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Abstract: The plastic behavior of strengthened haunched beams utilizing carbon fiber-reinforced
polymers (CFRP) was investigated using a probabilistic design that took into account random concrete
properties, CFRP properties, and complementary strain energy values, with the reliability index
serving as a limiting index, as the proposed method considers a novel method that deals with
probabilistic parameters for models with limited plastic behavior designed based on the reliability
index. The data used in this research were gathered and evaluated in a recent study on simply
supported haunched beams reinforced with carbon fiber-reinforced polymers. The purpose of this
research was to use the reliability limitation index for simulated strengthened haunched beams by
taking into account randomness in concrete and CFRP properties and the complementary strain
energy value, which is considered a plastic behavior controller that provides an illustration of the
damage amount within the reinforcement steel bars. The results indicate how randomness affects the
behavior of the presented models, which are chosen to have different numbers of CFRP strips. The
variable randomness affects load and deflection values where the reliability index value increases
as the corresponding load value decrease, reflecting the increased probability of failure in models
subjected to higher loading conditions, while tension concrete damage percentages are reflected in
the damage pattern presented in the results, showing that as the produced load increases, so does the
damage intensity. It is also obvious that the reliability index served as a limitation index while taking
concrete characteristics and complementary strain energy as random variables.

Keywords: reliability index; complementary strain energy; probability; haunched beams; CFRP;
optimum solution

1. Introduction

Economical solutions are significantly important for structural engineers, and for
any solution the safety of the structure should be obtained. Non-prismatic beams, which
may also be called as haunched beams, hold an optimal shape that maximizes the beam
section at the support area while keeping it at the minimum allowed in the mid-span. This
haunched shape is considered to be more economical if compared with normal prismatic
beams at the same provided strength. Therefore, this type of beam has been highlighted by
different research over many years. To accomplish these goals while keeping costs down,
reinforced concrete haunched beams were studied by Haque [1]. Parametric investigations
under gravity loading were performed, and linear and non-linear formulas for 5-noded
line elements were obtained. The beam depth was reduced in the parametric studies due to
changes in haunch angles and lengths. Most reinforced concrete haunched beams cases,
strains, and displacements deviate from the 3◦ haunch angle, according to parametric
research. The non-linear model and solution technique of that research can demonstrate a
haunched beams acceptance level due to residual stress generation of the iterative process.
López-Chavarrıa et al. [2] determined the uses of mathematics to determine the optimum
design of straight-haunched T-section beams made of reinforced concrete by minimizing
the cost of concrete and steel while the geometric qualities serve as the constraints. Positive
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and negative moments at supports, as well as the maximal moment, are all displayed in the
study. The study uses numerical comparisons to examine the relative qualities of T-section
and rectangular beams, showing that the T-beams are more space-efficient, lighter, and less
expensive than the rectangular sections.

Due to the inclusion of heterogenic material characteristics and the cracking behavior
of concrete, the non-linear behavior of RC beams up until the ultimate collapse is a complex
process. Experimental testing is typically used to estimate the behavior of reinforced
concrete elements up until failure, but due to the high expense of testing apparatus and
materials, observations are typically only collected at crucial spots. Behavior prediction
of RC beams is typically carried out using numerical approaches to eliminate destructive
testing, and lower material and labour costs. Therefore, a lot of work has been done on the
non-linear FEA of RC beams under different considerations [3–6].

