Biosorbent Based on Poly(vinyl alcohol)–Tricarboxi-Cellulose Designed to Retain Organic Dyes from Aqueous Media
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation and Physical–Chemical Characterization of Hybrid Hydrogel
2.2.2. Batch Biosorption Methodology
2.2.3. Physical–Chemical Characterization of Biosorbent
2.2.4. Modeling the Biosorption Experimental Data
- Freundlich (F)
- Langmuir (L)
- Dubinin–Radushkevich (DR)
2.3. The Study of the Thermodynamics of the Process
2.4. Error Analysis
3. Results and Discussion
3.1. Biosorbent Analysis Using SEM and EDX
3.2. The Value of Point of Zero Charge (pHPZC) for Hydrogel
3.3. Modeling the Biosorption Equilibrium Process
3.3.1. Assessment of a Some Operational Parameters Affecting the Biosorption Process
Influence of Solution pH
Influence of the Biosorbent Concentration
Influence of the Initial Dye Concentration and Temperature
3.3.2. Experimental Data Processing Based on Adsorption Isotherm Models
3.4. Thermodynamic Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Elgarahy, A.M.; Elwakeel, K.Z.; Mohammad, S.H.; Elshoubaky, G.A. A critical review of biosorption of dyes, heavy metals and metalloids from wastewater as an efficient and green process. Clean. Eng. Technol. 2021, 4, 100209. [Google Scholar] [CrossRef]
- Nasrollahi, Z.; Hashemi, M.-S.; Bameri, S.; Taghvaee, V.M. Environmental pollution, economic growth, population, industrialization, and technology in weak and strong sustainability: Using STIRPAT model. Environ. Dev. Sustain. 2020, 22, 1105–1122. [Google Scholar] [CrossRef]
- Cherniwchan, J. Economic growth, industrialization, and the environment. Resour. Energy Econ. 2012, 34, 442–467. [Google Scholar] [CrossRef]
- Hanafi, M.F.; Sapawe, N. A review on the water problem associate with organic pollutants derived from phenol, methyl orange, and remazol brilliant blue dyes. Mater. Today Proc. 2020, 31, A141–A150. [Google Scholar] [CrossRef]
- Sirajudheen, P.; Poovathumkuzhi, N.C.; Vigneshwaran, S.; Chelaveettil, B.M.; Meenakshi, S. Applications of chitin and chitosan based biomaterials for the adsorptive removal of textile dyes from water—A comprehensive review. Carbohydr. Polym. 2021, 273, 118604. [Google Scholar] [CrossRef]
- Khan, M.F.; Ahmed, H.; Almashhadani, H.A.; Al-Bahrani, M.; Khan, A.U.; Sharafat Ali Gul, N.; Hassan, T.; Ismail, A.; Zahid, M. Sustainable adsorptive removal of high concentration organic contaminants from water using biodegradable Gum-Acacia integrated magnetite nanoparticles hydrogel adsorbent. Inorg. Chem. Commun. 2022, 145, 110057. [Google Scholar] [CrossRef]
- Bucheli, T.D. Phytotoxins: Environmental Micropollutants of Concern? Environ. Sci. Technol. 2014, 48, 13027–13033. [Google Scholar] [CrossRef]
- Filote, C.; Rosca, M.; Hlihor, R.M.; Cozma, P.; Simion, I.M.; Apostol, M.; Gavrilescu, M. Sustainable Application of Biosorption and Bioaccumulation of Persistent Pollutants in Wastewater Treatment: Current Practice. Processes 2021, 9, 1696. [Google Scholar] [CrossRef]
