European Database of Explanted UHMWPE Liners from Total Joint Replacements: Correlations among Polymer Modifications, Structure, Oxidation, Mechanical Properties and Lifetime In Vivo
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Explanted UHMWPE Liners
2.2. Preparation of Testing Specimens from UHMWPE Liners
2.3. Infrared Microspectroscopy
2.4. Microindenation Hardness Testing
2.5. Summary: Standardized Data Collection and Processing Protocol
- Collecting and measuring UHMWPE retrievals must be performed manually. The retrievals were obtained from the individual hospitals, as described in Section 2.1. The specimens for the IR and microindentation measurements are prepared according to the procedures in Section 2.2. The IR microspectroscopy and micromechanical properties were measured as designated in Section 2.3 and Section 2.4, respectively.
- IR data processing is automated. From each sample, we measured the IR line profiles (a set of IR spectra as a function of the distance from the articulating surface; Section 2.3) and micromechanical properties (which were measured and evaluated from the central region and the region with the maximum oxidation; Section 2.4). The IR spectra were converted automatically to OI profiles, VI profiles and CI profiles by means of our MPINT package (Appendix A).
- Storing data in a well-defined format means must be performed manually. All participants had the same Excel template into which they had to insert information concerning the analyzed explants. The description of each sample included anonymized patient data (such as age, weight and BMI), the manufacturer’s data concerning the UHMWPE material (such as type of crosslinking, thermal treatment and sterilization) and the surgical data (such as total time of the implant in vivo and reasons for revision). Moreover, an experienced user must check the IR microspectroscopy and microindentation data and insert properly averaged and/or maximal values into the database, as described in Section 2.3 and Section 2.4.
- Data mining is automated. From the previous step, the data were stored in Excel files with the defined format. The number of Excel files corresponded to the number of project participants (at the moment, we have three files from the Czech Republic, Italy and Spain). Our MDBASE package can combine (an arbitrary number of) Excel files (on condition that they have the same structure) into one database and create various standard statistical plots and calculations. The MDBASE package is described in Appendix B, and the structure of the database, with which the MDBASE works, is summarized in Appendix C. The MDBASE software was designed to be as intuitive and user-friendly as possible. All statistical plots in the following sections were created with MDBASE, by means of simple Python scripts, which are available upon request to the first author.
3. Results and Discussion
3.1. Correlation among Oxidation, Crystallinity and Hardness
3.2. Oxidative Degradation vs. UHMWPE Sterilization
3.3. Oxidative Degradation vs. Reasons for TJR Failures
- Wear: an aseptic loosening or highly damaged tissues around TJR;
- Mechanical damage: broken or completely worn UHMWPE liner;
- Infection: strong local infection around the implanted TJR;
- Other: all other reasons, such as luxation or poor stability of the implant.
3.4. Limitations of This Study and Current Version of the Database
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. MPINT—Python Package for Automated Processing of IR Data
Appendix B. MDBASE—Python Package for Automated Data Mining and Plotting
- The joining of an arbitrary number of Excel files with the same format into one database. This makes our project very easy to extend—a new member just creates their own new Excel datafile that is joined to the whole database using the MDBASE package;
Appendix C. Structure of the Database of UHMWPE Retrievals
References
- Cieza, A.; Causey, K.; Kamenov, K.; Hanson, S.W.; Chatterji, S.; Vos, T. Global Estimates of the Need for Rehabilitation Based on the Global Burden of Disease Study 2019: A Systematic Analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 2006–2017. [Google Scholar] [CrossRef] [PubMed]
- Price, A.J.; Longino, D.; Rees, J.; Rout, R.; Pandit, H.; Javaid, K.; Arden, N.; Cooper, C.; Carr, A.J.; Dodd, C.A.F.; et al. Are Pain and Function Better Measures of Outcome than Revision Rates after TKR in the Younger Patient? Knee 2010, 17, 196–199. [Google Scholar] [CrossRef]
- Dakin, H.; Gray, A.; Fitzpatrick, R.; MacLennan, G.; Murray, D. The KAT Trial Group Rationing of Total Knee Replacement: A Cost-Effectiveness Analysis on a Large Trial Data Set. BMJ Open 2012, 2, e000332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katz, J.N.; Arant, K.R.; Loeser, R.F. Diagnosis and Treatment of Hip and Knee Osteoarthritis: A Review. JAMA 2021, 325, 568. [Google Scholar] [CrossRef] [PubMed]
- Arthoplasty Registries Arthroplasty Registries—NORE—EFORT. Available online: https://nore.efort.org/arthroplasty-registries (accessed on 25 November 2022).