Moreover, strengthening structures using carbon fiber-reinforced polymers (CFRP) is
considered an effective and economical solution in some cases if compared with the demoli-
tion solutions. CFRP strips are easily installed in the weak parts, aiming to strengthen them
and delay the beginning of micro cracks and prevent their progress. Different research was
conducted to prove the efficiency of strengthening methods such as the work presented
by Lu et al. [7], which used the pre-stressed CFRP fabric to reinforce RC columns. The
results demonstrated that the load-bearing capacity and ductility of RC columns could be
greatly enhanced by incorporating CFRP fabric. On the other hand, Alabdulhady et al. [8]
investigated the effects of a CFRP strengthening and repair system on RC beams with
varying concrete compressive strengths. Flexural load testing was performed on RC beams
after they were strengthened and repaired using CFRP composite. Low, medium, and high
strength was demonstrated by casting the beams with concrete with different compressive
strengths. The concrete compressive strength was inversely related to the performance
of the CFRP composite material in repaired beams. Besides, the performance of exter-
nally applied wraps on simply supported RC beams under pure torsion was defined by
Zhou et al. [9], and their research looks at how eccentric torsional loads combined with
bending and shear pressures affect damage in framed beams that are mounted to columns
using a variety of wrapping procedures. Wrap performance and failure modes are inves-
tigated using verified FE method. The results demonstrated that the flexural capabilities
were diminished in direct proportion to the amount of torsional force applied and the
concrete strut’s capacity and torsional shear-flow are improved by the CFRP wraps, which
are also compatible with the imposed load ratios and the specified truss mechanism.
Additionally, rectangular reinforced concrete (RC) columns with carbon fiber-reinforced
plastic (FRP) confinement were modelled in three dimensions using a meso-scale approach
that takes concrete variability into account by Fan et al. [10]. There was a size effect on
the confinement of CFRP jackets on concrete, as measured by a decrease in the effective
confinement area ratio estimated from the axial stress distribution as the structure size
increased. The effect of confinement’s size diminished with increasing aspect ratio and
edge sharpness.

Concrete buildings can be significantly strengthened by utilizing carbon fiber-reinforced
plastic (CFRP) due to this material’s high strength, low weight, great corrosion resistance,
creep resistance, and fatigue resistance. Xian et al. [11] used wedge-extrusion bond anchor-
age for CFRP plate anchorage load-bearing. As a pre-stressed tension device combined
high temperature, distilled water, and constant loading, applying a mechanical analysis
and tensile tests of the anchorage system showed CFRP burst failure mechanisms under
static and cyclic loads without anchor de-bonding. This resulted in the CFRP plate’s ho-
mogenous stress distribution parallel to the anchor’s biggest cross-section, which increased
anchor-age capacity. In addition, durability statistics and research are needed to understand
the deterioration mechanisms of bonded connections between CFRP laminates and steel
substrates under harsh environmental conditions. Double-strap CFRP-to-steel bonded
connections used two composite materials. Yang et al. [12] examined adhesive coupons
to cover the gap where a static tensile machine also replicated the number of temperature
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cycles and slippage induced in CFRP laminates. Additionally, civil engineering structural
strengthening and maintenance are complicated by carbon fiber reinforced polymer (CFRP)
composite fire resistance. Temperature exposure affected the mechanical, thermal, and
microstructure properties of carbon fibers and CFRP plates with bisphenol-A epoxy matrix
and hydantoin epoxy matrix. Thermal breakdown, void content, surface morphology, and
internal microstructures revealed CFRP plate deterioration mechanisms [13].

However, optimal solutions were presented and explored to manage the behavior of
structures by considering various structures and approaches to produce the best possible
results in terms of strength, shape, cost, etc. The optimization method intends to find the
best path that any solution can take while defining an objective condition and constraints
that control the whole operation. Nassif et al. [14] presented a project that intends to
optimize fiber integration for ready-mix, worksite use. A high-performance concrete
(HPC) mix incorporating mixed, various fiber types (crimped steel, macro polypropylene,
and micro polypropylene) was evaluated. These “hybrid” fiber blends were investigated
for mechanical properties and durability. Moreover, Tamrazyan and Alekseytsev [15]
looked to optimize reinforced concrete buildings using multiple criteria. The potential for
both natural disasters and accidental harm caused by humans is factored into the latest
optimality standards. A customized genetic algorithm was developed for use as a search
engine where the system can handle a wide variety of accident conditions, such as corrosive
damage and local mechanical damage.