- Crini, G.; Lichtfouse, E. Advantages and disadvantages of techniques used for wastewater treatment. Environ. Chem. Lett. 2019, 17, 145–155. [Google Scholar] [CrossRef]
- Hussain, S.; Khan, N.; Gul, S.; Khan, S.; Khan, H. Contamination of Water Resources by Food Dyes and Its Removal Technologies. In Water Chemistry; Eyvaz, M., Yüksel, E., Eds.; IntechOpen: Rijeka, Croatia, 2019. [Google Scholar] [CrossRef]
- Saini, R.D. Textile Organic Dyes: Polluting effects and Elimination Methods from Textile Waste Water. Int. J. Chem. Eng. Res. 2017, 9, 121–136. [Google Scholar]
- Zaharia, C.; Suteu, D. Organic Pollutants Ten Years after the Stockholm Convention—Environmental and Analytical Update; Puzyn, T., Mostrag-Szlichtyng, A., Eds.; Intech: Rijeka, Croatia, 2012; pp. 57–86. [Google Scholar]
- Duman, O.; Polat, T.G.; Diker, C.O.; Tunç, S. Agar/κ-carrageenan composite hydrogel adsorbent for the removal of Methylene Blue from water. Int. J. Biol. Macromol. 2020, 160, 823–835. [Google Scholar] [CrossRef]
- Liu, Q. Pollution and Treatment of Dye Waste-Water. IOP Conf. Ser. Earth Environ. Sci. 2020, 514, 052001. [Google Scholar] [CrossRef]
- Hanafi, M.F.; Sapawe, N. A review on the current techniques and technologies of organic pollutants removal from water/wastewater. Mater. Today Proc. 2020, 31, A158–A165. [Google Scholar] [CrossRef]
- Rafaqat, S.; Ali, N.; Torres, C.; Rittmann, B. Recent progress in treatment of dyes wastewater using microbial-electro-Fenton technology. RSC Adv. 2022, 12, 17104–17137. [Google Scholar] [CrossRef]
- Thirunavukkarasu, A.; Nithya, R.; Sivashankar, R. Continuous fixed-bed biosorption process: A review. Chem. Eng. J. Adv. 2021, 8, 100188. [Google Scholar] [CrossRef]
- Begum, S.; Naik, N.D.; Solapure, R.B.; Sampate, G.G.; Salunke, A.P.; Narwade, V.N.; Dadge, J.W.; Danková, Z.; Mahabole, M.P.; Bogle, K.A. Treatment of hazardous organic dye polluted waste water using nano-ceramic hydroxyapatite. AIP Conf. Proc. 2020, 2220, 020190. [Google Scholar] [CrossRef]
- Usman, M.; Zeb, Z.; Ullah, H.; Suliman, M.H.; Humayun, M.; Ullah, L.; Shah, S.N.A.; Ahmed, U.; Saeed, M. A review of metal-organic frameworks/graphitic carbon nitride composites for solar-driven green H2 production, CO2 reduction, and water purification. J. Environ. Chem. Eng. 2022, 10, 107548. [Google Scholar] [CrossRef]
- Duceac, I.A.; Tanasa, F.; Coseri, S. Selective Oxidation of Cellulose—A Multitask Platform with Significant Environmental Impact. Materials 2022, 15, 5076. [Google Scholar] [CrossRef]
- Suteu, D.; Zaharia, C.; Blaga, A.C. Biosorption-current bioprocess for wastewater treatment. In Current Topics, Concepts and Research Priorities in Environmental Chemistry; Zaharia, C., Ed.; Universitatii ‘Al.I. Cuza’ Iasi Publishing House: Iasi, Romania, 2012; Volume I, pp. 221–244. [Google Scholar]
- Zainal, S.H.; Mohd, N.H.; Suhaili, N.; Anuar, F.H.; Lazim, A.M.; Othaman, R. Preparation of cellulose-based hydrogel: A review. J. Mater. Res. Technol. 2021, 10, 935–952. [Google Scholar] [CrossRef]
