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Abstract: In this study, a green chemistry method was used to synthesize polymer composites based
on polyethylene oxide (PEO). The method of the remediation of metal complexes used in this study is
an environmentally friendly procedure with a low cost. Zinc metal ion (Zn2+)-polyphenol (PPHNL)
complexes were synthesized for two minutes via the combination of a black tea leaf (BTL) extract
solution with dissolved Zn-acetate. Then, UV–Vis and FTIR were carried out for the Zn-PPHNL
complexes in a liquid and solid. The FTIR spectra show that BTLs contain sufficient functional groups
(O-H, C-H, C=O, C=C, C-O, C-N, and N-H), PPHNL, and conjugated double bonds to produce
metal complexes by capturing the cations of Zn-acetate salt. Moreover, FTIR of the BTL and Zn–
PPHNL complexes approves the formation of the Zn-PPHNL complex over the wide variation in the
intensity of bands. The UV absorption spectra of BTL and Zn-PPHNL indicate complex formation
among tea PPHNL and Zn cations, which enhances the absorption spectra of the Zn-PPHNL to
0.1 compared to the figure of 0.01 associated with the extracted tea solution. According to an XRD
analysis, an amorphous Zn-PPHNL complex was created when Zn2+ ions and PPHNL interacted.
Additionally, XRD shows that the structure of the PEO composite becomes a more amorphous
structure as the concentration of Zn-PPHNL increases. Furthermore, morphological study via an
optical microscope (OM) shows that by increasing the concentration of Zn-PPHNL in a PEO polymer
composite the size of the spherulites ascribed to the crystalline phase dramatically decreases. The
optical properties of PEO: Zn-PPHNL films, via UV–Vis spectroscopy, were rigorously studied. The
Eg is calculated by examining the dielectric loss, which is reduced from 5.5 eV to 0.6 eV by increasing
the concentration of Zn-PPHNL in the PEO samples. In addition, Tauc’s form was used to specify the
category of electronic transitions in the PEO: Zn-PPHNL films. The impact of crystalline structure
and morphology on electronic transition types was discussed. Macroscopic measurable parameters,
such as the refractive index and extinction coefficient, were used to determine optical dielectric loss.
Fundamental optical dielectric functions were used to determine some key parameters. From the
viewpoint of quantum transport, electron transitions were discussed. The merit of this work is that
microscopic processes related to electron transition from the VB to the CB can be interpreted interms
of measurable macroscopic quantities.

Keywords: polymer composite; black tea PPHNL; green inorganic metal complex; XRD and FTIR;
morphology; optical properties; quantum transport
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1. Introduction

The increasing demand for flexible polymer composites with narrow optical band
gaps (OBGs) for application in solar cells and optoelectronic devices is in progress [1].
Manipulation of the OBGs of polymers toward minimization via the incorporation of
inorganic complexes as additive fillers plays a crucial role. These metals possess high
atomic masses and atomic density; as a result, they have widely been utilized in the solar
energy industry [2,3]. These dopants, however, are not free of harmfulness as well as
destructivity when introduced into the environment as waste materials. Despite their
toxicity, metals have played a considerable role in the advancement of current science; for
instance, in biology, chemistry, and engineering a high concentration level of metals results
in environmental problems with serious implications for the environment and human
health, which are extremely difficult to remedy [4,5].

To provide more biocompatible materials, a new method of green chemistry reme-
diation has been followed to replace unsafe and hazardous heavy metal ions by a black
tea extract solution. It is totally environmentally friendly and reduces health hazards for
researchers as well as the whole environment. According to several reports, drinking tea
contains antioxidant, anti-inflammatory, cancer-preventing, and heart-disease-reducing
properties. The polyphenol (PPHNL)in black tea also contains amino acids, alkaloids, cate-
chins (CTHs), theaflavins, their isomers, and other tea PPHNL derivatives. The components
of black tea’s most precise chemical or molecular structures can be found elsewhere [4,5].
Along with a certain amount of CTH, the mixture also contains theaavins, thearubigins,
and other CTH polymeric pigments that are important in producing metal complexes by
capturing the cations of transition metals. A recent review by Drynan et al. found that
black tea in an aqueous mixture is especially rich in PPHNL, PPHNL conjugates, and
polymerized phenolic structures, which are the main components of tea. Additionally,
black, green, and white teas include a variety of conjugated flavonoids [6]. Tea, which is
produced from the leaves of the Camellia sinensis plant, is the most popular drink in the
world. Depending on the degree of oxidation, tea can be divided into three main categories:
unfermented green, moderately fermented Oolong, and fermented black tea [7]. The major
components of tea extracts, as proven by HPLC observations in previous research, were
PPHNLs, and their molecular representations can be seen elsewhere [8,9]. Earlier studies
have also shown that green and black tea extract solutions included substantive amounts
of conjugated double bonds, hydroxyl (OH), carboxylic groups, PPHNLs, and PPHNL
conjugates [10,11]. These entities in tea dye contain a large number of conjugated ligands
and functional groups that are crucial for the creation of metal complexes.

During the mass convey procedure recognized as sorption, a material is converted
from a liquid into a solid, with the substance being attached by physical and/or chemical
interactions. Sorption provides a less expensive choice compared to predictable methods
owing to the large surface area, high sorption ability, and reactive surface of sorbents [12].
Brza, M.A. et al. investigated the capability of green chemistry to capture positively
charged ions of transition metal salts as a replacement bioremediation for the production
of organometallic-based products (e.g., copper chloride) [13]. In the same domain, organic–
inorganic hybrid materials have undergone intensive studies and substantial progress has
been achieved, exhibiting the fact that the field is an unquestionably major area of study;
the results have shown clear evidence of the combination of organic and inorganic localized
structures, which offer a great opportunity for preparing a variety of polymer composites.
However, experts in this subject have suggested a variety of architectures, with various
degrees of difficulty in practical execution, for handling the complexity associated with the
drawing of materials with limited compatibility with one another [14].

Understanding and advancing future technologies depend greatly on fundamental
research. Structure and composition manipulation bring up a wide range of possibilities
for the development of innovative, high-performance materials. By the middle of this
century, it is expected that global energy consumption will have tripled from its current
level of 16 terawatts. Concerns over global warming and carbon emissions have motivated
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comprehensive research on solar cells as a sustainable replacement for fossil fuels. Conse-
quently, recent years have seen an increase in interest in the technological development of
photovoltaics [15]. As an alternative to purely organic solar cells (OSCs), organic–inorganic
hybrid solar cells (HSCs), which combine organic and inorganic semiconductors, have
received a considerable amount of research. Combining various inorganic semiconductors
with organic semiconductors, as the active layer of devices, has been used to demonstrate
this sort of solar cell [15,16]. Direct optical bad gap (OBG) semiconductor materials are
widely used in solar cells and optoelectronic devices. Their significance is due to the fact
that electrons can directly migrate to the conduction band after absorbing photon energy,
whereas phonons are implicated in indirect OBG semiconductors, causing heating impacts
and lowering device reliability. On the other hand, in broad OBG semiconductors interband
transitions are more important processes compared to intraband transitions. Valence band
to the conduction band, deep- and shallow-level transitions; both may occur in interband
transitions [17]. When it comes to materials science research, molecular charge transfer (CT)
systems have become an attractive and practical target, as they are tightly associated with
magnetic change, transport photonic, dielectric, and structure properties. CT complexes
play an important role in many electrophysical and optical phenomena, revealing impor-
tant optical, electrical, and photoelectric features [18]. Knowing the optical absorption
spectra in polymer composites is sufficient for finding out more about the OBG and band
structure [19]. Furthermore, the optical characterization of polymer composites is helpful
in identifying the role of defects and, consequently, in choosing polymeric materials for
particular applications [20].