Further, one of the important facts structural engineers face is the uncertainty in the
structural characteristic that can affect the behavior of any structure dramatically while
influencing the probability of failure, which, in its turn, reflects the reliability of any condi-
tion, Zheng et al. [16] used ultrasonography to assess the level of damage to beams that
had previously been damaged, repaired, and strengthened with high ductility concrete
(HDC), and then gave probabilistic statistical analysis of the results. Hassanzadeh et al. [17]
demonstrated a statistical evaluation of how concrete and GFRP rebar acted against one
another in terms of binding strength. This probabilistic model provides a quantitative
expression for the epistemic uncertainties associated with the parameters and errors of
the model, which decrease with additional data. The problem mechanics were used to
select the variables and the explanatory functions. All of these factors were considered
in order to select the most appropriate model: prediction precision, error non-normality,
scattering non-homogeneity, residual correlation, and non-linearity. A study contrasting
deterministic versus probabilistic models was held, representing the role of uncertainty.
Likewise, measurement uncertainty for deformed steel bars used in concrete reinforcement
was evaluated by Suhartono and Rustiant [18], where different diameters of deformed
steel bars were considered to calculate the margin of error in the measurements, static
tensile testing was performed. The analysis evaluated the measurement uncertainty by
collecting more data. Similarly, predicting load-bearing capacity can be modelled using ma-
terial properties, geometrical parameters, and failure, causing uncertainty as presented by
Sykora et al. [19], and investigating the shear resistance model uncertainties for reinforced
concrete beams with and without shear reinforcement. Model uncertainty can be charac-
terized through a comparison of test and model outcomes, where the uncertainty of the
model is highly sensitive to the parameters.

After highlighting some previous studies, it is worth mentioning that this study
collects the models presented by Ibrahim and Rad [20] in 2020, and the collected models
are reinforced concrete haunched beams strengthened by CFRP strips. The models were
calibrated using Abaqus while using the experimental results obtained by testing beam
models and concrete samples in the laboratory. The authors then offered a programming
code that could be used to apply the deterministic optimization problem to the numerically
calibrated haunched beams, with the complementary strain energy of the internal stresses
initiated within the rebar being taken into account as a limiting factor. After that, a second
code was given to solve the probabilistic solution for the same strengthened reinforced
haunched beams, where the concrete characteristics, complementary strain energy, and
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CFRP characteristics are all treated as probabilistic values with mean values and standard
deviations, while the optimization process is constrained by reliability index values. This
research primarily focuses on two strengthening scenarios, where two and three CFRP
strips are employed to reinforce the haunched beams in the shear section at 45 degrees
angles. The outcomes are displayed, taking into account the two strengthening examples
offered for both deterministic and probabilistic solutions. The probability solution provides
insight into how the standard deviation of probabilistic values affects the strength, behavior,
and damage intensity of the models, while the deterministic case demonstrates how the
complementary strain energy bounds the plastic behavior of the beam, which is reflected
by the models’ damage behavior. In this research, the uncertainties that the concrete
material is subject to are taken into account, which is the actual state of this material, as
it is hard to obtain its properties without subjecting it to probability. Given the fact that
CFRP is one of the effective materials in strengthening the structural elements, therefore,
the uncertainties of the CFRP properties were taken into account to study the effect of these
materials probabilities on the behavior of the reinforced concrete beams strengthened, with
different numbers of CFRP strips owning variable properties.

After this introduction, Section 2 provides a detailed explanation of the methodology
used in this paper. Following this is Section 3, which displays the calibrated models,
followed by Section 4, which displays the results and discussions. Finally, Section 5 gives
the main conclusions of this study.

2. Methodology
2.1. Plastic Behavior Limitation Principal

This method is used for plastic analysis and design where the residual stresses exist,
as complementary strain energy is successfully used in different types of structures [21–24],
and in this research it is used as a limitation of the failure of the structure.

When such energy amount restrictions are necessary to govern residual deforma-
tions [22–24], to take into account the strain energy of residual forces as a comprehensive
evaluation of plastic behavior, a suitable computational technique was developed. The
residual forces that produce this supplementary strain energy are presented:

Wp =
1

2E

n

∑
i=1

li
Ai

NR2

i ≤Wp0 (1)

Here, Wp0 is the maximum energy that may be used to calculate Wp from the structure’s
elastic strain energy [22]. The Young’s modulus of the bar material is E, the residual force
of the bar members is NR

i , and the length of the bar elements is li, (i = 1, 2, . . . , n), the
cross-sectional area of the bar elements is Ai, (i = 1, 2, . . . , n), and so on. In Equation (1),
we see the introduction of a limit value Wp0 for plastic rebar deformations. Aside from the
inner plastic force Npl , which will occur when the load P0 is applied, and the elastic internal
force −Nel , the residual forces NR that are displayed in the structure after unloading are
described by these two forces.

