Characterization and Gel Properties of Low-Molecular-Weight Carrageenans Prepared by Photocatalytic Degradation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Photocatalytic Degradation of κ-Carrageenan
2.3. Chemical Composition Analysis
2.4. Molecular Weight Determination
2.5. Thin Layer Chromatography (TLC)
2.6. Fourier-Transform Infrared (FT-IR) Spectroscopic Analysis
2.7. Nuclear Magnetic Resonance (NMR) Analysis
2.8. Mass Spectrometry Analysis
2.9. Rheological Measurement
2.10. Cryogenic Scanning Electron Microscopy (Cryo-SEM)
2.11. Statistical Analysis
3. Results and Discussions
3.1. Photocatalytic Degradation of Carrageenan
3.2. Structure Changes of Carrageenan by Photocatalytic Degradation
3.3. Identification of Carrageenan Oligosaccharides Produced by Photocatalytic Degradation
3.4. Rheological Properties of Carrageenan Degradation Products
3.5. Cryo-SEM Microstructure of Carrageenan Degradation Products
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Shafie, M.H.; Kamal, M.L.; Zulkiflee, F.F.; Hasan, S.; Uyop, N.H.; Abdullah, S.; Hussin, N.A.M.; Tan, Y.C.; Zafarina, Z. Application of Carrageenan extract from red seaweed (Rhodophyta) in cosmetic products: A review. J. Indian Chem. Soc. 2022, 99, 100613. [Google Scholar] [CrossRef]
- Yuan, H.; Song, J.; Li, X.; Li, N.; Dai, J. Immunomodulation and antitumor activity of kappa-carrageenan oligosaccharides. Cancer Lett. 2006, 243, 228–234. [Google Scholar] [CrossRef] [PubMed]
- Jang, Y.; Shin, H.; Lee, M.K.; Kwon, O.S.; Shin, J.S.; Kim, Y.I.; Kim, C.W.; Lee, H.R.; Kim, M. Antiviral activity of lambda-carrageenan against influenza viruses and severe acute respiratory syndrome coronavirus 2. Sci. Rep. 2021, 11, 821. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos-Fidencio, G.C.; Goncalves, A.G.; Noseda, M.D.; Duarte, M.E.R.; Ducatti, D.R.B. Effects of carboxyl group on the anticoagulant activity of oxidized carrageenans. Carbohydr. Polym. 2019, 214, 286–293. [Google Scholar] [CrossRef]
- Ma, C.; Li, Q.; Dai, X. Carrageenan oligosaccharides extend life span and health span in male Drosophila Melanogaster by modulating antioxidant activity, immunity, and gut microbiota. J. Med. Food 2021, 24, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Chin, Y.X.; Mi, Y.; Cao, W.X.; Lim, P.E.; Xue, C.H.; Tang, Q.J. A pilot study on anti-obesity mechanisms of Kappaphycus Alvarezii: The role of native kappa-carrageenan and the leftover sans-carrageenan fraction. Nutrients 2019, 11, 1133. [Google Scholar] [CrossRef] [Green Version]
- Zhu, B.; Ni, F.; Xiong, Q.; Yao, Z. Marine oligosaccharides originated from seaweeds: Source, preparation, structure, physiological activity and applications. Crit. Rev. Food Sci. Nutr. 2021, 61, 60–74. [Google Scholar] [CrossRef]
- Guo, Z.; Wei, Y.; Zhang, Y.; Xu, Y.; Zheng, L.; Zhu, B.; Yao, Z. Carrageenan oligosaccharides: A comprehensive review of preparation, isolation, purification, structure, biological activities and applications. Algal Res. 2022, 61, 102593. [Google Scholar] [CrossRef]
