Effective Preservation of Chilled Pork Using Photodynamic Antibacterial Film Based on Curcumin-β-Cyclodextrin Complex
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the Cur-β-CD Photodynamic Antibacterial Film
2.3. Application of Photodynamic Antibacterial Film onto Chilled Pork
2.4. Evaluation of Effectiveness of Photodynamic Antibacterial Film
2.4.1. Total Viable (Bacterial) Count (TVC) Determination
2.4.2. Sensory Evaluation
2.4.3. pH
2.4.4. Total Volatile Basic Nitrogen (TVB-N)
2.4.5. Thiobarbituric Acid Reactive Substances (TBARS)
2.4.6. Water-Holding Capacity (WHC)
2.4.7. Color
2.4.8. Hardness
2.4.9. Statistical Analysis
3. Results
3.1. Variation in TVC of Chilled Pork during Storage
3.2. pH Variation in Chilled Pork during Storage
3.3. Variation in Total Volatile Basic Nitrogen (TVB-N) of Chilled Pork during Storage
3.4. Variation in Thiobarbituric Acid Reactive Substances (TBARS) of Chilled Pork during Storage
3.5. Variation in Water-Holding Capacity (WHC) of Chilled Pork during Storage
3.6. Color Variation of Chilled Pork during Storage
3.7. Variation in the Hardness of Chilled Pork during Storage
3.8. Sensory Evaluation of Chilled Pork during Storage
3.9. Correlation Analysis of Pork Quality Indicators
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vivien, T.; Karina, K.I.; Madeleine, P.; Carsten, K. Effects of duration and temperature of frozen storage on the quality and food safety characteristics of pork after thawing and after storage under modified atmosphere. Meat Sci. 2020, 174, 108419. [Google Scholar]
- Meng, D.M.; Sun, X.Q.; Sun, S.N.; Li, W.J.; Lv, Y.J.; Fan, Z.C. The potential of antimicrobial peptide Hispidalin application in pork preservation during cold storage. J. Food Process Pres. 2020, 44, e14443. [Google Scholar] [CrossRef]
- Xiong, Y.; Li, S.; Warner, R.D.; Fang, Z. Effect of oregano essential oil and resveratrol nanoemulsion loaded pectin edible coating on the preservation of pork loin in modified atmosphere packaging. Food Control 2020, 114, 107226. [Google Scholar] [CrossRef]
- Yang, B.; Liu, X.-J. Metabolite Profile Differences Among Different Storage Time in Beef Preserved at Low Temperature. J. Jpn. Soc. Food Sci. 2019, 84, 3163–3171. [Google Scholar] [CrossRef]
- Cropotova, J.; Mozuraityte, R.; Standal, I.; Gløvlen, M.; Rustad, T. Superchilled, chilled and frozen storage of Atlantic mackerel (Scomber scombrus) fillets—changes in texture, drip loss, protein solubility and oxidation. Int. J. Food Sci. 2019, 54, 2228–2235. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Jia, S.; Zhang, L.; Li, Q.; Pan, J.; Zhu, B.; Prinyawiwatkul, W.; Luo, Y. Technologies, E. Post-thawing quality changes of common carp (Cyprinus carpio) cubes treated by high voltage electrostatic field (HVEF) during chilled storage. Innov. Food Sci. Emerg. 2017, 42, 25–32. [Google Scholar] [CrossRef]
- Cheng, Z.; Pan, W.; Xian, W.; Yu, J.; Weng, X.; Benjakul, S.; Guidi, A.; Ying, X.; Deng, S. Effects of various logistics packaging on the quality and microbial variation of bigeye tuna (Thunnus obesus). Front. Nutr. 2022, 9, 998377. [Google Scholar] [CrossRef]