NR = Npl − Nel (2)

where:
Nel = F−1GTK−1P0 (3)

In this context, Matrix F denotes adaptability, Matrix G denotes geometry, and Matrix
K denotes rigidity.
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2.2. Probability Theory

We assume the probability density functions of XR and XS are fR (XR) and fS (XS),
respectively, where XR ≤ XS. It is possible to assess the probability of failure using the
following equations [25]:

Pf = P[XR ≤ XS] =
x

XR≤XS
fR (XR) fS (XS)dXRdXS (4)

To briefly describe the issue, we can use the well-known bound state function, which
is defined as:

g(XR, XS) = XR − XS (5)

The failure domain, D f , is represented by the value g ≤ 0. Therefore, we can write
down the failure probability Pf :

Pf = Fg(0) (6)

Additionally, Pf can be given by:

Pf =
∫

g(XR ,XS)≤0
f (X)dX =

∫
D f

f (X)dX (7)

The complementary strain energy of the residual forces is constrained in this study by
a Gaussian distribution with a mean of Wpo and a standard deviation of σw, reflecting the
uncertainty associated with the data.

The probability of failure (Pf ) values are used to calculate the reliability index (β),
with the Monte-Carlo sampling method additionally taken into account. Generation of
realizations x according to a random vector X of the probability density function fX(x)
according to Monte-Carlo method. Simply counting the total number of points allows one
to determine the fraction of points (Pf ) that are in the failure domain. Using a defined
indicator function of D f , we can write down the following to express this idea.

χD f (x) =
{

1 if x ∈ D f
0 if x /∈ D f

}
(8)

Through rephrasing Equation (7):

Pf =
∫ +∞

−∞
...
∫ +∞

−∞
χD f (x) fX(x)dx (9)

Hence χD f (X) is two-points variable distributed randomly.

P
[

χD f (X) = 1
]
= Pf (10)

P
[

χD f (X) = 0
]
= 1− Pf (11)

That Pf = P
[

X ∈ D f

]
.

Mean and standard deviation for a random variable χD f (X) can be calculated
as follows:

E
[
χD f (X)

]
= 1·Pf + 0·

(
1− Pf

)
= Pf (12)

Var
[
χD f (X)

]
= E

[
χ2

D f
(X)

]
− (E

[
χD f (X)

]
)

2
= Pf − P2

f = Pf

(
1− Pf

)
(13)

To evaluate Pf using the Monte-Carlo method, using the next formula:

Ê
[
χD f (X)

]
=

1
Z

Z

∑
z=1

χD f (X(z)) = P̂f (14)
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That X(z) is a demonstration for a set of independent random vectors with
(z = 1, . . . , Z), and fX(x).

It is worth noting that the complementary strain energy is accounted for as a random
variable in probabilistic models. Therefore, we can calculate its mean value and standard
deviation. Furthermore, it has a mean of E and a variance of Var, which is consistent with
the Gaussian distribution. One may quickly determine the estimator’s mean and standard
deviation by using:

E
[

P̂f

]
=

1
Z

Z

∑
z=1

E
[
χD f

(
X(z)

)]
=

1
Z

ZPf = Pf (15)

Var
[

P̂f

]
=

1
Z2

Z

∑
z=1

Var
[
χD f

(
X(z)

)]
=

1
Z2 ZPf

(
1− Pf

)
=

1
Z

Pf

(
1− Pf

)
(16)

Finally, we may write the dependability restriction, (β) [26,27] as:

βtarget − βcalc ≤ 0 (17)

where βcalc is the calculated reliability index at the end of each iteration, and βtarget is the
desired number over which the procedure must stop.

The following representations were employed in order to find out βtarget and βcalc:

βtarget = −Φ−1
(

Pf ,target

)
(18)

βcalc = −Φ−1
(

Pf ,calc

)
(19)

Thus, Φ−1 represents the inverse of the normal distribution function, which is the trun-
cated normal distribution. Two of the concrete characteristics considered are compressive
strength f́c and modulus of elasticity Ec.

The code treats the reliability index as a limiting index that determined when the
problem was solved by establishing a maximum value for the complementary strain energy,
Wp; once this value was attained, the appropriate load, deflection, and complementary
strain energy were computed.

2.3. Optimum Solution

The maximum plastic loading Fpl that may be applied to the haunched beams without
iterative updates to the constitutive components is determined via non-linear optimization.
The deterministic solution takes into account the following equations, where Ai and li
standing for the cross section and length of each element, respectively.