- Rodriguez-Rodriguez, R.; Espinosa-Andrews, H.; Velasquillo-Martinez, C.; Garecia-Carvajal, Z.Y. Composite hydrogel based on gelatin, chitosan and polyvinyl alcohol to biomedical application: A review. Int. J. Polym. Mater. Polym. Biomater. 2020, 69, 1–20. [Google Scholar] [CrossRef]
- Shen, X.; Sun, R. Recent advanced in lignocellulose prior-fractionation for biomaterials, biochemical and bioenergy. Carbohydr. Polym. 2021, 261, 117884. [Google Scholar] [CrossRef] [PubMed]
- Kee, S.H.; Chiongsoa, J.B.V.; Saludes, J.P.; Vigneswari, S.; Ramakrishna, S.; Bhubalan, K. Bioconversion of agro-industry sourced biowaste into biomaterials via microbial factories-A viable domain of circular economy. Environ. Pollut. 2021, 271, 116311. [Google Scholar] [CrossRef] [PubMed]
- Kundu, R.; Mahada, P.; Chhiang, B.; Das, B. Cellulose hydrogel: Green and sustainable soft biomaterials. Curr. Res. Green Sustain. Chem. 2022, 5, 100252. [Google Scholar] [CrossRef]
- Iber, B.T.; Kasan, N.A.; Torsabo, D.; Omuwa, J.W. A review of various sources of chitin and chitosan in nature. J. Renew. Mater. 2022, 10, 1097. [Google Scholar] [CrossRef]
- Ozel, N.; Elibol, M. A review on the potential uses of deep eutectic solvents in chitin and chitosan related processes. Carbohydr. Polym. 2021, 262, 117942. [Google Scholar] [CrossRef] [PubMed]
- Maliki, S.; Sharma, G.; Kumar, A.; Moral-Zamorano, M.; Moradi, O.; Baselga, J.; Stadler, F.J.; García-Peñas, A. Chitosan as a Tool for Sustainable Development: A Mini Review. Polymers 2022, 14, 1475. [Google Scholar] [CrossRef]
- Ahmed, M.J.; Hameed, B.H.; Hummadi, E.H. Review on recent progress in chitosan/chitin-carbonaceous material composites for the adsorption of water pollutants. Carbohydr. Polym. 2020, 247, 116690. [Google Scholar] [CrossRef]
- Ayub, A.; Srithilat, K.; Fatima, I.; Panduro-Tenazoa, N.M.; Ahmed, I.; Akhtar, M.U.; Shabbir, W.; Ahmad, K.; Muhammad, A. Arsenic in drinking water: Overview of removal strategies and role of chitosan biosorbent for its remediation. Environ. Sci. Pollut. Res. 2022, 29, 64312. [Google Scholar] [CrossRef]
- Mo, J.; Yang, Q.; Zhang, N.; Zhang, W.; Zheng, Y.; Zhang, Z. A review on agro-industrial waste (AIW) derived adsorbents for water and wastewater treatment. J. Environ. Manag. 2018, 227, 395. [Google Scholar] [CrossRef]
- Mahato, N.; Sharma, K.; Sinha, M.; Baral, E.R.; Koteswararao, R.; Dhyani, A.; Cho, M.H.; Cho, S. Bio-sorbents, industrially important chemicals and novel materials from citrus processing waste as a sustainable and renewable bioresource, A review. J. Adv. Res. 2020, 23, 61. [Google Scholar] [CrossRef]
- Amalina, F.; Razak, A.S.A.; Krishnan, S.; Zularisam, A.W.; Nasrullah, M. The effects of chemical modification on adsorbent performance on water and wastewater treatment—A review. Bioresour. Technol. Rep. 2022, 20, 101259. [Google Scholar] [CrossRef]
- Zaharia, C. Application of Waste Materials as ‘Low Cost’ Sorbents for Industrial Effluent Treatment. A Comparative Overview. Int. J. Mater. Prod. Technol. 2015, 50, 196. [Google Scholar] [CrossRef]
- Torres, E. Biosorption: A Review of the Latest Advances. Processes 2020, 8, 1584. [Google Scholar] [CrossRef]