- Johnson, A.; Kong, F.; Miao, S.; Lin, H.V.; Thomas, S.; Huang, Y.C.; Kong, Z.L. Therapeutic effects of antibiotics loaded cellulose nanofiber and kappa-carrageenan oligosaccharide composite hydrogels for periodontitis treatment. Sci. Rep. 2020, 10, 18037. [Google Scholar] [CrossRef]
- Lan, W.; Zhao, Y.; Hu, X.; Zhang, X.; Xie, J. Effects of carrageenan oligosaccharide on lipid, protein oxidative changes, and moisture migration of Litopenaeus vannamei during freeze–thaw cycles. J. Food Process. Preserv. 2020, 44, e14675. [Google Scholar] [CrossRef]
- Chen, X.; Han, W.; Zhao, X.; Tang, W.; Wang, F. Epirubicin-loaded marine carrageenan oligosaccharide capped gold nanoparticle system for pH-triggered anticancer drug release. Sci. Rep. 2019, 9, 6754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, R.; Zhu, F. Ultrasound modified polysaccharides: A review of structure, physicochemical properties, biological activities and food applications. Trends Food Sci. Technol. 2021, 107, 491–508. [Google Scholar] [CrossRef]
- de Moura, F.A.; Macagnan, F.T.; da Silva, L.P. Oligosaccharide production by hydrolysis of polysaccharides: A review. Int. J. Food Sci. Technol. 2015, 50, 275–281. [Google Scholar] [CrossRef]
- Chen, X.; Sun-Waterhouse, D.; Yao, W.; Li, X.; Zhao, M.; You, L. Free radical-mediated degradation of polysaccharides: Mechanism of free radical formation and degradation, influence factors and product properties. Food Chem. 2021, 365, 130524. [Google Scholar] [CrossRef]
- Zhang, W.; Jin, W.; Duan, D.; Zhang, Q. Structural analysis and anti-complement activity of polysaccharides extracted from Grateloupia livida (Harv.) Yamada. J. Oceanol. Limnol. 2019, 37, 806–814. [Google Scholar] [CrossRef]
- Chen, X.; Yang, J.; Shen, M.; Chen, Y.; Yu, Q.; Xie, J. Structure, function and advance application of microwave-treated polysaccharide: A review. Trends Food Sci. Technol. 2022, 123, 198–209. [Google Scholar] [CrossRef]
- Linsebigler, A.L.; Lu, G.; Yates, J.T., Jr. Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chem. Rev. 1995, 95, 735–758. [Google Scholar] [CrossRef]
- Musial, J.; Mlynarczyk, D.T.; Stanisz, B.J. Photocatalytic degradation of sulfamethoxazole using TiO2-based materials–Perspectives for the development of a sustainable water treatment technology. Sci. Total Environ. 2022, 736, 159122. [Google Scholar] [CrossRef]
- Jeon, J.P.; Kweon, D.H.; Jang, B.J.; Ju, M.J.; Baek, J.B. Enhancing the photocatalytic activity of TiO2 catalysts. Adv. Sustain. Syst. 2020, 4, 2000197. [Google Scholar] [CrossRef]
- Xu, D.; Ma, H. Degradation of rhodamine B in water by ultrasound-assisted TiO2 photocatalysis. J. Clean. Prod. 2021, 313, 127758. [Google Scholar] [CrossRef]
- Prakash, J.; Cho, J.; Mishra, Y.K. Photocatalytic TiO2 nanomaterials as potential antimicrobial and antiviral agents: Scope against blocking the SARS-CoV-2 spread. Micro Nano Eng. 2022, 14, 100100. [Google Scholar] [CrossRef]
- Yang, H.; He, D.; Liu, C.; Zhang, T.; Qu, J.; Jin, D.; Zhang, K.; Lv, Y.; Zhang, Z.; Zhang, Y.-N. Visible-light-driven photocatalytic disinfection by S-scheme α-Fe2O3/g-C3N4 heterojunction: Bactericidal performance and mechanism insight. Chemosphere 2022, 287, 132072. [Google Scholar] [CrossRef]
