Creep Analysis of Bamboo Composite for Structural Applications
Abstract
:1. Introduction
2. Methodology
3. Material and Experimental Program and Results
4. Simulation Results
- Rate of stain change by time.
- Time
- Temperature
5. Discussion
6. Conclusions
- The material fails at loads significantly below its recorded maximum strength due to creep, including at the 65% force ratio for tensile and at the 75% force ratio for compressive.
- Simulation accuracy decreases at higher force ratios possibly due to failure of the material and tertiary creep.
- The material has two distinct set of creep coefficients for tensile and compressive loading.
- A significant proportion (approx. 50%) of the maximum strength cannot be utilised in long-term loading due to the risk of failure.
- The results obtained here provide the safe load/capacity ratio in structural applications of BC. In this regard, the stress in BC is recommended to be kept under 50% of the ultimate strength for long-term application.
- The finding could also be used in numerical simulations to estimate long-term deflection in BC structures.
- Findings could be used in developing guidelines for the structural design of bamboo structures.
- Future investigations should quantify the impact of temperature and humidity increases on the long-term strength of the material, although it is known that this effect will be negative.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Green Building Council Australia. Our Policy Priorities. Available online: https://new.gbca.org.au/policy/policy-priorities/ (accessed on 4 October 2021).
- Services Australia. Environmental Sustainability Policy; Services Australia: Chatswood, Australia, 2023.
- Alms, J.B.; Yonko, P.J.; McDowell, R.C.; Advani, S.G. Design and development of an I-Beam from natural composites. J. Biobased Mater. Bioenergy 2009, 3, 181–187. [Google Scholar] [CrossRef]
- Lau, K.-T.; Hung, P.-Y.; Zhu, M.-H.; Hui, D. Properties of natural fibre composites for structural engineering applications. Composites. Part B Eng. 2018, 136, 222–233. [Google Scholar] [CrossRef]
- Omrani, E.; Menezes, P.L.; Rohatgi, P.K. State of the art on tribological behavior of polymer matrix composites reinforced with natural fibers in the green materials world. Eng. Sci. Technol. Int. J. 2016, 19, 717–736. [Google Scholar] [CrossRef] [Green Version]
- Satyanarayana, K.G.; Sukumaran, K.; Mukherjee, P.S.; Pavithran, C.; Pillai, S.G.K. Natural fibre-polymer composites. Cem. Concr. Compos. 1990, 12, 117–136. [Google Scholar] [CrossRef]
- Shah, D.U. Developing plant fibre composites for structural applications by optimising composite parameters: A critical review. J. Mater. Sci. 2013, 48, 6083–6107. [Google Scholar] [CrossRef]
- Bledzki, A.K.; Gassan, J. Composites reinforced with cellulose based fibres. Prog. Polym. Sci. 1999, 24, 221–274. [Google Scholar] [CrossRef]
- Ticoalu, A.; Aravinthan, T.; Cardona, F. A review of current development in natural fiber composites for structural and infrastructure applications. In Proceedings of the Southern Region Engineering Conference (SREC 2010), Toowoomba, Australia, 11–12 November 2010; pp. 113–117. [Google Scholar]
- Dittenber, D.B.; GangaRao, H.V.S. Critical review of recent publications on use of natural composites in infrastructure. Compos. Part A Appl. Sci. Manuf. 2012, 43, 1419–1429. [Google Scholar] [CrossRef]
- Mvondo, R.R.N.; Meukam, P.; Jeong, J.; Meneses, D.D.S.; Nkeng, E.G. Influence of water content on the mechanical and chemical properties of tropical wood species. Results Phys. 2017, 7, 2096–2103. [Google Scholar] [CrossRef]
- Kretschmann, D.E.; Green, D.W. Modeling moisture content-mechanical property relationships for clear southern pine. Wood Fiber Sci. 2007, 28, 320–337. [Google Scholar]
- Salmén, L.; Olsson, A.-M. Physical properties of cellulosic materials related to moisture changes. Wood Sci. Technol. 2016, 50, 81–89. [Google Scholar] [CrossRef]
- Engelund, E.T.; Thygesen, L.G.; Svensson, S.; Hill, C.A.S. A critical discussion of the physics of wood-water interactions. Wood Sci. Technol. 2013, 47, 141–161. [Google Scholar] [CrossRef]
- John, M.J.; Thomas, S. Biofibres and biocomposites. Carbohydr. Polym. 2008, 71, 343–364. [Google Scholar] [CrossRef]