- Guo, J.; Dong, S.; Ye, M.; Wu, X.; Lv, X.; Xu, H.; Li, M. Effects of Hydroxypropyl Methylcellulose on Physicochemical Properties and Microstructure of κ-Carrageenan Film. Foods 2022, 11, 3023. [Google Scholar] [CrossRef]
- Liu, F.; Hou, P.; Zhang, H.; Tang, Q.; Xue, C.; Li, R.W. Food-grade carrageenans and their implications in health and disease. Compr. Rev. Food Sci. Food Saf. 2021, 20, 3918–3936. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, W.; Ni, Y.; Yang, C.; Jin, X.; Wang, Y.; Yang, Y.; Jin, Y.; Sun, J.; Wang, J. ZnO/C-mediated k-carrageenan based pseudo-pasteurization films for kumquat preservation. Food Hydrocolloid 2022, 128, 107582. [Google Scholar] [CrossRef]
- Mahajan, K.; Kumar, S.; Bhat, Z.F.; Singh, M.; Bhat, H.F.; Bhatti, M.A.; Bekhit, A.E.-D.A. Aloe vera and carrageenan based edible film improves storage stability of ice-cream. Appl. Food Res. 2022, 2, 100128. [Google Scholar] [CrossRef]
- Zhang, Z.; Qin, J.; Wang, Z.; Chen, F.; Liao, X.; Hu, X.; Dong, L. Sodium copper chlorophyll mediated photodynamic treatment inactivates Escherichia coli via oxidative damage. Food Res. Int. 2022, 157, 111472. [Google Scholar] [CrossRef]
- Zhou, F.; Lin, S.; Zhang, J.; Kong, Z.; Tan, B.K.; Hamzah, S.S.; Hu, J. Enhancement of photodynamic bactericidal activity of curcumin against Pseudomonas Aeruginosa using polymyxin B. Photodiagnosis Photodyn. Ther. 2022, 37, 102677. [Google Scholar] [CrossRef]
- Santos, P.; Gomes, A.; Lourenço, L.M.O.; Faustino, M.A.F.; Neves, M.; Almeida, A. Anti-Viral Photodynamic Inactivation of T4-like Bacteriophage as a Mammalian Virus Model in Blood. Int. J. Mol. Sci. 2022, 23, 11548. [Google Scholar] [CrossRef]
- Barbara, P.; Dąbrowski, J.M. Photodynamic inactivation (PDI) as a promising alternative to current pharmaceuticals for the treatment of resistant microorganisms. Adv. Inorg. Chem. 2022, 79, 65–103. [Google Scholar]
- Ribeiro, M.S.; de Melo, L.S.A.; Farooq, S.; Baptista, A.; Kato, I.T.; Núñez, S.C.; de Araujo, R.E. Photodynamic inactivation assisted by localized surface plasmon resonance of silver nanoparticles: In vitro evaluation on Escherichia coli and Streptococcus mutans. Photodiagn. Photodyn. 2018, 22, 191–196. [Google Scholar] [CrossRef]
- Chai, Z.; Zhang, F.; Liu, B.; Chen, X.; Meng, X. Antibacterial mechanism and preservation effect of curcumin-based photodynamic extends the shelf life of fresh-cut pears. LWT 2021, 142, 110941. [Google Scholar] [CrossRef]
- Zhang, T.; Deng, Y.; Zhang, W.; Wang, G.; Zhong, Y.; Su, C.; Li, H. A self-colored waterborne polyurethane film with natural curcumin as a chain extender and excellent UV-Absorbing properties. Polymer 2022, 239, 124465. [Google Scholar] [CrossRef]
- Chandrasekaran, P.R.; Madanagopalan, V.G. Role of Curcumin in Retinal Diseases-A review. Graef. Arch. Clin. Exp. 2022, 260, 1457–1473. [Google Scholar] [CrossRef]
- Huang, J.; Chen, B.; Li, H.; Zeng, Q.-H.; Wang, J.J.; Liu, H.; Pan, Y.; Zhao, Y. Enhanced antibacterial and antibiofilm functions of the curcumin-mediated photodynamic inactivation against Listeria monocytogenes. Food Control 2020, 108, 106886. [Google Scholar] [CrossRef]
