̇n−1/2∆t
(46)

Substituting Equation (44) into Equation (42), Equation (42) can be rewritten as follows:

U̇n+1/2
=

2− cn
d ∆t

2 + cn
d ∆t

U̇n−1/2
+

2[F − KUn]∆t(
2 + cn

d ∆t
)

M
(47)

In addition, the iteration starts with:

U̇1/2
=

[
F − KU0]∆t

2M
(48)

3.2.5. The Model Parameters and Settings in the Simulations

In this section, the determination of the discretization and mechanical parameters
needed in the numerical simulations is described.

According to the experimental results in [8,9] and the characteristics of the XBB-
PD model, the mechanical parameters of the produced UHPC material adopted in the
numerical simulations are taken as Young’s modulus: Em = 34.5 GPa; Poisson’s ratio:
νm = 0.1; fracture energy density: Gcm = 90 J/m2 (measured by the approach introduced
in [58]). On the other hand, the mechanical parameters of the PVA materials provided by
the manufacturer are given as Young’s modulus: E f = 100 GPa; Poisson’s ratio: ν f = 0.22;
fracture energy density: Gc f = 8000 J/m2.

In [9], the produced UHPC-PVA materials were seen as a type of composite material.
In order to keep the smoothness of the strain field in the PD simulation of such a com-
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posite material, the horizon radius used for the PD discretization should conform to the
following inequality:

δ 6

√√√√ E f h f h2
m

3µm

(
h f + hm

) (49)

where h f and hm represent the geometrically characteristic lengths of the matrix and
fiber materials; µm is the shear modulus of the matrix material. As we stated in [9], the
geometrically characteristic lengths can be taken as h f = 20 mm and hm = 1.5 mm,
respectively. Given the Young’s modulus of the PVAs E f = 100 GPa and the shear modulus
of the UHPCs µm = Em/(1 + 2νm) = 28.75 GPa, using Equation (49), the horizon radius
should satisfy δ 6 1.558 mm and δ = 1.5 mm could be a convenient choice.

In [9], the m-ratio was taken as m = 5 for the 2D modeling of UHPC-PVA structures.
However, the 3D condition is considered in this paper. For the purpose of compromise
between accuracy and computational cost, the m ratio is adopted here as m = 3, then the
grid size is obtained as ∆x = δ/m = 0.5 mm. The discrete models for the three cases in the
experiments are shown in Figure 6a–c. The number of total nodes is 1,061,613 in the hybrid
models. The discretization information is presented in detail in Table 2.

 
 

 

 

 

 

 

(a) Cl = 0 mm

 
 

 

 

 

 

 

(b) Cl = 20 mm

 
 

 

 

(c) Cl = 40 mm

Figure 6. The discrete models used in the 3D simulations.

The ADR algorithm is sensitive to the value of ∆t used in the time integration [9,45].
In [9], a numerical test was performed with a 2D model to determine the proper value of ∆t
to find the similar quasi-static characteristics for the experimental observations. Referring
to that, ∆t = 5× 10−3s could be the most secure value and will be used in all the 3D
simulations.

In order to compare with the experimental results, four different values of Vf (= 0.5%,
1%, 1.5% and 2%) are considered. Given the loading rate of v = 2× 10−4 mm/s adopted in
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the experiments, the numbers of iterations in the simulations will be 350,000, 400,000 and
500,000 for cases 1, 2 and 3, respectively.

Table 2. Discretization information of the hybrid model for the notched beam specimens.

Case Number of PD Nodes Number of FE Elements Number of Coupling Elements

1 (Cl = 0 mm) 22,263 994,880 4320
2 (Cl = 20 mm) 80,811 937,760 5440
3 (Cl = 40 mm) 135,177 884,720 6480

4. Experimental and Numerical Results
4.1. Experimental Results

The three-point bending tests on the beam specimens shown in Figure 2a–d were
carried out. All the broken specimens are shown in Figures 7a–9a. The variations of the
applied loads versus the central deflections are recorded and plotted in Figures 7b–9b.
The shapes of the central deflection-force diagrams show different characteristics in the
elastic, hardening, softening and failure stages in the cases with different PVA fiber volume
fractions. In contrast, the results of the compression tests [8] and the three-point bending
tests [9] performed with the produced plain UHPC materials showed a typical quasi-brittle
behavior. It seems that, due to the addition of the PVA fibers and with the increase in the
volume fraction, the UHPC-PVA materials gradually change from brittle to ductile. The
significant toughening enhancement phenomena exist in the cases with greater PVA fiber
volume fractions. Figure 10 shows the variations of the peak force values in the tests versus
the volume fractions of PVA fibers mixed in the UHPC-PVAs, describing that the strength
of the produced materials increases approximately linearly with PVA fiber volume fraction.