- Kulasinski, K.; Keten, S.; Churakov, S.V.; Guyer, R.; Carmeliet, J.; Derome, D. Molecular Mechanism of Moisture-Induced Transition in Amorphous Cellulose. ACS Macro Lett. 2014, 3, 1037–1040. [Google Scholar] [CrossRef]
- Salmén, L.; Burgert, I. Cell wall features with regard to mechanical performance. A review COST Action E35 2004–2008: Wood machining—Micromechanics and fracture. Holzforschung 2009, 63, 121–129. [Google Scholar] [CrossRef]
- Fotouh, A.; Wolodko, J.D.; Lipsett, M.G. Uniaxial tensile behaviour modelling of natural-fiber-reinforced viscoplastic polymer using snormalised stress–strain curves. J. Compos. Mater. 2015, 49, 2389–2402. [Google Scholar] [CrossRef]
- Singh, B.; Gupta, M. Performance of Pultruded Jute Fibre Reinforced Phenolic Composites as Building Materials for Door Frame. J. Polym. Environ. 2005, 13, 127–137. [Google Scholar] [CrossRef]
- Huang, D.; Bian, Y.; Zhou, A.; Sheng, B. Experimental study on stress–strain relationships and failure mechanisms of parallel strand bamboo made from phyllostachys. Constr. Build. Mater. 2015, 77, 130–138. [Google Scholar] [CrossRef]
- Acha, B.A.; Reboredo, M.M.; Marcovich, N.E. Creep and dynamic mechanical behavior of PP–jute composites: Effect of the interfacial adhesion. Compos. Part A Appl. Sci. Manuf. 2007, 38, 1507–1516. [Google Scholar] [CrossRef]
- Gottron, J.; Harries, K.A.; Xu, Q. Creep behaviour of bamboo. Constr. Build. Mater. 2014, 66, 79–88. [Google Scholar] [CrossRef]
- Brandt, C.W.; Fridley, K.J. Load-duration behavior of wood-plastic composites. J. Mater. Civ. Eng. 2003, 15, 524–536. [Google Scholar] [CrossRef] [Green Version]
- Smith, I.; Landis, E.; Gong, M. Fracture and Fatigue in Wood; Wiley: Hoboken, NJ, USA, 2003. [Google Scholar]
- Raghavan, J.; Meshii, M. Creep of polymer composites. Compos. Sci. Technol. 1998, 57, 1673–1688. [Google Scholar] [CrossRef]
- Lothar, K.; Hanns-Christof, S. Micromechanics of plant tissues beyond the linear-elastic range. Planta 2002, 215, 33–40. [Google Scholar] [CrossRef]
- Ueki, Y.; Lilholt, H.; Madsen, B. Stiffening effect of fatigue and creep loading in unidirectional flax fibre/epoxy composites. IOP Conf. Ser. Mater. Sci. Eng. 2018, 388, 12018. [Google Scholar] [CrossRef]
- Thwe, M.M.; Liao, K. Effects of environmental aging on the mechanical properties of bamboo–glass fiber reinforced polymer matrix hybrid composites. Compos. Part A Appl. Sci. Manuf. 2002, 33, 43–52. [Google Scholar] [CrossRef]
- Xu, Q.; Harries, K.; Li, X.; Liu, Q.; Gottron, J. Mechanical properties of structural bamboo following immersion in water. Eng. Struct. 2014, 81, 230–239. [Google Scholar] [CrossRef]
- Tuttle, M.E.; Brinson, H.F. Prediction of the long-term creep compliance of general composite laminates. Exp. Mech. 1986, 26, 89–102. [Google Scholar] [CrossRef]
- Jeon, H.Y.; Kim, S.H.; Yoo, H.K. Assessment of long-term performances of polyester geogrids by accelerated creep test. Polym. Test. 2002, 21, 489–495. [Google Scholar] [CrossRef]
- Hossain, M.A.; Mach, R.; Pellicotte, J.; Stewart, C.M. Calibration of CDM-Based Creep Constitutive Model Using Accelerated Creep Test (ACT) Data. In Proceedings of the Turbo Expo: Power for Land, Sea, and Air, Rotterdam, The Netherland, 13–17 June 2020; p. V008T018A012. [Google Scholar]
- Scott, D.W.; Lai, J.S.; Zureick, A.-H. Creep behavior of fiber-reinforced polymeric composites: A review of the technical literature. J. Reinf. Plast. Compos. 1995, 14, 588–617. [Google Scholar] [CrossRef]
- Asyraf, M.; Ishak, M.; Sapuan, S.; Yidris, N.; Ilyas, R. Woods and composites cantilever beam: A comprehensive review of experimental and numerical creep methodologies. J. Mater. Res. Technol. 2020, 9, 6759–6776. [Google Scholar] [CrossRef]
- Ghosh, R.N. Creep Life Predictions of Engineering Components: Problems & Prospects. Procedia Eng. 2013, 55, 599–606. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, T.; Kanapathipillai, S.; Chowdhury, M. A model for creep life prediction of thin tube using strain energy density as a function of stress triaxiality under quasistatic loading employing elastic-creep & elastic-plastic-creep deformation. Front. Mech. Eng. 2013, 8, 181–186. [Google Scholar] [CrossRef]
- ASTM D695; Standard Test Method for Compressive Properties of Rigid Plastics. ASTM International: West Conshohocken, PA, USA, 2015. [CrossRef]
- ASTM D143; Standard Test Methods for Small Clear Specimens of Timber. ASTM International: West Conshohocken, PA, USA, 2014.