- Sah, M.K.; Edbey, K.; EL-Hashani, A.; Almshety, S.; Mauro, L.; Alomar, T.S.; AlMasoud, N.; Bhattarai, A. Exploring the Biosorption of Methylene Blue Dye onto Agricultural Products: A Critical Review. Separations 2022, 9, 256. [Google Scholar] [CrossRef]
- Hokkanen, S.; Bhatnagar, A.; Sillanpaa, M. A review on modification n methods to cellulose-based adsorbents to improve adsorption capacity. Water Res. 2016, 91, 156. [Google Scholar] [CrossRef]
- Batooll, F.; Akbar, J.; Igbal, S.; Noreen, S.; Bukhari, S.N.A. Study of isothermal, kinetic and thermodynamic parameters for adsorption of cadmiu: Am overview of linear and nonlinear approach and error analysis. Bioinorg. Chem. Appl. 2018, 2018, 3463724. [Google Scholar]
- Pavan–Kumar, G.U.S.R.; Malta, K.A.; Yerra, B.; Rao, K.S. Removal of Cu (II) using three low-cost adsorbents and prediction of adsorption using artificial neural networks. Appl. Water Sci. 2019, 9, 44. [Google Scholar] [CrossRef] [Green Version]
- Beni, A.; Esmaeili, A. Biosorption, an efficient method for removing heavy metals from industrial effluents: A review. Environ. Technol. Innov. 2020, 17, 100503. [Google Scholar] [CrossRef]
- Blaga, A.C.; Zaharia, C.; Suteu, D. Polysaccharides as Support for Microbial Biomass-Based Adsorbents with Applications in Removal of Heavy Metals and Dyes. Review. Polymers 2021, 13, 2893. [Google Scholar] [CrossRef]
- Kyzas, G.Z.; Kostoglon, M. Green adsorbants for wastewaters: A critical review. Materials 2014, 7, 333. [Google Scholar] [CrossRef]
- Hamad, H.N.; Idrus, S. Recent Developments in the Application of Bio-Waste-Derived Adsorbents for the Removal of Methylene Blue from Wastewater: A Review. Polymers 2022, 14, 783. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.T.C.; Tran, T.V.; Kumar, P.S.; Din, A.T.M.; Jalil, A.A.; Vo, D.-V.N. Invasive plants as biosorbents for environmental remediation: A review. Environ. Chem. Lett. 2022, 20, 1421–1451. [Google Scholar] [CrossRef]
- Kyzas, G.Z.; Bikiaris, D.N. Recent Modifications of Chitosan for Adsorption Applications: A Critical and Systematic Review. Mar. Drugs 2015, 13, 312. [Google Scholar] [CrossRef] [PubMed]
- Abegunde, S.M.; Idown, K.S.; Adejuwon, O.M.; Adeyemi-Adejolu, T. A review on the influence of chemical modification on the performance of adsorbents, resources. Environ. Sustain. 2020, 1, 10001. [Google Scholar]
- Nasrullah, A.; Bhat, A.H.; Isa, M.H. Lignin: A sustainable biosorbent for heavy metal adsorption from wastewater: A review. AIP Conf. Proc. 2016, 1787, 040001. [Google Scholar]
- Kumar, R.; Sharma, R.K.; Singh, A.P. Cellulose based grafted biosorbents - Journey from lignocellulose biomass to toxic metal ions sorption applications—A review. J. Mol. Liq. 2017, 232, 62. [Google Scholar] [CrossRef]
- Green Adsorbent for pollutant removal. In Fundamental and Design; Crini, G.; Lichtfouse, E. (Eds.) Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Yue, X.; Huang, J.; Jiang, F.; Lin, H.; Chen, Y. Synthesis and characterization of cellulose-based adsorbent for removal of anionic and cationic dyes. J. Eng. Fibers Fabr. 2019, 14, 155892501982819. [Google Scholar] [CrossRef] [Green Version]