In our understanding, there is little published research on the optical characteristics
of PEO-based composites. Polar polymers such as PVA, PEO, chitosan, MC, and PMMA
are insulators in their pure state. In our previous work we showed that semiconductors
and metallic powders modify the optical properties of insulating polymers [16,17,19,20].
Based on our recent study, metal complexes produced by green remediation are crucial
for the band gap variation of polar polymers [13]. In this study, a green-synthesized metal
complex will be added to PEO to reduce its OBG to a desired range that makes it suitable
for optoelectronic applications.

The investigation of optical characteristics reveals that using green chemistry to fabri-
cate polymer composites with excellent control over OBGs is a novel approach. Another
merit of the current study is that microscopic processes related to electron transition from
the VB to the CB in condensed matter physics can be interconnected with measurable
macroscopic quantities. The findings imply that utilizing narrow-OBG PEO with superior
film formation can eliminate limitations in longevity, cost, and flexibility, which limit the
usage of conjugated polymers and help balance cost and performance.

2. Methodology
2.1. Materials and Sample Preparation

A facile and straightforward extraction methodology was followed to collect extracts
(natural colorant tea) from black tea leaves by using distilled hot water [21]. Accordingly,
20 g of black tea leaves was added to 250 mL of distilled hot water, keeping the temperature
at 90 ◦C, followed by cooling to ambient temperature. Subsequently, to remove undesired
residue, Whatman filter paper (Whatman 41, cat. no. 1441) with a 20µm pore size was used.

Zinc acetate, Zn (CH3CO2)2.2H2O [MW = 219.51 g/mole], was purchased from Sigma-
Aldrich. The Zn-PPHNL material was prepared upon the addition of 2.5 g of zinc acetate in
to the pure colorant tea solution at 80 ◦C; subsequently, stirring of the mixture was carried
out for 120 min. During the process of stirring, the dark tea solution changed to brown,
accompanied by precipitate appearance in the form of a cloud at the bottom of the beaker
as an indicator of Zn-PPHNL-based material formation. The Zn-PPHNL-based material
preparation is illustrated in a scheme shown in Figure 1. The mixture was allowed to
cool to room temperature and then the Zn-PPHNL-based material was separated using
a centrifuge method. Finally, the Zn-PPHNL-based material was dispersed in 100 mL of
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distilled water after washing it several times. The method of the preparation of the Zn-
PPHNL complex through a coordination approach, shown in Figure 1, follows a biosorption
approach, which is an environmental remediation method; toxic materials can be captured
and separated.

Forthepolymercompositeandpolymerfilms,PEOpowdermaterialwith[MW = 2× 106 g/mole]
was purchased from Sigma-Aldrich. The creation of solid polymer (SP) films based on
PEO combined with Zn-PPHNL-based material was carried out by using the well-known
solution cast process. Preparation of the PEO polymer solution begins by adding 80 mL of
acetonitrile to three batches of 1 gm of PEO powder, followed by a magnetic stirrer stirring
for 60 min. Then, 10 and 20 mL of the Zn-PPHNL-based material solution are separately
added to the first and the second homogeneous PEO solutions in 10 mL steps, keeping the
third batch a pure PEO solution. The mixtures were steadily stirred for 3 h until homogenous
solutions were achieved. The samples were labeled as PEOZn0, PEOZn1, and PEOZn2 for
pure samples and PEOs filled with 0, 10, and 20 mL of Zn-PPHNL-based material solution,
respectively. The solid polymer composite films were made by adding the solutions into
several dry Petri dishes, allowing them to dry for a week at room temperature. About 5 films
from each sample were prepared to guarantee quantitative results’ reproducibility, as well
as to allow us to choose the optimum films. Further drying of the films was carried out in a
desiccator filled with a proper quantity of blue silica gel prior to characterizations.
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Figure 1. Schematic representing sample preparation.

2.2. Spectroscopic Studies

Within a wavenumber range of 400 to 4000 cm −1, and a resolution of 2 cm−1, the
samples were analyzed by using a Spotlight spectrophotometer (Nicolet iS10 FTIR). The
UV–Vis Perkin Elmer double-beam UV–Vis–NIR spectrometer (Lambda 25) absorption
was used to acquire the UV–Vis spectra of the synthesized series of samples, including
PEOZn0, PEOZn1, and PEOZn2 films. X-ray diffraction (XRD) spectra were recorded
in order to understand the structural profiles for all of the synthesized films. Under the
condition of glancing angles in the range of (10◦ ≤ 2θ ≤ 80◦) in a 0.1◦ step size, an X’Pert
pro diffractometer (Pan Analytical) was used. Further characterization comprises the
optical micrograph (OM) images captured of the surface microstructures of the films. The
morphology of the composites was characterized by an optical microscope (Am Scope,
Fixed Microscope Adapter FMA 050) with a digital camera (14 MP APTINA COLOR CMOS
ULTRA-FINE COLORE ENGINE INSIDE).

3. Results and Discussion
3.1. XRD Analysis

An X-ray diffractometer (XPERT-PRO) with a source of Cu kα and wavelength
(0.154 nm) was employed to record the polymer films’ XRD patterns at room temper-
ature, with Bragg’s angle (2θ) in the range of 10 to 80◦ and a scan rate of 2 min−1. The XRD
pattern of the Zn-PPHNL complex is demonstrated in Figure 2. The structure of the gen-
erated Zn-PPHNL complex is predominantly amorphous because there are no crystalline
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peak appearances over the entire range of 2θ◦. From 2θ = 25◦ to 2θ = 41.45◦, only the hump
is apparent (Figure 2). Figure 3 displays the X-ray spectra for PEO films. Pure PEO exhibits
a sharp peak of intensity at 19.25◦, another maximum at 23.45◦, indicating high-intensity
diffraction peaks, and some tiny bumps at higher angles. As a general principle, as a
polymer crystallizes organized structures appear hierarchically at different length scales.
The folding of a polymer chain typically leads to the formation of a folded-chain lamellar
crystal with a distinct period over the molecular dimension. This chain-folding structure
experiences free development in two lateral dimensions. There is, however, a restriction
in the chain extension propagation, where the majority of the flaws are concentrated on
the folding surfaces [22]. The peaks that appeared in Figure 3 were caused by strong
intermolecular interactions between PEO chains connected by hydrogen bonds and the
order of the polyether side chains [23–25]. This result is similar to earlier results from [26],
which showed that the crystalline peaks for a pure PEO sample occurred at these specific
angles. From the characteristic diffraction peaks, one can recognize whether the surfaces
of the PEO polymers are crystalline or semicrystalline [27–29]. Looking at PEO as a linear
and semicrystalline polymer, its structural components, including the C-H, C-C, and C-O
bonds, lead to keeping the PEO polymer’s crystalline structure, chemically as well as elec-
trochemically [30]. Rajeh et al. recently stated that peaks at about 22◦ and 18◦ correspond
to the (112) and (120) planes [22]. It is clearly observed that as a convenient amount of
Zn-PPHNL (20 mL) is added to the matrix of a PEO polymer, the relative intensities of the
peaks of the XRD decline and are accompanied with the growth of the amorphous behavior
of composite films. The declining of peak intensities is caused by the structural reformation
ofO-polar groups in the chemical formation of PEO, creating desired interaction with the
dopants [31]. In general, there are two kinds of polymers: crystalline and amorphous
polymers. The former possess reflected planes, thereby giving miller indices because of a
compact crystal assembly of stereo-regular chains. On the other hand, amorphous polymers
experience a rubbery or glassy behavior [31]. Bandara et al. observed spherulites in PEO
that blended with an Al2O3 filler as a result of the existence of a crystalline phase [32].
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3.2. FTIR Analysis