- Koe, W.S.; Lee, J.W.; Chong, W.C.; Pang, Y.L.; Sim, L.C. An overview of photocatalytic degradation: Photocatalysts, mechanisms, and development of photocatalytic membrane. Environ. Sci. Pollut. Res. Int. 2020, 27, 2522–2565. [Google Scholar] [CrossRef]
- Ge, D.; Higashi, K.; Ito, D.; Nagano, K.; Ishikawa, R.; Terui, Y.; Higashi, K.; Moribe, K.; Linhardt, R.J.; Toida, T. Poly-ion complex of chondroitin sulfate and spermine and its effect on oral chondroitin sulfate bioavailability. Chem. Pharm. Bull. 2016, 64, 390–398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, W.; You, Y.; Sun, X.; Wang, L.; Wang, L.; Wang, S.; Ai, C.; Song, S. H2O2-TiO2 photocatalytic degradation of chondroitin sulfate and in vivo absorption and excertion of its product. Carbohyd. Polym. 2022, 301, 120295. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Wang, L.; You, Y.; Sun, X.; Wen, C.; Fu, Y.; Song, S. Preparation of low-molecular-weight fucoidan with anticoagulant activity by photocatalytic degradation method. Foods 2022, 11, 822. [Google Scholar] [CrossRef]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.T.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Blumenkrantz, N.; Asboe-Hansen, G. New method for quantitative determination of uronic acids. Anal. Biochem. 1973, 54, 484–489. [Google Scholar] [CrossRef]
- Farndale, R.W.; Buttle, D.J.; Barrett, A.J. Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim. Biophys. Acta Gen. Subj. 1986, 883, 173–177. [Google Scholar] [CrossRef]
- Yaphe, W.; Arsenault, G. Improved resorcinol reagent for the determination of fructose, and of 3, 6-anhydrogalactose in polysaccharides. Anal. Biochem. 1965, 13, 143–148. [Google Scholar] [CrossRef]
- Dodgson, K.; Price, R. A note on the determination of the ester sulphate content of sulphated polysaccharides. Biochem. J. 1962, 84, 106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, S.; Zhang, B.; Wu, S.; Huang, L.; Ai, C.; Pan, J.; Su, Y.C.; Wang, Z.; Wen, C. Structural characterization and osteogenic bioactivity of a sulfated polysaccharide from pacific abalone (Haliotis discus hannai Ino). Carbohydr. Polym. 2018, 182, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Liu, Y.; Jiang, K.; Wang, C.; Wang, Z.; Huang, L. Electrospray ionization mass spectrometric analysis of κ-carrageenan oligosaccharides obtained by degradation with κ-carrageenase from Pedobacter hainanensis. J. Agric. Food Chem. 2014, 62, 2398–2405. [Google Scholar] [CrossRef]
- Ren, Y.; Rong, L.; Shen, M.; Liu, W.; Xiao, W.; Luo, Y.; Xie, J. Interaction between rice starch and Mesona chinensis Benth polysaccharide gels: Pasting and gelling properties. Carbohydr. Polym. 2020, 240, 116316. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhang, R.; Li, Y.; Li, X.; You, L.; Kulikouskaya, V.; Hileuskaya, K. Degradation of polysaccharides from Sargassum fusiforme using UV/H2O2 and its effects on structural characteristics. Carbohydr. Polym. 2020, 230, 115647. [Google Scholar] [CrossRef] [PubMed]