Max. → Fpl ; (20a)

Subjected to : Nel = F−1GK−1P0; (20b)

− Npl ≤ NPl ≤ Npl ; (20c)

1
2E

n

∑
i=1

li
Ai

NR2

i ≤Wp0. (20d)

u− uo < 0. (20e)

The elastic fictitious internal normal forces are found in Equation (20b), and the lower
and higher plastic limit conditions are presented in Equation (20c), where Npl is the ultimate
plastic limit load. As an additional global metric of plastic behavior, boundary Equation (20d)
displays the complementary strain energy of residual forces used to govern plastic defor-
mations of steel bars.
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In the meantime, the deflection condition is shown by Equation (20e), where u is the
deflection value found by optimization, and uo is the maximum deflection value. For a
deterministic solution, it is sufficient to assume that the plastic deformations are under
control if the calculated value of the complementary strain energy of the residual forces
is less than or equal to the bound for the magnitude of the allowable complementary
strain energy of the residual forces, with the solution being terminated once the allowable
complementary strain energy Wp0 is crossed.

However, in order to investigate the probabilistic solution, we substituted Equation (20d)
with Equation (17) βtarget − βcalc ≤ 0, which states that the termination condition may
vary from iteration to iteration based on the probabilistic complementary strain energy,
with a mean value of Wpo and a standard deviation σw. If the calculated reliability in-
dex (βcalc) is higher than the allowed target value (βtarget), the probabilistic solution is
stopped. The study takes into account the optimization procedures depicted in Figure 1,
although it is highlighted that the CDP parameters involved in the optimization problem do
not change.
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3. Model Validation

In a recent study, Ibrahim and Rad [20] presented the models used in the current
work. In that study, the dimensions of the strengthened concrete haunched beams shown
in Figure 2 were as follows: dimensions of 2000 mm in length, 250 mm in depth at supports
(hs), 150 mm in width, and 9 degrees in haunched angle (α). Steel-reinforcing bars of
varying sizes have also been installed in the beams, as seen in Figure 3.
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Haunched beams’ non-linear behavior was modelled using finite element analysis,
and the damage plasticity model (CDP) was used to represent concrete behavior in Abaqus.
The concrete beam was modelled using the C3D8 element, a solid element with 8 nodes.
The reinforcing bars were modelled as 2-node linear beam in space (B31) elements. The
connection between longitudinal and transverse reinforcements in concrete was modelled
using an embedded area. The carbon fiber-reinforced plastic (CFRP) was modelled as
a 4-node (doubly curved shell) element (S4), and the bond between the CFRP and the
concrete was modelled as a surface-to-surface contact, cohesive zone (glue), with a glue
contact defined by a friction coefficient equal to 0.1 (which can be obtained from Abaqus
manual [28]). In addition, two vertical concentrated loads were applied at each beam, with
the load being dispersed via the coupling effect so that all experimental conditions were
identical. As shown in Figure 4, after modelling the haunched beams, two strengthening
instances were explored computationally and compared with experimental results. Case
C2 indicates the occurrence of two U-wrap CFRP strips slanted by 45◦, while case C3
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represents the existence of three such strips. Figure 5 also depicted a comparison between
the numerical and experimental results, revealing a good degree of consistency between
the two sets of data.
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Figure 5. Numerical and experimental results comparison.

To apply the reliability-based design while taking into account mean values of com-
pressive strength f́c = 35 MPa and a modulus of elasticity Ec = 26,420 MPa, the probabilistic
solution assigned a standard deviation of 5% to these concrete parameters, calculating the
standard deviation of the complementary strain energy by taking its mean value across all
deterministic cases (in line with strengthening scenarios) and using it as the probability
estimation with a 10% standard deviation. In addition, the CFRP’s characteristics are
subjected to probability analysis, with a 10% standard deviation taken into account, while
considering the properties used inside Abaqus that are presented in Table 1 as mean values.

Table 1. CFRP properties.