- Bracco, P.; Bellare, A.; Bistolfi, A.; Affatato, S. Ultra-High Molecular Weight Polyethylene: Influence of the Chemical, Physical and Mechanical Properties on the Wear Behavior. A Review. Materials 2017, 10, 791. [Google Scholar] [CrossRef]
- Bistolfi, A.; Giustra, F.; Bosco, F.; Sabatini, L.; Aprato, A.; Bracco, P.; Bellare, A. Ultra-High Molecular Weight Polyethylene (UHMWPE) for Hip and Knee Arthroplasty: The Present and the Future. J. Orthop. 2021, 25, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Cerquiglini, A.; Henckel, J.; Hothi, H.; Moser, L.B.; Eskelinen, A.; Hirschmann, M.T.; Hart, A.J. Retrieval Analysis of Contemporary Antioxidant Polyethylene: Multiple Material and Design Changes May Decrease Implant Performance. Knee Surg. Sport. Traumatol. Arthrosc. 2019, 27, 2111–2119. [Google Scholar] [CrossRef]
- Currier, B.H.; Van Citters, D.W.; Currier, J.H.; Carlson, E.M.; Tibbo, M.E.; Collier, J.P. In Vivo Oxidation in Retrieved Highly Crosslinked Tibial Inserts. J. Biomed. Mater. Res. 2013, 101B, 441–448. [Google Scholar] [CrossRef]
- Kurtz, S.M.; Medel, F.J.; MacDonald, D.W.; Parvizi, J.; Kraay, M.J.; Rimnac, C.M. Reasons for Revision of First-Generation Highly Cross-Linked Polyethylenes. J. Arthroplast. 2010, 25, 67–74. [Google Scholar] [CrossRef] [Green Version]
- Spece, H.; Schachtner, J.T.; MacDonald, D.W.; Klein, G.R.; Mont, M.A.; Lee, G.-C.; Kurtz, S.M. Reasons for Revision, Oxidation, and Damage Mechanisms of Retrieved Vitamin E-Stabilized Highly Crosslinked Polyethylene in Total Knee Arthroplasty. J. Arthroplast. 2019, 34, 3088–3093. [Google Scholar] [CrossRef]
- Medel, F.J.; Kurtz, S.M.; Hozack, W.J.; Parvizi, J.; Purtill, J.J.; Sharkey, P.F.; MacDonald, D.; Kraay, M.J.; Goldberg, V.; Rimnac, C.M. Gamma Inert Sterilization: A Solution to Polyethylene Oxidation? J. Bone Jt. Surg.-Am. Vol. 2009, 91, 839–849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Day, J.S.; MacDonald, D.W.; Ramsey, M.L.; Abboud, J.A.; Kurtz, S.M. Quantitative Ultrahigh-Molecular-Weight Polyethylene Wear in Total Elbow Retrievals. J. Shoulder Elb. Surg. 2020, 29, 2364–2374. [Google Scholar] [CrossRef]
- Mathis, D.T.; Schmidli, J.; Hirschmann, M.T.; Amsler, F.; Henckel, J.; Hothi, H.; Hart, A. Comparative Retrieval Analysis of Antioxidant Polyethylene: Bonding of Vitamin-E Does Not Reduce in-Vivo Surface Damage. BMC Musculoskelet. Disord. 2021, 22, 1003. [Google Scholar] [CrossRef] [PubMed]
- Rowell, S.L.; Reyes, C.R.; Hopper, R.H.; Engh, C.A.; Muratoglu, O.K. Do Total Hip Arthroplasty Polyethylene Liners without Free Radicals Oxidize in Vivo or Ex Vivo? J. Biomed. Mater. Res. 2022, 110, 1113–1119. [Google Scholar] [CrossRef] [PubMed]
- Slouf, M.; Arevalo, S.; Vlkova, H.; Gajdosova, V.; Kralik, V.; Pruitt, L. Comparison of Macro-, Micro- and Nanomechanical Properties of Clinically-Relevant UHMWPE Formulations. J. Mech. Behav. Biomed. Mater. 2021, 120, 104205. [Google Scholar] [CrossRef] [PubMed]