FTIR was used to identify and describe the functional groups of BTL extract solution.
The functional groups of the BTL sample could be obtained by analyzing the spectral range
between 400 and 4000 cm−1, since it allows for the identification of the vibrational frequency
of the chemical bonds that make up both inorganic and organic molecules. Absorption at
functional groups occurs as a result of vibrations in a certain frequency band and exhibits a
clear feature of IR absorption [33]. Figure 4 displays the FTIR spectra of BTL extracts. The
broad band detected at 3373 cm−1 is linked to wide O-H and N-H stretching vibrations of
PPHNL [34,35]. Previously, there was confirmation that the stretching modes of N-H in
(secondary and primary) amide and amine, O-H in phenols, alcohols, and carboxylic acids,
occupy the range of 3411 to 3370 cm−1. Moreover, the C-H stretching vibrations of aliphatic
and carboxylic groups have a peak position between 2930 cm−1 and 2854 cm−1 [36].
Importantly, the carbonyl bonds (C=O) of catechins’ PPHNL and flavonoids have the mode
of stretching vibrations, giving peaks at 1654 cm−1 [37,38]. Interestingly, PPHNL and
caffeine have the strong appearance of a peak for the alkene group (C=C), stretching at
1517 cm−1, and C=C vibrations of aromatic compounds peak at 1517 cm−1. The stretching
mode within the aromatic compounds is identified at 1480 cm−1 [39,40]. Within the 1440 to
1410 cm−1 range, a new wideband is recorded for both carbonate C-O stretch vibrations
and carboxylic acid O-H in a bent plane [41]. For a number of compounds, including
carboxylic acids, esters, and alcohols, a sharp and strong peak lies at 1036 cm−1; identifying
the stretching modes of C-O and the stretching vibration peaks around1236 cm−1 originates
from the C-N vibrations in aliphatic amine groups [39,40]. The recorded FTIR spectra in the
present study for BTLs is relatively analogous to those reported in the literature for green
and black teas [33,36,41–45]. Both the bending and stretching vibrations in pyrimidine,
imidazole, carbonyl, and methyl groups are in good accordance with the bands in the
caffeine spectra that change between 1700 cm−1 and 400 cm−1 [46–48].
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According to published research, PPHNL and metal cations can combine to produce
cation–PPHNL complexes [48–50]. Additionally, Al+3, Cd+2, and Ce+2-PPHNL complexes
were reported in [50,51]; utilizing a BTL extract solution, the authors stated that when metal
ions mix with PPHNL, a metal–PPHNL complex is created, which can be confirmed by
the appearance of a colloidal suspension and green solution at the bottom and top of the
container, respectively [10,11,52–54]. Figure 5 demonstrates the Zn-PPHNL combination’s
FTIR spectrum. The peaks at 2920.24 and 2845.93 cm−1 of the Zn-PPHNL complex have
almost completely vanished, as can be seen by the comparison of Figures 4 and 5. This is in
agreement with the theory that implies that Zn2+ ions’ attachment to PPHNL reduces their
vibrations and increases their weight. Additionally, the peaks in Figure 5, particularly those
in the spectral region between 1700 and 400 cm−1, were changed. Caffeine and PPHNL
in tea extracts interact with metal ions as previously mentioned, and many complexes are
involved in the chemistry of this interaction between Zn2+ ions and extract solutions of tea.
Both the Zn-PPHNL and Zn2+-caffeine complexes are well-expected.
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FTIR spectroscopy can identify complex interactions between PEO and dopants, as
illustrated in Figure 6. The peaks in the FTIR spectrum of pure PEO are associated with a
number of vibrational modes; for instance, the broad peak at about 3400 cm−1 was related
with the OH stretching of Zn-PPHNL. The sharp peak at about 2890 cm−1 belongs to the
C-H stretching mode [31,55–57]. The peak at around 1961 cm−1 corresponds with the CH
asymmetric stretching of CH3 [58]; the 1466 cm−1 peak is due to the asymmetric bending of
CH2. The 1359 to 1350 cm−1 peak is associated with CH2 wagging and CH3 bending. The
peaks at about 1100, 960, and 840 cm−1 occur as a result of C-O-C stretching and -CH2-CH2
rocking, C-O-C vibration modes, and CH2 rocking, respectively [59,60]. Overall, the peaks
become less intense in the PEOZn0 sample compared to PEOZn2, which is an indication of
polymer complex formation [61]. The peaks’ positions and intensities start to shift when
the concentration of Zn-PPHNL in the samples increases. As a result, Figure 7 suggests
complex formations of Zn+2 with the PPHNL and caffeine of extract tea solutions according
to a previous study and the FTIR analysis of the current work.

Polymers 2023, 15, x FOR PEER REVIEW 8 of 31 
 

 

 
Figure 5. FTIR of the Zn-PPHNL metal complex. 

FTIR spectroscopy can identify complex interactions between PEO and dopants, as 
illustrated in Figure 6. The peaks in the FTIR spectrum of pure PEO are associated with a 
number of vibrational modes; for instance, the broad peak at about 3400 cm−1 was related 
with the OH stretching of Zn-PPHNL. The sharp peak at about 2890 cm−1 belongs to the 
C-H stretching mode [31,55–57]. The peak at around 1961 cm−1 corresponds with the CH 
asymmetric stretching of CH3 [58]; the 1466 cm−1 peak is due to the asymmetric bending 
of CH2. The 1359 to 1350 cm−1 peak is associated with CH2 wagging and CH3 bending. The 
peaks at about 1100, 960, and 840 cm−1 occur as a result of C-O-C stretching and -CH2-CH2 
rocking, C-O-C vibration modes, and CH2 rocking, respectively [59,60]. Overall, the 
peaks become less intense in the PEOZn0 sample compared to PEOZn2, which is an in-
dication of polymer complex formation [61]. The peaks’ positions and intensities start to 
shift when the concentration of Zn-PPHNL in the samples increases. As a result, Figure 7 
suggests complex formations of Zn+2 with the PPHNL and caffeine of extract tea solutions 
according to a previous study and the FTIR analysis of the current work. 