- Wang, D. A critical review of cellulose-based nanomaterials for water purification in industrial processes. Cellulose 2019, 26, 687. [Google Scholar] [CrossRef]
- Varaprasad, K.; Raghavendra, G.M.; Jayaramudu, T.; Yallapu, M.M.; Sadiku, R. A mini review on hydrogels classification and recent developments in miscellaneous application. Mater. Sci. Eng. 2017, 79, 958. [Google Scholar] [CrossRef]
- Shalla, A.H.; Yaseen, Z.; Bhat, M.A.; Rangreez, A.; Maswall, M. Recent review for removal of metal ions by hydrogel. Sep. Sci. Technol. 2019, 54, 89. [Google Scholar] [CrossRef]
- Bashir, S.; Hina, M.; Igbal, J.; Rajpar, A.H.; Mujtaba, M.A.; Alghamdi, N.A.; Wageh, S.; Ramesh, K.; Ramesh, S. Fundamental Concepts of Hydrogels: Synthesis, Properties and their Applications. Polymers 2020, 12, 2702. [Google Scholar] [CrossRef] [PubMed]
- Akter, M.; Bhattacharjee, M.; Dhar, A.K.; Rahman, F.B.A.; Haque, S.; Rashid, T.U.; Kabir, S.M.F. Cellulose-Based Hydrogels for Wastewater Treatment: A Concise Review. Gels 2021, 7, 30. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Zhang, D.; Xu, W.; Ding, W.-P.; Zhu, Z.-Z.; He, J.-R.; Cheng, S.-Y. Polysaccharide-Based Hydrogels Derived from Cellulose: The Architecture Change from Nanofibers to Hydrogels for a Putative Dual Function in Dye Wastewater Treatment. J. Agric. Food Chem. 2020, 68, 9725–9732. [Google Scholar] [CrossRef]
- Kabir, S.K.F.; Sikdar, P.P.; Haque, B.; Bhuiyan, M.A.R.; Ali, A.; Islam, M.N. Cellulose–based hydrogel materials: Chemistry, properties and their prospective applications. Prog. Biomater. 2018, 7, 153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plucinski, A.; Lyu, Z.; Schmidt, B.V.K.J. Polysaccharide nanoparticles: From fabrication to applications. J. Mater. Chem. B 2021, 9, 7030. [Google Scholar] [CrossRef] [PubMed]
- Ullah, F.; Othman, M.B.H.; Javed, F.; Ahmad, Z.; Akil, H.M. Classification, processing and application of hydrogels: A review. Mater. Sci. Eng. C 2015, 57, 414. [Google Scholar] [CrossRef]
- Baron, R.I.; Culica, M.E.; Biliuta, G.; Bercea, M.; Gherman, S.; Zavastin, D.; Ochiuz, L.; Avadanei, M.; Coseri, S. Physical hydrogels of oxidized polysacharides and poly(vinul alcohol) for wound dressing applications. Materials 2019, 12, 1569. [Google Scholar] [CrossRef] [Green Version]
- Nica, I.; Zaharia, C.; Baron, R.I.; Coseri, S.; Suteu, D. Adsorptive materials based on cellulose: Preparation, characterization and applications for Cooper ions retention. Cell. Chem. Technol. 2020, 54, 579. [Google Scholar] [CrossRef]
- Nica, I.; Zaharia, C.; Suteu, D. Hydrogel Based on Tricarboxi-Cellulose and Poly(Vinyl Alcohol) Used as Biosorbent for Cobalt Ions Retention. Polymers 2021, 13, 1444. [Google Scholar] [CrossRef]
- Nica, I.; Baron, R.I.; Biliuta, G.; Coseri, S.; Suteu, D. Preliminary assessments about the sorbtive properties of new types of TEMPO-oxidized cellulose and Pullulan-PVA hybrid hydrogels: Organic dyes and metallic ions retentions. Bull. IPI 2018, 64, 33. [Google Scholar]