- Gutierrez, J.K.T.; Zanatta, G.C.; Ortega, A.L.M.; Balastegui, M.I.C.; Sanitá, P.V.; Pavarina, A.C.; Barbugli, P.A.; Mima, E.G.O. Encapsulation of curcumin in polymeric nanoparticles for antimicrobial Photodynamic Therapy. PLoS ONE 2017, 12, e0187418. [Google Scholar] [CrossRef] [Green Version]
- Gharib, R.; Auezova, L.; Charcosset, C.; Greige-Gerges, H. Drug-in-cyclodextrin-in-liposomes as a carrier system for volatile essential oil components: Application to anethole. Food Chem. 2017, 218, 365–371. [Google Scholar] [CrossRef]
- Chen, L.; Dong, Q.; Shi, Q.; Du, Y.; Zeng, Q.; Zhao, Y.; Wang, J.J. Novel 2,3-Dialdehyde Cellulose-Based Films with Photodynamic Inactivation Potency by Incorporating the β-Cyclodextrin/Curcumin Inclusion Complex. Biomacromolecules 2021, 22, 2790–2801. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, X.; Sang, S.; McClements, D.J.; Chen, L.; Long, J.; Jiao, A.; Jin, Z.; Qiu, C. Preparation, properties and interaction of curcumin loaded zein/HP-β-CD nanoparticles based on electrostatic interactions by antisolvent co-precipitation. Food Chem. 2023, 403, 134344. [Google Scholar] [CrossRef]
- Lai, D.; Zhou, A.; Tan, B.K.; Tang, Y.; Sarah Hamzah, S.; Zhang, Z.; Lin, S.; Hu, J. Preparation and photodynamic bactericidal effects of curcumin-β-cyclodextrin complex. Food Chem. 2021, 361, 130117. [Google Scholar] [CrossRef]
- Lai, D.; Zhou, F.; Zhou, A.; Hamzah, S.S.; Zhang, Y.; Hu, J.; Lin, S. Comprehensive properties of photodynamic antibacterial film based on κ-Carrageenan and curcumin-β-cyclodextrin complex. Carbohyd. Polym. 2022, 282, 119112. [Google Scholar] [CrossRef]
- Zhang, H.; Li, X.; Kang, H.; Peng, X. Effect of tannic acid-grafted chitosan coating on the quality of fresh pork slices during cold storage. Meat Sci. 2022, 188, 108779. [Google Scholar] [CrossRef]
- Chen, W.; Yang, J.; Huang, N.; Zhang, Q.; Zhong, Y.; Yang, H.; Liu, W.; Yue, Y. Effect of combined treatments of electron beam irradiation with antioxidants on the microbial quality, physicochemical characteristics and volatiles of vacuum-packed fresh pork during refrigerated storage. Food Control 2023, 145, 1083–1087. [Google Scholar] [CrossRef]
- Spanos, D.; Tørngren, M.A.; Christensen, M.; Baron, C.P. Effect of oxygen level on the oxidative stability of two different retail pork products stored using modified atmosphere packaging (MAP). Meat Sci. 2016, 113, 162–169. [Google Scholar] [CrossRef] [Green Version]
- Vyncke, W. Direct Determination of the Thiobarbituric Acid Value in Trichloracetic Acid Extracts of Fish as a Measure of Oxidative Rancidity. Fette Seifen Anstrichm. 1970, 72, 1084–1087. [Google Scholar] [CrossRef]
- Sørensen, G.; Jørgensen, S.S. A critical examination of some experimental variables in the 2-thiobarbituric acid (TBA) test for lipid oxidation in meat products. Z. Lebensm. Unters. F. 1996, 202, 205–210. [Google Scholar] [CrossRef]
- Hu, J.; Wang, X.; Xiao, Z.; Bi, W. Effect of chitosan nanoparticles loaded with cinnamon essential oil on the quality of chilled pork. LWT—Food Sci. Technol. 2015, 63, 519–526. [Google Scholar] [CrossRef]