E11 (MPa) E22 (MPa) Nu12 G12 (MPa) G13 (MPa) G23 (MPa)

140,000 10,000 0.26 5200 5200 3500
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4. Results and Discussion
4.1. The Case of C2 Model with Two U-Wrap CFRP Strips

After passing through a numerical validation process, the results for the C2 model are
presented in this section. The novel method was used to analyse strengthened haunched
beams made of reinforced concrete, taking both deterministic and probabilistic approaches
into account. Complementary strain energy Wpo was first used as a bound and took into
account the deterministic solution (Equation (20d)). By establishing a probabilistic process
and assuming the total sample point number (Z = 3 × 108), the Monte Carlo approach was
performed to compute the reliability indices, with the concrete properties, Wpo , and CFRP
properties modelled as random variables with mean and standard deviation. The provided
reliability index can then be used as a bound βtarget (Equation (17)) in a probabilistic
analysis. Both the deterministic and probabilistic methods relied on a check that the
estimated deflection (u) was below the maximum allowed deflection value (uo) before
implementing the solution (20d).

Loads (F) and the corresponding deflection values (u) for each case are provided in
Table 2, and the complementary strain energy (Wpo) and reliability index (βtarget) were
chosen to regulate the deterministic and probabilistic analysis. The concrete characteristics
are fluctuating at random within 5% mean value, and this would unquestionably alter
the associated load values, demonstrating the uncertainty role. It can be seen that this
table displays six possible outcomes. In cases (C2-0, C-2-0-1, and C2-0-2), a deterministic
solution is displayed, where it can be seen that as complementary strain energy decreases
in value, the produced load and deflection values also reduced. If we plot this in Figure 5,
we can figure out that the produced deflection is similar to the deflection values in the
figure which corresponds the same load values, and this proves the applicability of the
used method and model. However, in cases (C2-1, C2-2, and C2-3), a variety of probabilistic
solutions are displayed. Standard deviation (σw = 10%) was applied to the mean value
(Wpo = 120 N·mm), which was derived from the deterministic solution (C2-0), and a
target reliability index (βtarget) was used to determine three distinct probabilistic cases
(C2-1 = 3.3, C2-2 = 4.9, C2-3 = 3.8). The properties of CFRP are also subjected to probabilistic
analysis, with a 10% standard deviation taken into account. It can be seen from Table 2 that
the randomness of the presented variables affects the load and deflection values clearly.
Moreover, it can be seen that the reliability index value increases as the corresponding load
value decreases, which reflects the role of increased probability of failure in the models
subjected to higher loading conditions.

Table 2. Results obtained from C2 model.

Case Wp0 (N·mm) βtarget
´
fc (MPa) Ec (MPa) F (kN) u (mm)

Deterministic

C2-0 120

- 35 26,420

103 20

C2-0-1 98 95 17.2

C2-0-2 27 80 14.4

Probabilistic

C2-1

Randomly changed by 10%

3.1

Randomly changed by 5%

95 17

C2-2 3.5 82 15

C2-3 4.8 79 14

Additionally, Table 3 displays other results showing the tension concrete damage
percentages dt % initiated in each case, and these percentages are reflected in the damage
pattern presented in the same table where high damage intensity is displayed by red
areas while undamaged areas are displayed by blue colour. When the produced load is
increased, the intensity of the damage also increases, declaring that the additional load
applies additional initial stresses within the steel and concrete materials. This exemplifies
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the role of the complementary strain energy by reflecting the plastic damage, and generally,
if this role is controlled, the plastic damage and failure are also controlled.

Table 3. Damage representation for C2 model.

Case dt %

Tension Damage Pattern
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4.2. The Case of C3 Model with Three U-Wrap CFRP Strips

This section held the same procedure explained in the previous section, but the model
considered here has three CFRP strips instead of two. The method is used in the C3 model,
with both deterministic and probabilistic outcomes taken into account after verifying that
the computed deflection (u) was less than the maximum allowed deflection value (uo), as
included in Equation (20d).

Randomness in the properties of the variables, along with the complementary strain
energy (Wpo) and reliability index (βtarget) used to regulate the deterministic and prob-
abilistic analyses, respectively, affected the results shown in Table 4. It is evident that
the concrete characteristics are fluctuating at random within a range of 5 percent of the
mean values, and that this would unquestionably have an effect on the corresponding
load values, demonstrating the uncertainty role. The table displays six possible outcomes.
Different probabilistic solutions are shown for examples (C3-1, C3-2, and C3-3), with cases
(C3-0, C3-0-1, and C3-0-2) being the deterministic answer where the complementary strain
energy worked as bound, as it can be seen that the produced load and deflection values
decrease as the inserted complementary strain energy decreases in value, and if we plot
this in Figure 5, we can figure out that the produced deflection is similar to the deflection
values in the figure which correspond to the same load values, proving the applicability
of the used method and model. Every probabilistic case was assigned one of three values
for the complementary strain energy Wpo considering a standard deviation (σw = 10%) on
the mean value (Wpo = 90 N·mm) retrieved from the deterministic solution, and a target
reliability index (βtarget) in three different values (C3-1 = 4.7, C3-2 = 3.1, C3-3 = 4.3). CFRP
features are also subjected to probabilistic analysis, with a 10% standard deviation taken
into account. It can be seen from Table 4 that the randomness of the presented variables
affecting the load and deflection values clearly and the reliability index increases as the