- Costa, L.; Luda, M.P.; Trossarelli, L.; Brach del Prever, E.M.; Crova, M.; Gallinaro, P. Oxidation in Orthopaedic UHMWPE Sterilized by Gamma-Radiation and Ethylene Oxide. Biomaterials 1998, 19, 659–668. [Google Scholar] [CrossRef]
- Medel, F.J.; Rimnac, C.M.; Kurtz, S.M. On the Assessment of Oxidative and Microstructural Changes after in Vivo Degradation of Historical UHMWPE Knee Components by Means of Vibrational Spectroscopies and Nanoindentation. J. Biomed. Mater. Res. 2009, 89A, 530–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slouf, M.; Vackova, T.; Nevoralova, M.; Pokorny, D. Micromechanical Properties of One-Step and Sequentially Crosslinked UHMWPEs for Total Joint Replacements. Polym. Test. 2015, 41, 191–197. [Google Scholar] [CrossRef]
- Fulin, P.; Pokorny, D.; Slouf, M.; Nevoralova, M.; Vackova, T.; Dybal, J.; Pilar, J. Quantification of Structural Changes of UHMWPE Components in Total Joint Replacements. BMC Musculoskelet. Disord. 2014, 15, 109. [Google Scholar] [CrossRef] [Green Version]
- Tabor, D. The Hardness of Metals; Oxford Classic Texts in the Physical Sciences; Oxford University Press: Oxford, UK; New York, NY, USA, 1951; ISBN 978-0-598-84515-3. [Google Scholar]
- Oliver, W.C.; Pharr, G.M. Nanoindentation in Materials Research: Past, Present, and Future. MRS Bull. 2010, 35, 897–907. [Google Scholar] [CrossRef]
- Herrmann, K. Instrumented Indentation Test. In Hardness Testing: Principles and Applications; ASM International: Materials Park, OH, USA, 2011; ISBN 978-1-61503-832-9. [Google Scholar]
- Fischer-Cripps, A.C. Nanoindentation; Mechanical Engineering Series; Springer: New York, NY, USA, 2011; ISBN 978-1-4419-9872-9. [Google Scholar]
- Slouf, M.; Pavlova, E.; Krejcikova, S.; Ostafinska, A.; Zhigunov, A.; Krzyzanek, V.; Sowinski, P.; Piorkowska, E. Relations between Morphology and Micromechanical Properties of Alpha, Beta and Gamma Phases of IPP. Polym. Test. 2018, 67, 522–532. [Google Scholar] [CrossRef]
- Slouf, M.; Krajenta, J.; Gajdosova, V.; Pawlak, A. Macromechanical and Micromechanical Properties of Polymers with Reduced Density of Entanglements. Polym. Eng. Sci. 2021, 61, 1773–1790. [Google Scholar] [CrossRef]
- Gajdosova, V.; Strachota, B.; Strachota, A.; Michalkova, D.; Krejcikova, S.; Fulin, P.; Nyc, O.; Brinek, A.; Zemek, M.; Slouf, M. Biodegradable Thermoplastic Starch/Polycaprolactone Blends with Co-Continuous Morphology Suitable for Local Release of Antibiotics. Materials 2022, 15, 1101. [Google Scholar] [CrossRef] [PubMed]
- Zamfirova, G.; Pereña, J.M.; Benavente, R.; Pérez, E.; Cerrada, M.L.; Nedkov, E. Mechanical Properties of Ultra High Molecular Weight Polyethylene Obtained with Different Cocatalyst Systems. Polym. J. 2002, 34, 125–131. [Google Scholar] [CrossRef] [Green Version]
- Bolland, J.L. Kinetics of Olefin Oxidation. Q. Rev. Chem. Soc. 1949, 3, 1. [Google Scholar] [CrossRef]