- Xiong, Y.; Chen, M.; Warner, R.D.; Fang, Z. Incorporating nisin and grape seed extract in chitosan-gelatine edible coating and its effect on cold storage of fresh pork. Food Control 2020, 110, 107018. [Google Scholar] [CrossRef]
- Zheng, D.; Huang, C.; Huang, H.; Zhao, Y.; Khan, M.R.U.; Zhao, H.; Huang, L. Antibacterial Mechanism of Curcumin: A Review. Chem. Biodivers. 2020, 17, e2000171. [Google Scholar] [CrossRef]
- Hu, P.; Huang, P.; Chen, M.W. Curcumin reduces Streptococcus mutans biofilm formation by inhibiting sortase A activity. Arch. Oral. Biol. 2013, 58, 1343–1348. [Google Scholar] [CrossRef]
- Hamblin, M.R.; Viveiros, J.; Yang, C.; Ahmadi, A.; Ganz, R.A.; Tolkoff, M.J. Helicobacter pylori accumulates photoactive porphyrins and is killed by visible light. Antimicrob. Agents Ch. 2005, 49, 2822–2827. [Google Scholar] [CrossRef] [Green Version]
- Mangolim, C.S.; Moriwaki, C.; Nogueira, A.C.; Sato, F.; Baesso, M.L.; Neto, A.M.; Matioli, G. Curcumin–β-cyclodextrin inclusion complex: Stability, solubility, characterisation by FT-IR, FT-Raman, X-ray diffraction and photoacoustic spectroscopy, and food application. Food Chem. 2014, 153, 361–370. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, A.; Sahabi, M.; Beigi-Boroujeni, S.; Abdolvand, H.; Makvandi, P.; Isfahani, A.P.; Gharibi, R.; Ebrahimibagha, M. Alginate hydrogel with enhanced curcumin release through HPβCD assisted host-guest interaction. Biomater. Adv. 2022, 141, 213130. [Google Scholar] [CrossRef]
- Georgantelis, D.; Ambrosiadis, I.; Katikou, P.; Blekas, G.; Georgakis, S.A. Effect of rosemary extract, chitosan and α-tocopherol on microbiological parameters and lipid oxidation of fresh pork sausages stored at 4 °C. Meat Sci. 2007, 76, 172–181. [Google Scholar] [CrossRef]
- Soro, A.B.; Whyte, P.; Bolton, D.J.; Tiwari, B.K. Application of a LED-UV based light technology for decontamination of chicken breast fillets: Impact on microbiota and quality attributes. LWT 2021, 145, 111297. [Google Scholar] [CrossRef]
- Gong, C.; Li, Y.; Gao, R.; Xiao, F.; Zhou, X.; Wang, H.; Xu, H.; Wang, R.; Huang, P.; Zhao, Y. Preservation of sturgeon using a photodynamic non-thermal disinfection technology mediated by curcumin. Food Biosci. 2020, 36, 100594. [Google Scholar] [CrossRef]
- Xiong, L.; Hu, Y.; Liu, C.; Chen, K. Detection of Total Volatile Basic Nitrogen (TVB-N) in Pork Using Fourier Transform Near-Infrared (FT-NIR) Spectroscopy and Cluster Analysis for Quality Assurance. Trans. ASABE 2012, 55, 2245–2250. [Google Scholar] [CrossRef]
- Wang, G.; Liu, Y.; Yong, H.; Zong, S.; Jin, C.; Liu, J. Effect of Ferulic Acid-Grafted-Chitosan Coating on the Quality of Pork during Refrigerated Storage. Foods 2021, 10, 1374. [Google Scholar] [CrossRef]
- Cen, S.; Fang, Q.; Tong, L.; Yang, W.; Zhang, J.; Lou, Q.; Huang, T. Effects of chitosan-sodium alginate-nisin preservatives on the quality and spoilage microbiota of Penaeus vannamei shrimp during cold storage. Int. J. Food Microbiol. 2021, 349, 109227. [Google Scholar] [CrossRef]
- Wang, B.; Xu, C.C.; Liu, C.; Qu, Y.H.; Zhang, H.; Luo, H.L. The Effect of Dietary Lycopene Supplementation on Drip Loss during Storage of Lamb Meat by iTRAQ Analysis. Antioxidants 2021, 10, 198. [Google Scholar] [CrossRef]