- Haji, S.; Benstaali, B.; Al-Bastaki, N. Degradation of methyl orange by UV/H2O2 advanced oxidation process. Chem. Eng. J. 2011, 168, 134–139. [Google Scholar] [CrossRef]
- Fu, M.; Chai, B.; Yan, J.; Wang, C.; Fan, G.; Song, G.; Xu, F. Facile preparation of MIL-88B-Fe metal–organic framework with high peroxidase-like activity for colorimetric detection of hydrogen peroxide in milk and beer. Appl. Phys. A 2021, 127, 928. [Google Scholar] [CrossRef]
- Jing, Y.; Cheng, W.; Li, M.; Zhang, Y.; Pang, X.; Qiu, X.; Zheng, Y.; Zhang, D.; Wu, L. Structural characterization, rheological properties, antioxidant and anti-inflammatory activities of polysaccharides from Zingiber officinale. Plant Foods Hum. Nutr. 2022. ahead of print. [Google Scholar]
- Tranquilan-Aranilla, C.; Nagasawa, N.; Bayquen, A.; Dela Rosa, A. Synthesis and characterization of carboxymethyl derivatives of kappa-carrageenan. Carbohydr. Polym. 2012, 87, 1810–1816. [Google Scholar] [CrossRef]
- Luo, X.; Liu, Y.; Zheng, C.; Huo, Q.; Liu, X. Development of novel hyaluronic acid/human-like collagen bio-composite membranes: A facile “surface modification-assembly” approach. Int. J. Biol. Macromol. 2021, 193, 378–386. [Google Scholar] [CrossRef]
- Ding, C.; Yang, Q.; Tian, M.; Guo, C.; Deng, F.; Dang, Y.; Zhang, M. Novel collagen-based hydrogels with injectable, self-healing, wound-healing properties via a dynamic crosslinking interaction. Polym. Int. 2020, 69, 858–866. [Google Scholar] [CrossRef]
- Van de Velde, F.; Knutsen, S.; Usov, A.; Rollema, H.; Cerezo, A. 1H and 13C high resolution NMR spectroscopy of carrageenans: Application in research and industry. Trends Food Sci. Technol. 2002, 13, 73–92. [Google Scholar] [CrossRef]
- Tojo, E.; Prado, J. A simple 1H NMR method for the quantification of carrageenans in blends. Carbohydr. Polym. 2003, 53, 325–329. [Google Scholar] [CrossRef]
- Usov, A.I.; Shashkov, A.S. XXXIV: Polysaccharides of algae detection of iota-carrageenan in Phyllophora brodiaei (Turn) J.Ag. (Rhodophyta) using 13C-NMR spectroscopy. Bot. Mar. 1985, 28, 367–373. [Google Scholar] [CrossRef]
- Liu, H.; Håkansson, K. Electron capture dissociation of divalent metal-adducted sulfated oligosaccharides. Int. J. Mass Spectrom. 2011, 305, 170–177. [Google Scholar] [CrossRef]
- Yu, G.; Zhao, X.; Yang, B.; Ren, S.; Guan, H.; Zhang, Y.; Lawson, A.M.; Chai, W. Sequence determination of sulfated carrageenan-derived oligosaccharides by high-sensitivity negative-ion electrospray tandem mass spectrometry. Anal. Chem. 2006, 78, 8499–8505. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Zheng, Z.; Lu, X.; Zeng, S.; Chen, C.; Zhang, L.; Zheng, B. Purification and characterisation of kappa-carrageenan oligosaccharides prepared by kappa-carrageenase from Thalassospira sp. Fjfst-332. Carbohydr. Polym. 2018, 180, 314–327. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Yang, B.; Wu, Y.; Liu, Y.; Gu, X.; Zhang, H.; Wang, C.; Cao, H.; Huang, L.; Wang, Z. Structural characterization and antioxidant activities of kappa-carrageenan oligosaccharides degraded by different methods. Food Chem. 2015, 178, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Chronakis, I.S.; Piculell, L.; Borgström, J. Rheology of kappa-carrageenan in mixtures of sodium and cesium iodide: Two types of gels. Carbohydr. Polym. 1996, 31, 215–225. [Google Scholar] [CrossRef]