 
Figure 6. FTIR spectra of neat PEO and PEO composite samples. Figure 6. FTIR spectra of neat PEO and PEO composite samples.

Polymers 2023, 15, x FOR PEER REVIEW 9 of 31 
 

 

 
Figure 7. The creation of the Zn-PPHNL metal complex as proposed. 

3.3. Absorption Study 
Figure 8 demonstrates the absorption spectra of both BTL extract solution and 

Zn-PPHNL suspended particles. There are various types of electronic transition that can 
be seen. When the molecules absorb photons in the visible and ultraviolet regions their 
electrons excite from σ, π, and n-orbitals to higher energy states [21]. The electronic tran-
sitions associated with ultraviolet (180–260nm) causes the electronic transition of n→σ*, 
whereas transitions such as π→π* and n→π* of CTH, methylxanthines, and caffeine 
demand considerably less energy; therefore, they occur at higher wavelengths [62–64]. 
Marzuki et al. observed the same absorption spectra for green tea that had been extracted 
using an ethyl acetate solvent [65]. According to research, conjugated systems with al-
ternating double bonds are a crucial class of materials for optoelectronic applications 
because of their π-excessive properties [66]. The change to longer wavelengths implies 
that the samples of doped polymer have a smaller OBG. A semiconducting nature or 
π-conjugated polymers with a low band gap are widely used in industrial applications 
such as molecular electronics, nonlinear optical devices, organic light-emitting diodes, 
organic solar cells, memories, and energy storage [67]. The π-delocalization within the 
polymer chains in the films is due to the chemical structure of the components that are 
extracted from green tea. The tea samples are chemically complex due to the existence of 
many organic compounds, including PPHNLs, alkaloids, amino acids, glucides, proteins, 
volatile compounds, minerals, and trace elements [9]. PPHNLs are considered the most 
interesting group of compounds in both green and black tea leaves [68]. The primary 
components of PPHNLs are enriched by OH groups and conjugated double bonds 
[69].The most frequently confirmed component structures of extract tea solutions can be 
observed elsewhere [8,9,68,69]. An earlier study stated and confirmed the absorbance 
band appearance within 200–350 nm, resulting from the electronic transition of n–π* in 
caffeine, methylxanthines, and CTH. At 277 nm, the caffeine possesses an absorption 
band [70,71]. 

Thus, the extract tea solution consists of sufficient hydroxyl (OH), carboxylic (C=O) 
groups, conjugated double bonds, PPHNLs, and PPHNL conjugates, which are useful for 
the creation of complexes with transition metal salts and polymer functional (polar) 
groups [10]. The absorption peaks seen at high wavelengths (380–700 nm) of Zn-PPHNL 
(see Figure 9) are associated with the presence of π electrons and the formation of charge 

Figure 7. The creation of the Zn-PPHNL metal complex as proposed.



Polymers 2023, 15, 771 9 of 29

3.3. Absorption Study

Figure 8 demonstrates the absorption spectra of both BTL extract solution and Zn-
PPHNL suspended particles. There are various types of electronic transition that can be
seen. When the molecules absorb photons in the visible and ultraviolet regions their elec-
trons excite from σ, π, and n-orbitals to higher energy states [21]. The electronic transitions
associated with ultraviolet (180–260 nm) causes the electronic transition of n→σ*, whereas
transitions such as π→π* and n→π* of CTH, methylxanthines, and caffeine demand
considerably less energy; therefore, they occur at higher wavelengths [62–64]. Marzuki
et al. observed the same absorption spectra for green tea that had been extracted using
an ethyl acetate solvent [65]. According to research, conjugated systems with alternating
double bonds are a crucial class of materials for optoelectronic applications because of their
π-excessive properties [66]. The change to longer wavelengths implies that the samples of
doped polymer have a smaller OBG. A semiconducting nature or π-conjugated polymers
with a low band gap are widely used in industrial applications such as molecular electron-
ics, nonlinear optical devices, organic light-emitting diodes, organic solar cells, memories,
and energy storage [67]. The π-delocalization within the polymer chains in the films is due
to the chemical structure of the components that are extracted from green tea. The tea sam-
ples are chemically complex due to the existence of many organic compounds, including
PPHNLs, alkaloids, amino acids, glucides, proteins, volatile compounds, minerals, and
trace elements [9]. PPHNLs are considered the most interesting group of compounds in
both green and black tea leaves [68]. The primary components of PPHNLs are enriched by
OH groups and conjugated double bonds [69]. The most frequently confirmed component
structures of extract tea solutions can be observed elsewhere [8,9,68,69]. An earlier study
stated and confirmed the absorbance band appearance within 200–350 nm, resulting from
the electronic transition of n–π* in caffeine, methylxanthines, and CTH. At 277 nm, the
caffeine possesses an absorption band [70,71].

Thus, the extract tea solution consists of sufficient hydroxyl (OH), carboxylic (C=O)
groups, conjugated double bonds, PPHNLs, and PPHNL conjugates, which are useful
for the creation of complexes with transition metal salts and polymer functional (polar)
groups [10]. The absorption peaks seen at high wavelengths (380–700 nm) of Zn-PPHNL
(see Figure 9) are associated with the presence of π electrons and the formation of charge
transfer molecular systems [64]. Due to complex formation among tea PPHNLs and Zn
cations, the absorption spectra of Zn-PPHNL is enhanced to (0.1) compared to that of the
tea extract solution (0.01);however, the absorption spectrum is still weak when visible. The
result is in good agreement with the previous reports that use metal–PPHNL complexes
through green chemistry methods. Nevertheless, by adding this complex material to some
polymers it can be used as a harvesting structure in optoelectronic applications because of
its ability to absorb a wide band of solar radiation.
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3.4. Morphological Study of PEO Composites

Some factors, including the production method, temperature, concentration, and
dopant material, affect the structural morphology of PEO films. Optical micrographs,
shown in Figure 10a–c, can be utilized to analyze morphological studies on PEO-based
composites [72–74]. From Figure 10a, several large-diameter spherulites (SPHLs) can be
seen as particular features of pure PEO films. The literature states that random nucleation
creates spheroids, which continue through radial development until they intersect with
one another at borders. Crystalline polymers with bendable chains exhibit this type of
morphological behavior [75]. On the other hand, the accumulation of 10 mL of Zn-PPHNL
to pure PEO resulted in the total fracturing of SPHL structures into small-sized SPHLs
and dark spots that promote the amorphous structure [76], as shown in Figure 10b. One
probable reasonfor this deformation of composite films is the random distribution of Zn-
PPHNL in a PEO’s structure [32]. Increasing the amount of Zn-PPHNL to 20 mL leads to an
increase in the number of SPHLs, and their sizes become smaller compared to a pure film,
as shown in Figure 10a. Furthermore, the PEO chains prevent the crystalline lamellae from
growing through a particular pattern, causinga decrease in the degree of crystallinity [73].