- Stavrinou, A.; Aggelopoulos, C.A.; Tsakiroglou, C.D. A Methodology to Estimate the Sorption Parameters from Batch and Column Tests: The Case Study of Methylene Blue Sorption onto Banana Peels. Processes 2020, 8, 1467. [Google Scholar] [CrossRef]
- Saad, M.S.; Balasubramaniam, L.; Wirzal, M.; Abd Halim, N.S.; Bilad, M.R.; Md Nordin, N.; Putra, Z.A.; Ramli, F.N. Integrated Membrane-Electrocoagulation System for Removal of Celestine Blue Dyes in Wastewater. Membranes 2020, 10, 184. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, C.; Dutta, S.; Saxena, V.K. A review on biosorptive removal of dyes and heavy metals from wastewater using watermelon rind as biosorbent. Environ. Adv. 2020, 2, 100007. [Google Scholar] [CrossRef]
- Nouri, S.; Haghseresht, F. Adsorption of p-nitrophenol in untreated and treated activated carbon. Adsorption 2004, 10, 79. [Google Scholar] [CrossRef]
- Giles, C.H.; MacEwan, T.H.; Nakhwa, S.; Smith, D. Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids. J. Chem. Soc. 1960, 111, 3973–3993. [Google Scholar] [CrossRef]
- Fontana, K.B.; Chaves, E.S.; Sanchez, J.D.S.; Watanabe, E.R.L.R.; Pietrobelli, J.M.T.A.; Lenzi, G.G. Textile dye removal from aqueous solutions by malt bagasse: Isotherm, kinetic and thermodynamic studies. Ecotoxicol. Environ. Saf. 2016, 124, 329. [Google Scholar] [CrossRef]
- Gedam, V.V.; Raut, P.; Chahande, A.; Pathak, P. Kinetic, thermodynamics and equilibrium studies on the removal of Congo red dye using activated teak leaf powder. Appl. Water Sci. 2019, 9, 44. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Yang, C.; Xu, X.; Miao, C.; He, T.; Jiang, B.; Wu, W. Preparation of Bio-Based Aerogel and Its Adsorption Properties for Organic Dyes. Gels 2022, 8, 755. [Google Scholar] [CrossRef] [PubMed]
- Nakhjiri, M.T.; Marandi, G.B.; Kurdtabar, M. Poly(AA-co-VPA) hydrogel cross-linked with N-maleyl chitosan as dye adsorbent: Isotherms, kinetics and thermodynamic investigation. Int. J. Biol. Macromol. 2018, 117, 152. [Google Scholar] [CrossRef]
- Melo, B.C.; Paulino, F.A.A.; Cardoso, V.A.; Pereira, A.G.B.; Fajardo, A.R.; Rodrigues, F.H.A. Cellulose nanowhiskers improve the methylene blue adsorption capacity of chitosan-g-poly(acrylic acid) hydrogel. Carbohydr. Polym. 2018, 181, 358. [Google Scholar] [CrossRef]
- Vaz, M.G.; Pereira, A.G.B.; Fajardo, A.R.; Azevedo, A.C.N.; Rodrigues, F.H.A. Methylene blue adsorption on chitosan-g-poly(acrylic acid)/rice husk ash superabsorbent composite: Kinetics, equilibrium, and thermodynamics. Water Air Soil Pollut. 2017, 228, 14. [Google Scholar] [CrossRef]
- Li, B.; Yin, H. Excellent biosorption performance of novel alginate-based hydrogel beads crosslinked by lanthanum(III) for anionic azo-dyes from water. J. Dispers. Sci. Technol. 2021, 12, 1830. [Google Scholar] [CrossRef]
- Asadi, S.; Eris, S.; Azizian, S. Alginate-Based Hydrogel Beads as a Biocompatible and Efficient Adsorbent for Dye Removal from Aqueous Solutions. ACS Omega 2018, 3, 15140. [Google Scholar] [CrossRef]
- Doke, K.M.; Khan, E.M. Adsorption thermodynamics to clean up wastewater; critical review. Rev. Environ. Sci. Bio./Technol. 2013, 12, 25–44. [Google Scholar] [CrossRef]