- Mitchell, J.R. The Rheology of Gels. J. Texture Stud. 1980, 11, 315–337. [Google Scholar] [CrossRef]
- Shimanuki, J.; Takahashi, S.; Tohma, H.; Ohma, A.; Ishihara, A.; Ito, Y.; Nishino, Y.; Miyazawa, A. Microstructural observation of fuel cell catalyst inks by Cryo-SEM and Cryo-TEM. Microsc. Jpn. 2017, 66, 204–208. [Google Scholar] [CrossRef] [PubMed]
Glycosyl Residues | 13C/1H (ppm) | |||||
---|---|---|---|---|---|---|
C1/H1 | C2/H2 | C3/H3 | C4/H4 | C5/H5 | C6/H6 | |
G: Gal4S | 102.1/4.63 | 69.2/3.58 | 78.1/3.99 | 73.7/4.83 | 74.5/3.79 | 61.2/3.79 |
A: AnGal | 94.5/5.08 | 69.3/4.12 | 78.7/4.51 | 77.8/4.60 | 76.5/4.63 | 69.2/4.18 |
No. | Retention Time (min) | m/z | Oligosaccharide Chain | Area Ratio (%) |
---|---|---|---|---|
1 | 5.68 | 655 | AnGal→Gal | 13.50 |
2 | 29.27 | 735 | AnGal→Gal→SO3 | 0.45 |
3 | 5.53/30.22 | 799 | AnGal→Gal→AnGal | 10.54 |
4 | 21.63/29 | 817 | Gal→AnGal→Gal | 21.05 |
5 | 17.31 | 849 | dAnGal→Gal→AnGal→SO3 | 3.74 |
6 | 22.45 | 931 | dAnGal→Gal→AnGal→Gal | 9.38 |
7 | 21.63/29.13 | 962 | AnGal→Gal→AnGal→Gal | 19.57 |
8 | 22.45/29.62 | 1011 | dAnGal→Gal→AnGal→Gal→SO3 | 1.63 |
9 | 21.63/29.13 | 1041 | AnGal→Gal→AnGal→Gal→SO3 | 4.05 |
10 | 29.62 | 1075 | dAnGal→Gal→AnGal→Gal→AnGal | 2.26 |
11 | 40.01 | 1123 | Gal→AnGal→Gal→AnGal→Gal | 2.60 |
12 | 29.62 | 1155 | dAnGal→Gal→AnGal→Gal→AnGal→SO3 | 0.52 |
13 | 29.23 | 1185 | AnGal→Gal→AnGal→Gal→AnGal→SO3 | 1.40 |
14 | 39.93 | 1203 | Gal→AnGal→Gal→AnGal→Gal→3SO3 | 0.73 |
15 | 40.18 | 1267 | AnGal→Gal→AnGal→Gal→AnGal→Gal | 4.28 |
16 | 40.18 | 1347 | AnGal→Gal→AnGal→Gal→AnGal→Gal→SO3 | 1.31 |
17 | 40.24 | 1363 | Gal→AnGal→Gal→AnGal→Gal→SO3 | 0.64 |
18 | 41.3 | 1411 | AnGal→Gal→AnGal→Gal→AnGal→Gal→AnGal | 1.52 |
19 | 41.3 | 1491 | AnGal→Gal→AnGal→Gal→AnGal→Gal→AnGal→SO3 | 0.46 |
20 | 41.3 | 1507 | AnGal→Gal→AnGal→Gal→AnGal→Gal→3SO3 | 0.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, C.; You, Y.; Wen, C.; Fu, Y.; Yang, J.; Zhao, J.; Song, S. Characterization and Gel Properties of Low-Molecular-Weight Carrageenans Prepared by Photocatalytic Degradation. Polymers 2023, 15, 602. https://doi.org/10.3390/polym15030602
Song C, You Y, Wen C, Fu Y, Yang J, Zhao J, Song S. Characterization and Gel Properties of Low-Molecular-Weight Carrageenans Prepared by Photocatalytic Degradation. Polymers. 2023; 15(3):602. https://doi.org/10.3390/polym15030602
Chicago/Turabian StyleSong, Chen, Ying You, Chengrong Wen, Yinghuan Fu, Jingfeng Yang, Jun Zhao, and Shuang Song. 2023. "Characterization and Gel Properties of Low-Molecular-Weight Carrageenans Prepared by Photocatalytic Degradation" Polymers 15, no. 3: 602. https://doi.org/10.3390/polym15030602
APA StyleSong, C., You, Y., Wen, C., Fu, Y., Yang, J., Zhao, J., & Song, S. (2023). Characterization and Gel Properties of Low-Molecular-Weight Carrageenans Prepared by Photocatalytic Degradation. Polymers, 15(3), 602. https://doi.org/10.3390/polym15030602