(a)

 
 

 

 

 

 

 

(b)

Figure 7. The broken beam specimens with Cl = 0 mm and the central deflection-force diagrams.
(a) Broken specimens with Cl = 0 mm; (b) Central deflection-force diagrams.

The scanning electron microscope (SEM) shown in Figure 11a is used here to study
the micro characteristics of the fracture surface in the UHPC-PVA beam specimen after
tests. Figure 11b,c show two SEM micrographs near a PVA fiber and a quartz granule on
the fracture surface. As shown in Figure 11b, during the fracture advancement, there is a
granular peeling phenomenon near the quartzite–cement interface, but the PVA–cement
interface is smooth (see Figure 11c). The difference suggests that the chemical bonding
between the PVA fibers and cement matrix is much stronger than that of quartzite granules.
This also explains why the PVA fibers can reinforce the produced UHPC materials. On the
other hand, as stressed in [9], the PVA fibers were broken at the fracture surfaces and no
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pulling-out phenomena were observed, which justifies the proposed modeling approach
for the produced UHPC-PVA materials and structures.

(a)

 
 

 

 

 

 

 

(b)

Figure 8. The broken beam specimens with Cl = 20 mm and the central deflection-force diagrams.
(a) Broken specimens with Cl = 20 mm; (b) Central deflection-force diagrams.

(a)

 
 

 

 

 

 

 

(b)

Figure 9. The broken beam specimens with Cl = 40 mm and the central deflection-force diagrams.
(a) Broken specimens with Cl = 40 mm; (b) Central deflection-force diagrams.

 
Figure 10. Variations in the peak force values in the tests versus the volume fractions of PVA fibers in
the UHPC-PVAs.
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(c)

Figure 11. SEM micrographs of the fracture surfaces in the broken UHPC-PVA beams. (a) SEM; (b) A
SEM micrograph near a quartz granule; (c) A SEM micrograph near a PVA fiber.

4.2. Numerical Results

The surface crack patterns obtained in the simulations are shown in Figures 12a–14a,
the experimentally observed crack patterns (magenta curves) are also plotted for compari-
son. The 3D crack surfaces in the simulated specimens are shown in Figures A1–A3. The
corresponding central deflection-force diagrams are plotted in Figures 12b–14b. Figure 15
shows the variations of the peak applied force versus the Vf values.

The differences between the surface crack patterns obtained in the experiments and
numerical simulations may be caused by the random distribution of the PVA fibers in the
UHPC-PVA structures. In addition, the damage zones, describing the crack patterns, are
thicker in the cases with greater PVA fiber volume fractions, indicating that more bonds
are broken in those cases. This is caused by the inconsistency between local deformation
and force density due to the reinforcement of the fiber bonds, which is also the reason for
the success of the proposed approach in modeling UHPC-PVA materials. Concerning the
predicted fracture angles and the peak values of applied force, the simulation results agree
well with the experimental results, explaining the adaptability of the proposed modeling
approach in describing the failure and fracture behaviours of the produced UHPC-PVA
materials and structures.
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Figure 12. The crack patterns in the beam specimens with Cl = 0 mm and the central deflection-force
diagrams. (a) Surface crack patterns; (b) Central deflection-force diagrams.
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Figure 13. The crack patterns in the beam specimens with Cl = 20 mm and the central deflection-force
diagrams. (a) Surface crack patterns; (b) Central deflection-force diagrams.
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(b)

Figure 14. The crack patterns in the beam specimens with Cl = 40 mm and the central deflection-force
diagrams. (a) Surface crack patterns; (b) Central deflection-force diagrams.
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Figure 15. Variations in the peak force values in the simulations versus the volume fractions of PVA
fibers in the UHPC-PVAs.

5. Conclusions and Discussions

In this paper, a series of three-point bending tests were carried out with the notched
UHPC-PVA beam structures. Different cases were considered to study the effects of the
PVA fiber volume fractions on the fracture behaviours of the UHPC-PVAs. Subsequently,
in order to track the whole process of fracture advancement in the specimens, a 3D hybrid
FE/PD modeling approach was proposed, where the XBB-PD model in conjunction with
an energy-based failure criterion [48] was adopted to describe the deformation and failure
behaviours of the UHPC-PVAs, removing the limitation on the Poisson ratio in the classical
BB-PD model [9]. The comparison between the numerical solutions and the experimental
results validates the proposed approach and further demonstrates the reliability of the
experimental results.