Isotherm | Temperature | ||
---|---|---|---|
5 °C | 20 °C | 50 °C | |
Freundlich | |||
KF ((mg/g) (L/mg)1/n) | 1.439 ± 0.743 | 6.727 ± 1.388 | 20.337 ± 1.727 |
n | 0.802 ± 0.11 | 1.0768 ± 0.0792 | 1.481 ± 0.081 |
R2 | 0.932 | 0.972 | 0.991 |
χ2 | 10.779 | 5.592 | 1.879 |
RMSE | 16.062 | 12.005 | 7.607 |
Langmuir: | |||
Langmuir I: (1/q = f (1/C)) | |||
q0 (mg/g) | 2557.54 ± 0.00094 | 806.45 ± 0.00139 | 199.203 ± 0.0003 |
KL (L/g) | 0.0013 ± 0.00145 | 0.00799 ± 0.0036 | 0.0997 ± 0.00386 |
R2 | 0.9903 | 0.9638 | 0.9987 |
χ2 | 2.089 | 3.7688 | 1.8322 |
RMSE | 8.905 | 11.9792 | 8.6947 |
Langmuir II: (C/q = f (C)) | |||
q0 (mg/g) | 588.23 | 625.00 | 222.22 |
KL (L/g) | 0.0063 | 0.0104 | 0.0789 |
R2 | 0.448 | 0.443 | 0.943 |
Dubinin–Radushkevich (DR): | |||
q0 (mg/g) | 23,711.99 ± 0.752 | 7532.23 ± 0.3397 | 2638.05 ± 0.1724 |
β (mol2 /kJ2) | 0.0119 ± 0.00146 | 0.0076 ± 0.000547 | 0.0042 ± 0.0021 |
E (kJ /mol) | 6.482 ± 0.4002 | 8.1 ± 0.016 | 10.859 ± 0.269 |
R2 | 0.943 | 0.9798 | 0.9927 |
χ2 | −0.01902 | −0.00547 | −0.0016 |
RMSE | 0.2057 | 0.1065 | 0.0559 |
Biosorbent | Dye | Biosorption Capacity (mg/g) | Ref. |
---|---|---|---|
CaCO3@starch/polyacrylamide/TEMPO-oxidized nanocellulose, CaCO3@STA/PAM/TOCN | Congo red (CR) Methylene Blue (MB) | 277.76/101.01 | [72] |
N-maleyl chitosan cross-linker | Methylene Blue and Crystal Violet | 66.89/64.56 | [73] |
cross-linked chitosan hydrogels | Methylene Blue | 1968 | [74] |
cross-linked chitosan hydrogels | Methylene Blue | 1952 | [75] |
lanthanum-sodium alginate hydrogel | anionic azo-dyes: Direct Green 1 (DG 1) and Acid Blue 113 (AB 113) | 909/983 | [76] |
calcium alginate hydrogel beads | Methyl Violet | 1151 | [77] |
hybrid hydrogel from 2,3,6 tricarboxycellulose and poly(vinyl alcohol) (PVA) (OxC25) | Methylene Blue | 806.45 | this study |
T (K) | KL, L/g | ΔG0 (J/mol) | ΔH0 (kJ/mol) | ΔS0 (J/mol K) |
---|---|---|---|---|
278 | 0.00133 | 1974.305 | - | - |
293 | 0.00774 | −2208.48 | −71.686 | 249.852 |
323 | 0.09921 | −9285.65 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tataru-Farmus, R.-E.; Cimpoesu, R.; Nica, I.; Suteu, D. Biosorbent Based on Poly(vinyl alcohol)–Tricarboxi-Cellulose Designed to Retain Organic Dyes from Aqueous Media. Polymers 2023, 15, 715. https://doi.org/10.3390/polym15030715
Tataru-Farmus R-E, Cimpoesu R, Nica I, Suteu D. Biosorbent Based on Poly(vinyl alcohol)–Tricarboxi-Cellulose Designed to Retain Organic Dyes from Aqueous Media. Polymers. 2023; 15(3):715. https://doi.org/10.3390/polym15030715
Chicago/Turabian StyleTataru-Farmus, Ramona-Elena, Ramona Cimpoesu, Iulia Nica, and Daniela Suteu. 2023. "Biosorbent Based on Poly(vinyl alcohol)–Tricarboxi-Cellulose Designed to Retain Organic Dyes from Aqueous Media" Polymers 15, no. 3: 715. https://doi.org/10.3390/polym15030715
APA StyleTataru-Farmus, R. -E., Cimpoesu, R., Nica, I., & Suteu, D. (2023). Biosorbent Based on Poly(vinyl alcohol)–Tricarboxi-Cellulose Designed to Retain Organic Dyes from Aqueous Media. Polymers, 15(3), 715. https://doi.org/10.3390/polym15030715