- Li, Y.; Tan, L.; Liu, F.; Li, M.; Zeng, S.; Gui, Y.; Zhao, Y.; Wang, J.J. Effects of soluble Antarctic krill protein-curcumin complex combined with photodynamic inactivation on the storage quality of shrimp. Food Chem. 2023, 403, 134388. [Google Scholar] [CrossRef]
- Liu, F.; Li, Z.; Cao, B.; Wu, J.; Wang, Y.; Xue, Y.; Xu, J.; Xue, C.; Tang, Q.J. The effect of a novel photodynamic activation method mediated by curcumin on oyster shelf life and quality. Food Res. Int. 2016, 87, 204–210. [Google Scholar] [CrossRef]
- Wang, A.; Dadmun, C.H.; Hand, R.M.; O’Keefe, S.F.; Phillips, J.N.B.; Anders, K.A.; Duncan, S.E. Efficacy of light-protective additive packaging in protecting milk freshness in a retail dairy case with LED lighting at different light intensities. Food Res. Int. 2018, 114, 1–9. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, H.; Xie, J.; Yu, W.; Sun, Y. Effects of Frozen Storage Temperature on Water-Holding Capacity and Physicochemical Properties of Muscles in Different Parts of Bluefin Tuna. Foods 2022, 11, 2315. [Google Scholar] [CrossRef]
- Lin, H.; He, X.; Liu, C.; Meng, J.; Guan, W.; Hou, C.; Zhang, C.; Wang, W. Static magnetic field-assisted supercooling preservation enhances water-holding capacity of beef during subzero storage. Innov. Food Sci. Emerg. 2022, 80, 103106. [Google Scholar] [CrossRef]
- Feng, C.H. Quality Evaluation and Mathematical Modelling Approach to Estimate the Growth Parameters of Total Viable Count in Sausages with Different Casings. Foods 2022, 11, 634. [Google Scholar] [CrossRef]
- Thiansilakul, Y.; Benjakul, S.; Richards, M.P. Effect of myoglobin from Eastern little tuna muscle on lipid oxidation of washed Asian seabass mince at different pH conditions. J. Jpn. Soc. Food Sci. 2011, 76, 242–249. [Google Scholar] [CrossRef]
- Henriott, M.L.; Herrera, N.J.; Ribeiro, F.A.; Hart, K.B.; Bland, N.A.; Eskridge, K.; Calkins, C.R. Impact of myoglobin oxygenation state prior to frozen storage on color stability of thawed beef steaks through retail display. Meat Sci. 2020, 170, 108232. [Google Scholar] [CrossRef]
- Predescu, C.; Papuc, C.; Petcu, C.; Goran, G.; Rus, A.E. The Effect of Some Polyphenols on Minced Pork during Refrigeration Compared with Ascorbic Acid. Bull. UASVM Food Sci. Technol. 2018, 75, 36–42. [Google Scholar] [CrossRef] [Green Version]
- Secci, G.; Parisi, G.; Meneguz, M.; Iaconisi, V.; Cornale, P.; Macchi, E.; Gasco, L.; Gai, F. Effects of a carbon monoxide stunning method on rigor mortis development, fillet quality and oxidative stability of tench (Tinca tinca). Aquaculture 2018, 493, 233–239. [Google Scholar] [CrossRef]
- Ding, Z.; Wei, Q.; Liu, C.; Zhang, H.; Huang, F. The Quality Changes and Proteomic Analysis of Cattle Muscle Postmortem during Rigor Mortis. Foods 2022, 11, 217. [Google Scholar] [CrossRef]
- Acerete, L.; Reig, L.; Alvarez, D.; Flos, R.; Tort, L. Comparison of two stunning/slaughtering methods on stress response and quality indicators of European sea bass (Dicentrarchus labrax). Aquaculture 2009, 287, 139–144. [Google Scholar] [CrossRef]
Criterion | Score Range | ||||
---|---|---|---|---|---|