Polymers 2023, 15, x FOR PEER REVIEW 11 of 31 
 

 

the crystalline lamellae from growing through a particular pattern, causinga decrease in 
the degree of crystallinity [73]. 

 

 

 
Figure 10. Optical microscope pictures for (a) PEOZn0, (b) PEOZn1, and (c) PEOZn2 films. 

  

Figure 10. Cont.



Polymers 2023, 15, 771 11 of 29

Polymers 2023, 15, x FOR PEER REVIEW 11 of 31 
 

 

the crystalline lamellae from growing through a particular pattern, causinga decrease in 
the degree of crystallinity [73]. 

 

 

 
Figure 10. Optical microscope pictures for (a) PEOZn0, (b) PEOZn1, and (c) PEOZn2 films. 

  

Figure 10. Optical microscope pictures for (a) PEOZn0, (b) PEOZn1, and (c) PEOZn2 films.

4. Absorption Coefficient Study

In this work, the UV–Vis spectra were used to study several optical parameters, as
shown in Figure 11.
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The absorption spectra of pure PEO and PEO-based composites are demonstrated
in Figure 12. It is obvious that pure PEO does not show any absorption peak in the
visible spectrum. The polymer film remains transparent at this spectral range as the
incident light is incapable of establishing electronic transition. In contrast, the absorption
of PEO composites increases due to the additives, which aid in reducing the OBG of PEO.
In polymer composites photon energy is substantially absorbed by the materials in the
ultraviolet and visible ranges; the absorption leads to electron transitions in the σ, π, and
n-orbitals to higher energy states [21]. Since the vast majority of the optical transitions are
caused by impurities that have energies lain throughout the visible spectrum, the defects
are regarded as color centers [77]. Because of the strong π→π* interactions, the absorption
spectra of PEO:Zn-PPHNL solid films are more widened than those of Zn-PPHNL solutions.
This kind of interaction is explained by the π→π* staking and packing effect under solid-
state conditions [67]. In addition, the presence of π-delocalization along the polymer
chain can be attributed to strong shifts towards longer wavelengths. This hypothesis is
significantly confirmed by the absence of absorption peaks in a pure PEO film [78,79].
The absorption of PEO:Zn-PPHNL composite films begins in the near-infrared region
and extends across the full UV–Vis region; the absorption maxima of a PEO:Zn-PPHNL
film display a red shift, indicating the presence of interchain interactions in the solid
structure [66]. Materials with amendable absorbance in the lower–mid visible spectrum are
important for applications such as optoelectronics and optical sensors.

The outcomes of this study could be of great potential in encouraging research on
light harvesting in the visible region [80]. Furthermore, the findings here suggest that metal
complexes, as compared to multiwalled carbon nanotubes (MWNTs), are more effective in
modifying the optical characteristics of polymers [81].

Interband absorption is a well-known technique for investigating the transition of elec-
trons between the solid bands. Fundamental absorption, which appears as a rapid change
in the material spectrum, is referred to as the absorption edge. This is in strong association
with either band-to-band or exciting transitions and is regarded as a suitable indicator of
OBG energy. The absorption coefficient is expressed by α(υ), which measures how quickly
the intensity of the incident light decreases in accordance to a medium length [82,83]. The
Beer–Lambertequation is applied to calculate the α(υ) from the absorbance spectra, A(υ), at
the equivalent frequency (v):

α(v) =
2.303

d
log
(

Io

I

)
=

2.303
d

A(v) (1)

where Io is incident beam intensity, I is transmitted beam intensity, and d is sample thickness.
The incident beam intensity Io, equals the sum of the intensities of the reflected, absorbed,
and transmitted beams (labeled as IR, IA, and IT, respectively) when they hit the second
medium surface, or as follows:

Io = IT + IA + IR (2)

the above equation can be written as follows:

A + T + R = 1 (3)

where A, T, and R represent, respectively, the absorptivity, IA/Io, transmissivity, IT/Io, and
reflectivity, IR/Io, or the fractions of incident radiation which are transmitted, absorbed, and
reflected by a material. The T value can be calculated using Beer’s equation (i.e., T = 10−A),
where A is the raw absorption and reflectance, R, is required for the calculation refractive
index, determined from Equation (3). The study of optical absorption, particularly the
absorption edge, is a key tool for understanding materials’ electronic structures and the
existence of direct and indirect transitions [13,84]. Table 1 includes the values of absorption
edges as well as the absorption edge values of polymer films computed by extrapolating the
linear part of the ordinate to zero. It is clear that adding Zn-PPHNL causes the absorption
edge to reduce remarkably for pure PEO, from 5.25 eV to 1.1 eV for PEO:Zn-PPHNL
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samples, shifting toward low photon energy (see Figure 13). The substantial change in the
absorption edge implies a significant change in theband structure polymer composites due
to the creation of new localized states in the mobility gap [85]. In other words, absorption
edge data indicate that a polymer with wide band gap is converted into a narrow OBG,
which plays a significant role in the development of organic solar cells and optoelectronic
devices [86,87].

Table 1. Absorption edge values for PEO films.

Sample Code Absorption Edge (eV)

PEOZn0 5.25
PEOZn1 1.35
PEOZn2 1.1
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4.1. Refractive Index Study

The refractive index is strongly linked to the polarizability of ions and the local field
inside the substance. The parameter is crucial for purposes of integrated optical devices,
such as modulators, filters, and switches [88]. Along with the optical dielectric constant,
it is regarded as a significant characteristic in the design of new compounds for various
optical electrical applications. When a beam of electromagnetic light transmits through
a material, reflectance and absorption can be used to determine the refractive index of a
material, which expresses as the following:

n*(λ) = n(λ) + k(λ) (4)

where n* is the complex refractive index, the real part of the refractive index is n, which
is related to the actual velocity, and k is the extinction coefficient. Fresnel formulae are
helpful in calculating the refractive indices of pure PEO films and PEO films doped with
Zn-PPHNL by using the values of reflectance, R, and the optical extinction coefficient,
k = αλ/4πd; α and λ sequentially stand for the absorption coefficient and the wavelength,
and d is the sample thickness [89]:

n(λ) =

√
4R

(1− R)2 − k2 +

(
1 + R
1− R

)
(5)

When a light beam is guided through an optical medium, the refractive index n(λ)
defines how transparent materials are. For materials that are entirely transparent n(λ)
approaches zero, and positive values indicate that light is being absorbed. The dispersion
curve of the refractive index, n(λ), for pure PEO and PEO doped with Zn-PPHNL is shown
in Figure 14. The doped samples exhibit larger n values and display notable dispersion.
The results indicate that adding a Zn-PPHNL complex to a PEO polymer increases the
refractive index from 2.05 to about 2.27. This is most likely due to the space charge
creation in the Zn-PPHNL complex. As previously mentioned, altering the n value of
materials in accordance with wavelength is important for changing their optical properties,
with their dispersion being quite significant from an application viewpoint. The most
significant optical materials have a refractive index, n, between two and three, as visible
light absorbs in the upper atomic layers of the material [90,91]. The refractive index value
(typically > 1.65) for PEO/Zn-PPHNL metal complex composite films makes them suitable
basic structures for photovoltaic and optical devices in applications such as Bragg gratings,
solar cells, waveguide-based optical circuits, and photonic crystals [92].
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4.2. Wemple and DiDomenico (W–D) Model