- Kamel, I.; Finegold, L. A Model for Radiation-Induced Changes in Ultrahigh-Molecular-Weight Polyethylene. J. Polym. Sci. Polym. Phys. Ed. 1985, 23, 2407–2409. [Google Scholar] [CrossRef]
- Zhao, Y.; Luo, Y.; Jiang, B. Effect of Irradiation on Crystallinity and Mechanical Properties of Ultrahigh Molecular Weight Polyethylene. J. Appl. Polym. Sci. 1993, 50, 1797–1801. [Google Scholar] [CrossRef]
- Goldman, M.; Gronsky, R.; Pruitt, L. The Influence of Sterilization Technique and Ageing on the Structure and Morphology of Medical-Grade Ultrahigh Molecular Weight Polyethylene. J. Mater. Sci. Mater. Med. 1998, 9, 207–212. [Google Scholar] [CrossRef]
- Nevoralova, M.; Baldrian, J.; Pospisil, J.; Chodak, I.; Horak, Z. Structure Modification of UHMWPE Used for Total Joint Replacements. J. Biomed. Mater. Res. 2005, 74B, 800–807. [Google Scholar] [CrossRef]
- Slouf, M.; Synkova, H.; Baldrian, J.; Marek, A.; Kovarova, J.; Schmidt, P.; Dorschner, H.; Stephan, M.; Gohs, U. Structural Changes of UHMWPE after E-Beam Irradiation and Thermal Treatment. J. Biomed. Mater. Res. 2008, 85B, 240–251. [Google Scholar] [CrossRef]
- Balta-Calleja, F.J.; Fakirov, S. Microhardness of Crystalline Polymers. In Microhardness of Polymers; Cambridge Solid State Science Series; Cambridge University Press: Cambridge, UK, 2000; ISBN 978-0-521-64218-7. [Google Scholar]
- Flores, A.; Ania, F.; Baltá-Calleja, F.J. From the Glassy State to Ordered Polymer Structures: A Microhardness Study. Polymer 2009, 50, 729–746. [Google Scholar] [CrossRef] [Green Version]
- Fulin, P. The Quality of Articular Surfaces and Its Influence on the Proces of Early Failure of Joint Replacements; Charles University Prague: Prague, Czech Republic, 2020. [Google Scholar]
- Daniel, M.; Rijavec, B.; Dolinar, D.; Pokorný, D.; Iglič, A.; Kralj-Iglič, V. Patient-Specific Hip Geometry Has Greater Effect on THA Wear than Femoral Head Size. J. Biomech. 2016, 49, 3996–4001. [Google Scholar] [CrossRef] [PubMed]
- Vavrik, P.; Landor, I.; Gallo, J.; Koudela, K. Revizní Operace Totálních Náhrad Kolenního Kloubu; Maxdorf: Praha, Czech Republic, 2019; ISBN 978-80-7345-602-3. [Google Scholar]
- Landor, I. Revizní Operace Totálních Náhrad Kyčelního Kloubu; Maxdorf: Praha, Czech Republic, 2012; ISBN 978-80-7345-254-4. [Google Scholar]
- Urdan, T.C. Statistics in Plain English, 4th ed.; Routledge: New York, NY, USA, 2017; ISBN 978-1-138-83833-8. [Google Scholar]
- Balta-Calleja, F.J.; Fakirov, S. Microhardness Determination in Polymeric Materials. In Microhardness of Polymers; Cambridge Solid State Science Series; Cambridge University Press: Cambridge, UK, 2000; ISBN 978-0-521-64218-7. [Google Scholar]
- Kurtz, S.M.; Rimnac, C.M.; Hozack, W.J.; Turner, J.; Marcolongo, M.; Goldberg, V.M.; Kraay, M.J.; Edidin, A.A. In Vivo Degradation of Polyethylene Liners After Gamma Sterilization in Air. J. Bone Jt. Surg. 2005, 87, 815–823. [Google Scholar] [CrossRef] [PubMed]