Based on the above-presented results, we can conclude with the following points:

• With the increasing volume fractions, the PVA fibers show a significantly and linearly
increased enhancement to the UHPC-PVAs (see Figure 10); as the PVA fiber volume
fraction increased from 0.5% to 2%, the strength of the UHPC-PVA materials increased
by 20.7%, 26.3% and 24.3%, respectively, in the cases with Cl = 0, 20 and 40 mm;

• In the experimental deflection-force diagrams of the specimens with a greater PVA
fiber volume fraction, there exist non-negligible yield behaviors and residual strengths
before and after the peak points, reflecting the brittle–ductile transition due to the PVA
fiber reinforcement (see Figures 7–9);

• Due to the randomness of the fibers and initial defect distribution in the produced
UHPC-PVA beam specimens, the crack patterns obtained by simulations show some
differences to those from the experiments, which is reasonable;

• The obvious differences between the numerical crack patterns in the cases with the
same initial cut position and similar structure strengths (shown in Figure 15) indicate
that the proposed approach can reasonably describe the interaction between the fibers
and matrix, as well as the reinforcement of the PVA fibers on the UHPC materials.

Remark: Although the peak values of applied force predicted by the proposed ap-
proach are very close to those obtained by the experiments, the behaviors described by the
numerical deflection-force diagrams are different from all the experimental observations
excepting the cases with Cl = 40 mm and Vf = 0.5%. One of the reasons should be
the use of the ADR algorithm. As reported in [9,45], the quasi-static solutions obtained
by using the ADR algorithm will become closer to the static solutions but this involves
greater computing costs. Another reason for the difference should be the linear micro-
constitutive relationship used to describe the bond behavior. In fact, such a constitutive
relationship is for the prototype microelastic brittle materials. As discussed in [38,39], to
accurately characterize the post-peak mechanical behaviors of ductile materials, the linear
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micro-constitutive relationship is not enough; bilinearity, trilinear or other more advanced
non-liear constitutive relationships with more controlling parameters are needed.

Consequently, more efforts in the development of more appropriate constitutive rela-
tions and solution algorithms considering both the accuracy and computational efficiency
should be made in the future to accurately simulate the mechanical and failure behaviors
of the UHPC-PVA materials.
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Abbreviations
List of Symbols

Cl distance of the initial crack to the middle of the beam specimen
Vf PVA fiber volume fraction
ρ mass density of the material
σ stress tensor
ε strain tensor
C elasticity tensor
x, x′ location vector of material points
u displacement vector
ξ relative position vector of two material points
η relative displacement vector of two material points
ü acceleration vector of material point
b body force density
Hx neighborhood associated with the material point x
f bond force density
c, κ normal and tangential micro moduli of the bond
`, γ longitudinal and tangential deformations of the bond
n unit directional vector along the deformed bond
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δ horizon radius
w strain energy density stored in the deformed bond
wc critical strain energy density of the bond
Gc critical energy release rate for mode I fracture
$ characteristic function describing the connection status of bonds
ϕx damage value at point x
MFE, KFE mass and stiffness matrices of FE equations
Nu shape functions for displacement
L differential operator
D elastic matrix
E, v Young’s modulus and Poisson’s ratio
MPD, KPD mass and stiffness matrices of PD equations
Ü, U̇, U, E, F acceleration, velocity, displacement, strain and force vectors
G non-local strain coefficient matrix
Vg

f global numerical volume fraction of PVA fibers in the discrete model

Vli
f local numerical volume fraction of PVA fibers related to node i

Pm, Pf parameters of the matrix and fiber materials
Pi average parameter at node i
MCoup, KCoup mass and stiffness matrices of coupled model
M, Cd, K fictitious mass, damping and stiffness matrices of the system
∆t time increment
Mii ithprincipal value of the fictitious mass matrix
Kij elements of the global stiffness matrix
cd system damping coefficient
Kn

t local diagonal tangent stiffness matrix at the nth iteration
Em, vm Young’s modulus and Poisson’s ratio of the matrix materials
E f , v f Young’s modulus and Poisson’s ratio of the fiber materials
hm, h f geometrically characteristic lengths of the matrix and fiber materials
∆x grid size
m ratio of the PD horizon radius to the grid size

Appendix A. Numerical Simulation Results: Crack Surfaces in the Beam Specimens

(a) Vf = 0.5% (b) Vf = 1%

(c) Vf = 1.5% (d) Vf = 2%

Figure A1. Damage levels in the simulated UHPC-PVA beam specimens with Cl = 0 mm.
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(a) Vf = 0.5% (b) Vf = 1%

(c) Vf = 1.5% (d) Vf = 2%

Figure A2. Damage levels in the simulated UHPC-PVA beam specimens with Cl = 20 mm.

(a) Vf = 0.5% (b) Vf = 1%

(c) Vf = 1.5% (d) Vf = 2%

Figure A3. Damage levels in the simulated UHPC-PVA beam specimens with Cl = 40 mm.
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