Wemple and DiDomenico’s (W–D) single-oscillator model can be used to investigate
refractive index dispersion in the normal region [93]. In order to conduct the exploration, a
parameter of dispersion energy (Ed) is introduced as a measure of the force of the optical
interband transition. Ed is strongly linked to chemical bonding and combines the charge
distribution and coordination number in each unit cell [94]; however, the parameter of
a single oscillator (Eo) is proportional to the oscillator energy. Equation (6) represents a
semi-empirical relationship that links the photon energy, hυ, and refractive index, n, below
the interband absorption edge:

n2 − 1 =
Ed Eo[

Eo2 − (hv)2
] (6)

As shown in Figure 15a,b, the data on the plots of 1/n2 − 1 against (hυ)2 were matched
with linear regression lines to the values of Ed and Eo from the intercept and slope, respec-
tively. The determined values of Ed and Eo are shown in Table 2. Ed and Eo values decrease
as the concentration of the Zn-PPHNL complex solution increases. There is a link between
Eo and the OBG, Eg. The refractive index, n, values and the single effective oscillator energy,
E0, are in disagreement with those obtained from Tauc’s law [95]; however, for the current
films, empirically the values of Eo are not matched with the direct Eg (i.e., Eo ≈ Eg), as
shown in Section 4.4.
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Table 2. Empirical W–D single-oscillator model for calculating optical bandgap energy.

Films Ed Eo no

PEOZn0 20.48618 6.508456 4.147624
PEOZn1 12.56535 3.430341 4.663004
PEOZn2 10.04058 3.083462 4.256268

4.3. Optical Dielectric Constant Study

Regarding polymer composites, the optical transition mainly corresponds to changes
in the optical dielectric constant, which characterizes the possibility that an electron could
lose energy while passing through the surface of the bulk material [96]. The dielectric
constant of the materials (as expressed in Equation (7)) consists of a real part, εr, and an
imaginary part, εi, where the real part represents the capacity of the material to reduce the
speed of light and the imaginary part represents its capacity to efficiently absorb energy
owing to polarization.

ε = εr + iεi (7)

εr is determined from the refractive index, n, of the media (εr = n2 − k2), and εi is
obtained from the extinction coefficient, k (εi = 2nk) [10,97].

From the point of view of the Spitzer–Fan model, the dielectric constant of the material
at a low frequency (long wavelengths), ε∞, is obtainable from correlations between the
wavelength and refractive index [98]:

εr = n2 − k2 = ε∞ −
(

e2

4 π2C2εo

)
×
(

N
m∗

)
λ2 (8)

where the charge of an electron is e, the speed of light is denoted by c, εo stands for the
dielectric constant of free space, N is the localized density of a charge carrier, and m* stands
for effective mass; all of the values are shown in Table 3 [99,100]. A straight-line result is
obtained from plotting the values of εr against λ2 in the visible spectrum range, as seen in
Figure 16. The ε∞ and N/m* values, sequentially from the slope and intercept of the line of
εr versus λ2, are obtained using the constants listed in Table 3. An illustration of the values
of ε∞ and N/m* that are gained from Equation (8) is presented in Table 4.

The quantitative values in Table 4 imply that as doping concentration increases the
localized density of state N/m* for the pure PEO sample increases from 3.89 × 1055 to
6.93 × 1055 atoms/m3, with the ε∞value increasing from 4.54 to 5.4503, showing that the
growing of free charge carriers has strongly contributed to the process of polarization. The
values expected for the localized density of states N/m* in Equation (8) of the current
research are equivalent with those reported in the literature [54,101,102].

Table 3. Various physical parameters used for the calculation of N/m* for the prepared PEOZn-PPHNL.

Physical Parameter Value

Mass of electron (me) 9.109 × 10−31 Kg
Charge of electron (e) 1.602 × 10−19 coulombs

Permittivity of free space (εo) 8.85 × 10−12 F/m
π 3.14

Speed of light (c) 2.99 × 108 m/s
Effective mass (m*) 10.566 × 10−31 Kg

Table 4. Optical dielectric parameters values expected for PEO composite films.

Film N/m* × 1055 (m3/kg) ε∞

PEOZn0 3.89 4.54
PEOZn1 5.96 5.6973
PEOZn2 6.93 5.4503
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4.4. Tauc’s Approach for Band Gap Study

Broadband beams transmit through polymer films; band-to-band transitions occur
by obeying particular selection rules and are characterized by a sharp increase in the
fundamental absorption area [103,104]. According to the band structure of the materials,
the transitions are divided into four different types [104]. Regarding amorphous semicon-
ductors with indirect transitions, there is no conservation of electronic momentum when
moving from the valence to the conduction band [105]. The following relationship provides
the absorption coefficient for direct band gap materials [106]:

(αhυ)n = B
(
hυ− Eg

)
(9)

where hυ stands for photon energy, B is a constant, and Eg stands for the OBG energy, while
the coefficient n defines the type of electronic transitions that lead to absorption [107]. De-
pending on the types of transition, the coefficient n can be 2, 2/3,1/2, or 1/3, corresponding
to direct allowed, direct forbidden, indirect allowed, and indirect forbidden transitions,
respectively, as shown clearly in Figure 17 [96]. The intercept of linear portions of the
(αhv)n of Figure 18a–d against the axis of photon energy, hυ, can be used to determine
the value of Eg. The determination of OBGs is crucial for comprehending the electrical
behavior of a semiconductor and its practical interest [104]. The values of the OBGs of both
transitions, allowed direct (n = 2) and forbidden direct (n = 2/3), are shown in Table 5. The
materials of the amorphous phase and the band edges are influenced by the contribution
of the various orbitals of both the metal complex and the ligand. As a consequence, the
prediction as to whether the type of band is direct or indirect is a complicated task [108].
Thus, depending on the choices of n, many figures can be displayed by using the basic
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absorption equation (Equation (9)); however, only using Equation (9) makes it impossible
to define the kind of electron transition. The complex dielectric function, ε*, needs to be
examined in order to correctly classify the kind of electron transition. In order to calculate
band structure in a relatively precise manner, the spectra of optical dielectric loss have to be
carefully compared with Tauc’s plots. From such a comparison, the optical transition types
for each solid film can be determined. In addition, the evolution of disorder in the polymer
samples that results from the modification of a polymer’s structure can also be used to
explain the OBG reduction [109,110]. The reduction in OBG results from the creation of
new localized energy states in the bandgap between the VB and the CB [20]. Quantitatively,
the declining of Eg magnitudes as the Zn-PPHNL is increased is shown in Table 5 and
Figure 19. By comparing the Eg values in Tauc’s model (Figure 18a–d) with the energies
from the optical dielectric loss as can be seen in later section, the types of transitions can
be determined, such that for PEOZn0 it is direct allowed (n = 2), for PEOZn1 it is indirect
allowed (n = 1/2), and for PEOZn2 it is an indirect forbidden (n =1/3) transition.