- McKELLOP, H.; Shen, F.-W.; Lu, B.; Campbell, P.; Salovey, R. Effect of Sterilization Method and Other Modifications on the Wear Resistance of Acetabular Cups Made of Ultra-High Molecular Weight Polyethylene: A Hip-Simulator Study. J. Bone Jt. Surg.-Am. Vol. 2000, 82, 1708–1725. [Google Scholar] [CrossRef]
- Collier, M.B.; Engh, C.A.; McAuley, J.P.; Engh, G.A. Factors Associated with the Loss of Thickness of Polyethylene Tibial Bearings After Knee Arthroplasty. J. Bone Jt. Surg. 2007, 89, 1306–1314. [Google Scholar] [CrossRef]
- Fulin, P.; Pokorny, D.; Slouf, M.; Vacková, T.; Dybal, J.; Sosna, A. Effect of sterilisation with formaldehyde, gamma irradiation and ethylene oxide on the properties of polyethylene joint replacement components. Acta Chir. Orthop. Traumatol. Cech. 2014, 81, 33–39. [Google Scholar]
- Kurtz, S.M. In Vivo Oxidation of UHMWPE. In UHMWPE Biomaterials Handbook: Ultra-High Molecular Weight Polyethylene in Total Joint Replacement and Medical Devices; Elsevier: Amsterdam, The Netherlands; Boston, MA, USA, 2016; ISBN 978-0-323-35401-1. [Google Scholar]
- MacDonald, D.; Hanzlik, J.; Sharkey, P.; Parvizi, J.; Kurtz, S.M. In Vivo Oxidation and Surface Damage in Retrieved Ethylene Oxide-Sterilized Total Knee Arthroplasties. Clin. Orthop. Relat. Res. 2012, 470, 1826–1833. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Slouf, M.; Gajdosova, V.; Dybal, J.; Sticha, R.; Fulin, P.; Pokorny, D.; Mateo, J.; Panisello, J.J.; Canales, V.; Medel, F.; et al. European Database of Explanted UHMWPE Liners from Total Joint Replacements: Correlations among Polymer Modifications, Structure, Oxidation, Mechanical Properties and Lifetime In Vivo. Polymers 2023, 15, 568. https://doi.org/10.3390/polym15030568
Slouf M, Gajdosova V, Dybal J, Sticha R, Fulin P, Pokorny D, Mateo J, Panisello JJ, Canales V, Medel F, et al. European Database of Explanted UHMWPE Liners from Total Joint Replacements: Correlations among Polymer Modifications, Structure, Oxidation, Mechanical Properties and Lifetime In Vivo. Polymers. 2023; 15(3):568. https://doi.org/10.3390/polym15030568
Chicago/Turabian StyleSlouf, Miroslav, Veronika Gajdosova, Jiri Dybal, Roman Sticha, Petr Fulin, David Pokorny, Jesús Mateo, Juan José Panisello, Vicente Canales, Francisco Medel, and et al. 2023. "European Database of Explanted UHMWPE Liners from Total Joint Replacements: Correlations among Polymer Modifications, Structure, Oxidation, Mechanical Properties and Lifetime In Vivo" Polymers 15, no. 3: 568. https://doi.org/10.3390/polym15030568
APA StyleSlouf, M., Gajdosova, V., Dybal, J., Sticha, R., Fulin, P., Pokorny, D., Mateo, J., Panisello, J. J., Canales, V., Medel, F., Bistolfi, A., & Bracco, P. (2023). European Database of Explanted UHMWPE Liners from Total Joint Replacements: Correlations among Polymer Modifications, Structure, Oxidation, Mechanical Properties and Lifetime In Vivo. Polymers, 15(3), 568. https://doi.org/10.3390/polym15030568