Polymers 2023, 15, 569 12 of 15

corresponding load value is decreasing, declaring that smaller loads lead to more reliable
solutions. That is how the reliability index works as a limitation.

Table 4. Results obtained from C3 model.

Case Wp0 (N·mm) βtarget
´
fc (MPa) Ec (MPa) F (kN) u (mm)

Deterministic

C3-0 90

- 35 26,420

110 23

C3-0-1 66 91 13

C3-0-2 21 80 11.3

Probabilistic

C3-1

Randomly changed by 10%

3.1

Randomly changed by 5%

104 21

C3-2 3.6 93 19

C3-3 4.9 82 16

Table 5 also shows the percentage of tension concrete damage, in dt %, that was
initiated in each scenario; this percentage is represented in the damage pattern provided
in the same table, with areas of high damage intensity shown in red and areas without
damage shown in blue. By reflecting the plastic damage, the complementary strain energy
role is highlighted, and if this is controlled, the plastic damage and failure are controlled as
well. This is because an increase in the produced load causes an increase in the damage
intensity, proving that the extra load applies additional initial stresses within the steel
and concrete materials. The effectiveness of CFRP strips in absorbing the extra stresses
caused by increasing applied loads can also be seen by comparing Tables 3 and 5, where
it is clear that the presence of the additional CFRP strips reduced the damaged red areas,
even though the corresponding models’ strengths are increased.

Table 5. Damage representation for C3 model.

Case dt %

Tension Damage Pattern
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5. Conclusions

To apply the deterministic optimization problem to the numerically calibrated
haunched beams, this project compiled models of haunched beams made of CFRP-reinforced
concrete, taking into account the complementary strain energy of the internal stresses ini-
tiated within the rebar and the reliability index as constraint factors. Similar haunched
beams are also optimized using a probabilistic solution, which takes into consideration
the concrete characteristics, complementary strain energy, and CFRP strips properties as
probabilistic values with a mean value and standard deviation due to the fact that the
reliability index is used as the basis for the proposed method’s consideration of probabilistic
parameters for models with constrained plasticity. From these findings, we can draw the
following inferences:

• It can be seen from the results that the randomness of the presented variables affected
the load and deflection values clearly.

• The reliability index value increases as the corresponding load value decreases, and
that reflects the role of increased probability of failure in the models subjected to higher
loading conditions.

• Tension concrete damage percentages dt % are reflected in the damage pattern pre-
sented in the results, where it can be concluded that as the produced load increase the
damage intensity also increases, declaring that extra load applies extra initial stresses
inside steel and concrete materials. This is how the complementary strain energy
role is highlighted by reflecting the plastic damage, and as it is controlled, the plastic
damage and failure will also be controlled.

• The effectiveness of CFRP strips in absorbing the extra stresses caused by increasing
applied loads can also be seen by comparing C2 and C3 results, where it is clear that
the presence of the additional CFRP strips reduced the damaged areas even though
the corresponding models’ strengths are increased.

• This research accounts for the concrete material’s uncertainties, which is its true state,
since it is hard to determine its properties without probability. Since CFRP is one of
the most effective materials for strengthening structural elements, the uncertainties
of its characteristics were considered to explore how these probabilities affect the
behaviour of reinforced concrete beams enhanced with varied numbers of CFRP strips
with variable properties.

• It can be realised that in the deterministic cases, as the complementary strain, energy
is spotted with different values, and the corresponding load and deflection values are
changing. In addition, if it is taken into consideration, the complementary strain values
increase significantly when approaching the ultimate load where plastic behaviour
controls, and thus initiates, higher loading and deflection values.
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