This study addresses creating polymer composites with small OBGs that close to
semiconductor or conductive polymer materials. The reduction in the Eg from 5.5 eV
to 0.6 eV is achieved, verifying the hypothesis that green metal complexes can modify
insulating polymers to semiconducting polymer composites. In general, polymer-based
materials could show the property of declining OBGs by adding metal-based fillers. Table 6
shows the OBGs of different types of polymer composites with different fillers and dopants.
Furthermore, the metal complex causes a more remarkable drop in the OBG compared to
other types of fillers. The metal–PPHNL complexes contain several N-H and O-H, which in
turn leads to interactions between the functional groups of metal–PPHNL complexes, with
the polymer chains causing a drop in the gap between the valence and conduction bands
of the doped polymer material. Based on the results of band gap reduction in the current
work, Zn-PPHNL may introduce tremendous localized densities of states into the band
gap region, and thus they overlap and reduce the band gap region in which the electrons
should transfer from the VB to the CB. Moreover, it can be concluded that Zn-PPHNL is
more influential than irradiation and ceramic nanoparticles, NPs, to manipulate the optical
band gap of weakly polar polymers, such as PEO. Extra research is required to establish
the fact that metal–PPHNL complexes are outstanding in reducing the band gap of weakly
polar polymers.
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Table 5. The Eg from Tauc’s model versus photon energy and the optical dielectric loss, εi, graph.

Sample Code Eg for (αhv)2 Eg for (αhv)2/3 Eg for (αhv)1/2 Eg for (αhv)1/3 Eg from εi

PEOZn0 5.5 5 4.42 3.8 5.5
PEOZn1 1.9 1.28 1.13 0.71 1.13
PEOZn2 1.67 1.23 1 0.6 0.61

Table 6. Band gap energy, Eg, values of various polymer composite systems.

Polymer Composite Band Gap Energy Eg (eV) Reference

CS: silver nanoparticles 2.8–1.4 [111]
PS: (CaTiO3) 4.42–4.26 [112]

(CS: POZ): Zn2+-PPL complex 4.8–1.6 [113]
PVA: CeO2 6.34–6.09 [114]

PS:tin titanate nanoparticles 4.42–3.25 [115]
PVA: Al3+-metal complex 6.39–1.68 [54]

PVA: Co2+-polyphenol complex 5.8–1.82 [53]
PEO: CaTiO3nanoparticles 4.90–4.19 [116]

PVA: NaNO3 5.71–5.05 [117]
PVA: PbO2 6.32–4.33 [118]

PEO: Zn metal complex 5.5–0.61 Present work

4.5. Dielectric Function Study

Fundamental optical behaviors are explained through the use of the transverse dielec-
tric function, the latter based on the momentum transfer, q, in the light–matter interaction
and the transfer of energy. The total dielectric function is expressed as ε∗ = εr + iεi, where
εr is the real part and depends on frequency [119] while the imaginary part, εi, describes
how rapidly a medium absorbs electromagnetic waves [120]. Band gap investigations
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need to consider the quantum state of a material properly in order to be described more
accurately, particularly the evaluation of the complex dielectric function, ε*. This parameter
plays a crucial rule in the optical properties of matter and explains how a material’s electron
density responds to the applied electromagnetic field [121].

In fact, the microscopic theory of the dielectric function applies a semiclassical method
to establish the Hamiltonian function, describing the interaction between an incident
electromagnetic field and Bloch electrons inside optical media. The modern description of
electrons is via quantum mechanical (Bloch) wave functions; contrarily, the electromagnetic
field is treated classically. This method is implemented since it is not as difficult as a total
quantum mechanical approach, where an electromagnetic wave is considered as being
quantized into photons. Nonetheless, it is more comprehensible and avoids sophisticated
method of calculation [122]. The optical dielectric loss, εi, is strongly associated with
the electronic structure, in particular the localized density of states. Equation (10) is a
fundamental relationship of the components of a matrix between the occupied and the
unoccupied wave functions based on the selection rules [121]. In particular, the formula
that essentially links the imaginary part, εi, with the band structure is yielded from the
electron–radiation interaction of the Hamiltonian function, HeR, which also describes how
a charges move in the presence of an electromagnetic field inside a material [121]:

HeR =
e

mc
A(r, t)·P (10)

where A(r, t) is denoted as the vector potential and P is expressed as the momentum
that conjugates to the vector of position. For semiconductor materials the momentum
matrix elements of the electron enter directly into the K·P approach of band structure
determination. There are various methods with which to find a semiconductor dielectric
function from HeR. The most straightforward method is to assume that A(r, t) is small
enough that time-dependent perturbation theory can be used (as represented in Fermi’s
golden rule) to determine the transition probability (R) per unit volume for an electron in
the valence band state |V〉(with energy, Ev, and wavevector, kv) to the conduction band |C〉
(with equivalent energy, Ec, and wavevector, kc). The electric dipole transition probability,
R, for absorption photon per unit of time is expressed as follows:

R =
2π

}

( e
mω

)2
∣∣∣∣E(ω)

2

∣∣∣∣2∑k|PCV |2 δ(Ec(kc)− EV(kv)− } ω) (11)

In the above, the symbols for the incident photon frequency, Planck’s constant, effective
mass, and electron charge are, respectively, ω, h̄, m, and e.

Multiplying the transition probability per unit volume by the photon energy yields
the power loss, P, by the field due to the medium absorption:

P = R}ω (12)

The power loss can alternatively be stated in terms of the medium (absorption coeffi-
cient), α, or εi by considering that the rate of the declining energy of incident beam per unit
volume is given by dI/dt; I denotes the incident beam intensity:

− dI
dt

= −
(

dI
Dx

)(
dx
dt

)
=

c
n

αI =
εiωI
n2 (13)

The density of energy, I, is linked to the amplitude of field as follows:

I =
n2

8π
|E(ω)|2 (14)
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Then, we can obtain the following:

εi(ω) =
1

4πεo

(
2πe
mω

)2

∑
k
|PCV |2 δ(Ec (k)− EV(k)− }ω) (15)

where ω expressed the incident photon, εo is the permittivity of the vacuum, and e is
the electron charge. From a quantum mechanics point of view, Equation (15) indicates
that the imaginary part’s optical dielectric function, εi, is related to the band structure
δ(Ec (k)− EV(k)− }ω, the delta function obtained in Fermi’s golden rule. This outcome
articulates the fact that the electron absorbs the photon energy and is excited from the va-
lence band into the conduction band [121]. The fundamental theory of an optical dielectric
constant originates from a complex frequency function; it requires large-scale computation
to determine dielectric constants [96,123]. The following equation illustrates how utiliz-
ing the extinction coefficient and refractive index in the calculation makes it simple to
experimentally estimate the optical dielectric loss, εi [13]:

εi = 2nk (16)

It is challenging to determine whether the band will be direct or indirect when us-
ing Tauc’s model [108]. According to earlier theoretical investigations, there is a close
connection between the optical dielectric function, ε∗ = εr + iεi, and the band structure
of semiconductor and insulating materials [124,125]. After the extrapolation of the linear
component of the plot of εi against photon energy, hv, the intercept is a useful way for
calculating the OBG [111]. In reality, ε* shows the properties of the medium and how
it responds to electromagnetic waves passing through it. The dielectric loss character-
izes actual transitions between the occupied and unoccupied wave functions (electronic
states) [124,126].