9~10 | 7~8 | 5~6 | 3~4 | 1~2 | |
Color | bright red, shiny | red, shiny | darker red | dull, dark red | dull grey-brown, white spots |
Odor | normal pork odor | light meaty, no off odor | mild off odor | strong off odor | putrid odor |
Surface stickiness | not sticky | slightly sticky | moderately sticky | sticky | very sticky |
Overall acceptability | good | acceptable | moderately acceptable | just acceptable | unacceptable |
Time/d | 0 | 2 | 4 | 6 | 8 | 10 |
---|---|---|---|---|---|---|
Control | 43.41 ± 1.26 Ab | 48.70 ± 2.67 Aa | 48.00 ± 0.25 Aa | 46.49 ± 1.71 Aa | 42.61 ± 1.74 Ab | 40.49 ± 0.91 ABb |
PS-L+ | 43.41 ± 1.26 Aab | 44.28 ± 2.81 Aab | 45.56 ± 0.45 Aa | 43.97 ± 0.65 Bab | 42.07 ± 1.26 Ab | 38.23 ± 2.65 Bc |
PS+L- | 43.41 ± 1.26 Aab | 47.52 ± 1.93 Aa | 47.44 ± 2.47 Aa | 46.54 ± 0.37 Aa | 43.93 ± 3.71 Aab | 40.91 ± 1.78 ABb |
PS+L+ | 43.41 ± 1.26 Ab | 46.5 ± 1.28 Aa | 47.19 ± 1.19 Aa | 45.88 ± 0.94 ABa | 45.72 ± 1.00 Aa | 43.13 ± 1.80 Ab |
Time/d | 0 | 2 | 4 | 6 | 8 | 10 |
---|---|---|---|---|---|---|
Control | 3.9 ± 0.69 Ab | 6.36 ± 0.33 Aa | 6.57 ± 2.06 Aa | 4.06 ± 0.73 Bb | 4.76 ± 0.59 BCab | 3.7 ± 0.24 Bb |
PS-L+ | 3.9 ± 0.69 Acd | 5.31 ± 0.45 Ab | 6.49 ± 0.53 Aa | 4.27 ± 0.76 ABc | 4.17 ± 0.23 Ccd | 3.16 ± 0.59 Bd |
PS+L- | 3.9 ± 0.69 Ab | 6.88 ± 1.53 Aa | 6.59 ± 0.18 Aa | 6.08 ± 1.44 Aab | 7.55 ± 2.06 Aa | 5.31 ± 0.61 Aab |
PS+L+ | 3.9 ± 0.69 Ac | 5.69 ± 0.14 Ab | 6.21 ± 0.4 Aab | 4.63 ± 0.52 ABc | 6.59 ± 0.32 ABa | 5.93 ± 0.28 Aab |
Time/d | 0 | 2 | 4 | 6 | 8 | 10 |
---|---|---|---|---|---|---|
Control | 247.96 ± 9.53 Aab | 263.50 ± 17.89 Aab | 255.80 ± 37.62 Aab | 295.68 ± 87.82 Aa | 261.00 ± 38.94 Bab | 202.36 ± 22.64 Bb |
PS-L+ | 247.96 ± 9.53 Ac | 325.49 ± 47.31 Abc | 316.41 ± 71.84 Abc | 376.83 ± 8.62 Ab | 482.73 ± 84.74 Aa | 389.14 ± 52.5 Aab |
PS+L- | 247.96 ± 9.53 Ab | 265.70 ± 71.16 Aab | 246.53 ± 37.14 Ab | 331.51 ± 48.64 Aa | 296.91 ± 35.57 Bab | 284.87 ± 19.27 Bab |
PS+L+ | 247.96 ± 9.53 Aa | 260.81 ± 39.49 Aa | 264.18 ± 69.93 Aa | 291.81 ± 81.84 Aa | 309.74 ± 67.43 Ba | 282.42 ± 73.98 Ba |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Li, J.; Xu, F.; Zhou, A.; Zeng, S.; Zheng, B.; Lin, S. Effective Preservation of Chilled Pork Using Photodynamic Antibacterial Film Based on Curcumin-β-Cyclodextrin Complex. Polymers 2023, 15, 1023. https://doi.org/10.3390/polym15041023
Wu J, Li J, Xu F, Zhou A, Zeng S, Zheng B, Lin S. Effective Preservation of Chilled Pork Using Photodynamic Antibacterial Film Based on Curcumin-β-Cyclodextrin Complex. Polymers. 2023; 15(4):1023. https://doi.org/10.3390/polym15041023
Chicago/Turabian StyleWu, Jingru, Jing Li, Fang Xu, Arong Zhou, Shaoxiao Zeng, Baodong Zheng, and Shaoling Lin. 2023. "Effective Preservation of Chilled Pork Using Photodynamic Antibacterial Film Based on Curcumin-β-Cyclodextrin Complex" Polymers 15, no. 4: 1023. https://doi.org/10.3390/polym15041023
APA StyleWu, J., Li, J., Xu, F., Zhou, A., Zeng, S., Zheng, B., & Lin, S. (2023). Effective Preservation of Chilled Pork Using Photodynamic Antibacterial Film Based on Curcumin-β-Cyclodextrin Complex. Polymers, 15(4), 1023. https://doi.org/10.3390/polym15041023