- May, D.L.; Gordon, A.P.; Segletes, D.S. The Application of the Norton-Bailey Law for Creep Prediction Through Power Law Regression. In Proceedings of the ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, San Antonio, TX, USA, 3–7 June 2013. [Google Scholar]
- Alrubaie, M.A.A.; Gardner, D.J.; Lopez-Anido, R.A. Modeling the Long-Term Deformation of a Geodesic Spherical Frame Structure Made from Wood Plastic Composite Lumber. Appl. Sci. 2020, 10, 5017. [Google Scholar] [CrossRef]
- Arrhenius, S. Theory of isohydric solutions. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1889, 27, 287–288. [Google Scholar] [CrossRef]
- Zhou, A.; Huang, D.; Tang, S.; Zhao, S. Experimental research on bearing capacity of the bolted PSB-steel-PSB joints. J. Nanjing Univ. Technol. (Nat. Sci. Ed.) 2016, 5, 34–39. [Google Scholar]
- Coffin, D.; Habeger, C.C. The mechanics of sorption-induced transients in the loss tangent. J. Pulp Pap. Sci. 2001, 27, 385–390. [Google Scholar]
- Summerscales, J.; Dissanayake, N.; Virk, A.; Hall, W. A review of bast fibres and their composites. Part 2—Composites. Compos. Part A Appl. Sci. Manuf. 2010, 41, 1336–1344. [Google Scholar] [CrossRef] [Green Version]
- Lokesh, P.; Kumari, T.S.A.S.; Gopi, R.; Loganathan, G.B. A study on mechanical properties of bamboo fiber reinforced polymer composite. Mater. Today Proc. 2020, 22, 897–903. [Google Scholar] [CrossRef]
- Shibata, S.; Cao, Y.; Fukumoto, I. Press forming of short natural fiber-reinforced biodegradable resin: Effects of fiber volume and length on flexural properties. Polym. Test. 2005, 24, 1005–1011. [Google Scholar] [CrossRef]
- Mannan, S.; Knox, J.P.; Basu, S. Correlations between axial stiffness and microstructure of a species of bamboo. R. Soc. Open Sci. 2017, 4, 160412. [Google Scholar] [CrossRef] [Green Version]
- Youssefian, S.; Rahbar, N. Molecular Origin of Strength and Stiffness in Bamboo Fibrils. Sci. Rep. 2015, 5, 11116. [Google Scholar] [CrossRef]
- Guedes, R.M. Creep and Fatigue in Polymer Matrix Composites; Elsevier Science & Technology: San Diego, CA, USA, 2019. [Google Scholar]
Force Ratio | Tensile | Compressive |
---|---|---|
30% | 1 | 2 |
45% | 3 | 2 |
60% | 3 | 2 |
65% | 2 | - |
70% | 3 | - |
75% | - | 1 |
80% | 2 | 2 |
85% | - | 2 |
90% | 2 | 2 |
Property | X | Y | Z |
---|---|---|---|
Density | 7850 kg/m3 | ||
Modulus | 4.35 GPa | 16.3 GPa | 4.35 GPa |
Poisson Ratio | 0.28 | ||
Shear Modulus | 3.8 GPa (XY) | 4.5 GPa (YZ) | 3.8 GPa (XZ) |
Tensile Yield | 5 MPa | 128 MPa | 5 MPa |
Compressive Yield | 45 MPa | 84 MPa | 45 MPa |
Shear Yield | 15 MPa (XY) | 31 MPa (YZ) | 15 MPa (XZ) |
Coefficient | Value |
---|---|
(Arrhenius Term) | 0 |
Coefficient | Value |
---|---|
(Arrhenius Term) | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zanker, H.; Rajabipour, A.; Huang, D.; Bazli, M.; Tang, S.; Cui, Z.; Zhu, J.; Kennaway, J.; Diaz, L.H. Creep Analysis of Bamboo Composite for Structural Applications. Polymers 2023, 15, 711. https://doi.org/10.3390/polym15030711
Zanker H, Rajabipour A, Huang D, Bazli M, Tang S, Cui Z, Zhu J, Kennaway J, Diaz LH. Creep Analysis of Bamboo Composite for Structural Applications. Polymers. 2023; 15(3):711. https://doi.org/10.3390/polym15030711
Chicago/Turabian StyleZanker, Hayden, Ali Rajabipour, Dongsheng Huang, Milad Bazli, Siyuan Tang, Zhaoyan Cui, Jia Zhu, Joel Kennaway, and Luis Herrera Diaz. 2023. "Creep Analysis of Bamboo Composite for Structural Applications" Polymers 15, no. 3: 711. https://doi.org/10.3390/polym15030711
APA StyleZanker, H., Rajabipour, A., Huang, D., Bazli, M., Tang, S., Cui, Z., Zhu, J., Kennaway, J., & Diaz, L. H. (2023). Creep Analysis of Bamboo Composite for Structural Applications. Polymers, 15(3), 711. https://doi.org/10.3390/polym15030711