Simple equations can be used to calculate ε*, which is connected to the refractive index
and extinction coefficient. Figure 20 illustrates the optical dielectric loss against photon
energy for PEO samples.
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Previous research established that the appearance of peaks in the dielectric loss, εi,
are closely linked to interband transitions [127,128]. It has been noted that in amorphous
or semicrystalline substances the band edges encompass associations from the various
orbitals of the metal complex and the ligand, making it harder to identify if the band will be
direct or indirect [120]. In order to accurately identify the sort of electronic transition, this
work uses optical dielectric loss. Moreover, it has been proven that optical dielectric loss
accurately depicts how an incident photon reacts to electronic transition [17,113]; therefore,
the excitation energy of an electron from the valence to the conduction bands is determined
from the extrapolation of the linear part of optical dielectric loss on the axis of photon energy.
Additionally, the band gap is actually represented from this energy. In Tauc’s semiempirical
approach, the transition process is represented by n, which can have one of the following
values: 1/2, 3, 3/2, or 2, dependent on how the transitions of electrons are made from the
valence band to the conduction band [108]. The kinds of electronic transition be assumed
if the band gap calculated using Tauc’s model agrees with the one calculated by optical
dielectric loss. This method for ascertaining materials’ band gap and kind of electronic
transition is time-consuming, but it includes significant physics information. The electronic
transition types can be identified from comparisons of the plots using Tauc’s equation
(Figures 18–20) of optical dielectric loss. From the comparisons it is convenient to argue
that the kind of electronic transition in PEOZn0 is direct allowed (n = 2), for PEOZn1 it is
indirect allowed (n = 1/2), and for PEOZn2 it is an indirect forbidden (n = 1/3) transition,
which implies that the optical dielectric function is an efficient technique for examining
the band structures of materials. The design of a polymer composite with a low cost and
improved optical properties is a topic of great interest. In this domain, wide-band-gap
PEO is one of the noteworthy and commonly used thermoplastic polymers; in comparison
with conductive polymers it is cheap and stable. In neat PEO the crystalline state is what
explains why the direct transitions are most likely to occur. In crystalline materials the
top of the VB coincides with the bottom of the CB, while in amorphous materials this
would not happen. In neat PEO the crystalline domains which are higher than amorphous
phases may be responsible for the dominancy of direct transition. In the XRD section it was
found that the amorphous phase increased in PEO: Zn-PPHNL composites compared to
pure PEO. The optical micrograph (see Figure 10) clearly showed that neat PEO exhibits
spherulites with big sizes, ascribed to the crystalline structure, while these spherulites
were destroyed to small sizes and dark regions attributed to amorphous domains were
dominant. In amorphous materials it is difficult to observe direct transition due to the
disorder distribution of the valence and conduction bands. Su and Zhou observed the
impact of crystallization on the enhancement of the optical and mechanical properties
of PCCE polymer [129]. From the above discussion it can be emphasized that materials’
structures will greatly affect the optical and electrical properties.

5. Conclusions

A green chemistry strategy is followed in the preparation of PEO films with vari-
ous amounts of the Zn-PPHNL metal complex. A black tea extract solution was used to
synthesize Zn-PPHNL. This approach has recently drawn a great deal of attention in the re-
search field associated with polymer composites, as it is cost-effective and environmentally
friendly. Based on the quantitative results, an additive green metal complex remarkably
reduces the optical band gap of polar polymers, which could be considered asignificant step
forward to more diverse optoelectronics applications. An FTIR analysis revealed that BTLs
have a lot of functional groups and conjugated double bonds, including O-H, C-H, C=O,
C=C, C-O, C-N, and N-H, which could change the properties of PEO polymers significantly.
Moreover, the FTIR results confirmthat while the formation of a PEO–metal complex’s,
as well as a Zn-PPHNL complex’s, concentration in the samples increased, the position
and intensity of the peaks somewhat varied. Additionally, several characteristic peaks of
the Zn-PPHNL complex almost completely vanished due to Zn2+ ions’ attachment to the
PPHNL, which results in a reduction in their vibration, increasing their weight. The XRD
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of the Zn-PPHNL and PEO composite revealed the enhancing of the amorphous phase
of polymer films, such that by increasing Zn-PPHNL relative to PEO the relative XRD
intensity of pure PEO declines. The OM micrographs of PEO films indicate that crystallinity
decreases as the concentration of Zn-PPHNL increases, ascribed to the splitting of the
spherulite structure into small entities and displaying dark spots on the surface of polymer
films, which suggest that the amorphous phase was promoted.

The absorption of Zn-PPHNL enhances at the UV region because of ligand binding
between tea PPHNL and Zn cations. UV spectroscopy was used to evaluate optical param-
eters, such as the refractive index (n), absorption edge, dielectric loss (εi), dielectric constant
(εr), and bandgap energy (Eg). Accordingly, the absorption edge changed from 5.25 eV
for PEOZn0 to 1.1 eV for PEOZn samples. Additionally, the refractive index significantly
increases from 2.05 to about 2.27 as a result of adding Zn-PPHNL to PEO. Moreover, it can
be seen that as the Zn-PPHNL concentration in PEO films increased, the charge carriers
(N/m*) values change from 3.89 × 1055 to 6.93 × 1055 atoms/m3, and the value of ε∞
increases from 4.54 to 5.4503, showing that the increase in free charge carriers has signifi-
cantly engaged in the polarization process. The W–D single-oscillator model was used to
compute the oscillator dispersion energy, Ed, and average oscillator energy, Eo. Both Ed and
Eo values have been strengthened from 20.48618 and 6.508456 to 10.04058 and 3.083462,
respectively, by increasing the amount of the Zn-PPHNL complex solution. The OBG value
decreases from 5.5 eV to 0.6 eV as the Zn-PPHNL insertion is increased. By comparing
the values of Eg corresponding to Tauc’s model with the energy from the dielectric loss,
the types of electron transitions can be figured out: for PEOZn0 it is direct allowed (n = 2),
for PEOZn1 it is indirect allowed (n= 1/2), while for PEOZn2 it is an indirect forbidden
(n = 1/3) transition. These results support the argument that the crystalline dominancy in
pure PEO is responsible for the direct allowed transition of electrons from the VB to the CB,
while amorphous enrichment in the doped films is answerable for the prevailing indirect
and forbidden transitions.
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