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Abstract: Alpha mangostin (AM) has potential anticancer properties for breast cancer. This study
aims to assess the potential of chitosan nanoparticles coated with hyaluronic acid for the targeted
delivery of AM (AM-CS/HA) against MCF-7 breast cancer cells. AM-CS/HA showed a spherical
shape with an average diameter of 304 nm, a polydispersity index of 0.3, and a negative charge
of 24.43 mV. High encapsulation efficiency (90%) and drug loading (8.5%) were achieved. AM
released from AM-CS/HA at an acidic pH of 5.5 was higher than the physiological pH of 7.4 and
showed sustained release. The cytotoxic effect of AM-CS/HA (IC50 4.37 µg/mL) on MCF-7 was
significantly higher than AM nanoparticles without HA coating (AM-CS) (IC50 4.48 µg/mL) and
AM (IC50 5.27 µg/mL). These findings suggest that AM-CS/HA enhances AM cytotoxicity and has
potential applications for breast cancer therapy.

Keywords: alpha mangostin; chitosan; hyaluronic acid; polymeric nanoparticle; cytotoxic

1. Introduction

Breast cancer is the most common type of malignancy and the second leading cause of
cancer-related death worldwide [1,2]. In general, the treatment of breast cancer involves
various combinations of surgery, radiation therapy, chemotherapy, and hormone therapy
that have many drawbacks, such as limited effectiveness and unwanted side effects. In
addition, chemotherapy shows low efficacy due to multidrug resistance and is highly toxic
to healthy cells due to its non-specific targeting [3–5].

Alpha mangostin is a derivative of xanthone compounds isolated from the rind of
the mangosteen fruit (Garcinia mangostan). AM has antiproliferative activity and apoptotic
effects on different types of cancer, one of which is breast cancer, among the mechanisms
of inducing apoptosis in breast cancer cells through the downregulation of B-cell lym-
phoma 2 (Bcl2) and the upregulation of Bcl-2-associated X protein (Bax) against breast
cancer cells [6–10]. In addition to its anticancer activity, AM has limitations due to its poor
solubility [11], the first fast metabolism reaction, efflux reactions caused by intercellular
transporters, rapid drug release, and low selectivity for cancer cells [6,12–14].

The advancement of nanoparticle delivery system technology has the potential to
improve delivery efficiency while minimizing side effects by directly targeting cancer
cells [15–19]. Polymeric nanoparticles are a drug delivery system approach that utilizes
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polymers as carriers in the form of nanoparticles [20–22]. Polymeric nanoparticles are fre-
quently produced from biopolymers such as chitosan in their formulation because they offer
several advantages over other synthetic polymers, such as being green economy-friendly,
eco-friendly, easy to make, bio-compatible, biodegradable, and low in their toxicity [23,24].
They have also been investigated for their ability to increase drug macromolecular per-
meation on epithelial membranes through the reversible opening of the transmembrane
gap (tight junction) [25,26]. Chitosan nanoparticles have previously been used as AM
carriers for breast cancer cells. In this study, AM was successfully encapsulated in chitosan
nanoparticles, significantly increasing the cytotoxicity of AM (IC50 6.7 µg/mL) compared
to that which was not prepared in the polymeric nanoparticle formulation (IC50 8.2 µg/mL)
against the MCF-7 cell line [27,28].

Modification of nanoparticles aims to improve drug targeting through passive or
active targeting [29,30]. Passive targeting can enhance the penetration of nanoparticles to
the tumor tissue site through an enhanced permeability and retention (EPR) effect [31–35].
Meanwhile, active targeting contains structural modifications and surface functionalization
of nanoparticles that lead to more specific targeting capabilities [36,37]. The limited selec-
tivity of nanoparticles against cancer excludes the benefits of nanoparticle drug delivery for
effective chemotherapy. It is critical to improve the selectivity of nanoparticles for cancer
cells so that they can deliver more therapeutic agents to targeted cells than healthy cells,
boosting therapeutic efficacy and minimizing adverse effects [38]. Therapeutic targeting can
be accomplished by decorating the surface of nanoparticles with specific ligands to target
the appropriate receptor cells, which are overexpressed on cancer cell membranes [39,40].
There are many candidates for ligand targeting, such as folate, antibodies, and hyaluronic
acid, which have shown efficacy in breast cancer targeting [41,42]. Several studies have
found that hyaluronic acid (HA) is one of the most often utilized ligands for coating
chitosan nanoparticles for targeting breast cancer. HA is a natural polysaccharide made
up of D-glucuronic acid and N-acetyl-D-glucosamine, which shows a high affinity for
the integral membrane glycoprotein cluster differentiation-44 (CD44) on the cell surface
in breast cancer [43,44]. CD44 is a cell surface receptor that is overexpressed in breast
cancer, and targeting this receptor could facilitate intracellular uptake of nanoparticles,
thereby increasing drug concentrations in cancer cells through CD44 receptor-mediated
endocytosis [45–51].

In this study, HA-coated AM nanoparticles were developed and applied to actively
target MCF-7 breast cancer cells that express CD44. For this purpose, the cytotoxic effect of
HA-coated AM nanoparticles will be compared with that of AM and AM nanoparticles
without HA.

2. Materials and Methods
2.1. Material

AM was obtained from Chengdu Biopurify Phytochemicals (Chengdu, Sichuan,
China). Chitosan (CS), with MW: 1526.5 g/mol and DD: 81.38%, was isolated with a
purity of 70%. HA (MW = 60 KDa) was purchased from Kangcare Bioindustry (Nanjing,
China), and sodium tripolyphosphate (TPP) from Kristata (Bandung, West Java, Indonesia).
The MCF-7 breast cancer cell line was obtained from the American Type Culture Collection
(Manassas, VA, USA).

2.2. Method
2.2.1. Fabrication of AM-CS

The ionic gelation technique was used to produce AM-CS. Briefly, AM (1 mg/mL)
was dissolved in ethanol, and CS (1 mg/mL) was dissolved in acetic acid, then stirred
overnight at room temperature with a magnetic stirrer, respectively. TPP (1 mg/mL) was
dissolved into demineralized water. AM and CS solutions were mixed and transferred
drop-by-drop to TPP solutions while being constantly magnetically stirred. The mixture
was kept on a magnetic stirrer overnight at room temperature, then sonicated for 30 min.
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Finally, nanoparticles were separated from the mixture by centrifugation at 13,552× g for
30 min [27,28].

2.2.2. Fabrication of Surface Functionalization of AM-CS

For the coating process, AM-CS and HA were dispersed in an acetate buffer at pH
5. Then, AM-CS was added dropwise to various concentrations of HA (Table 1) with
constant vigorous stirring (30 min, 1200 rpm). The nanoparticles were then purified by
centrifugation at 13,552× g for 30 min [42,52,53].

Table 1. AM nanoparticles’ formulation.

Formulation AM (mg/mL) CS (mg/mL) TPP (mg/mL) HA (mg/mL)

AM-CS 1 10 2 -
AM-CS/HA1 1 10 2 20
AM-CS/HA2 1 10 2 40
AM-CS/HA3 1 10 2 60

2.2.3. Particle Size, Polydispersity Index (PDI), and Zeta Potential

The particle size, PDI, and zeta potential of the AM nanoparticles’ formulation were
evaluated using the dynamic light scattering (DLS) analyzer (SZ 100 Horiba, Kyoto,
Japan) [54,55].

2.2.4. Morphology Studies

The morphology of AM-CS and AM-CS/HA was examined by scanning electron
microscopy (SEM) (Model SU3500 SEM; Hitachi, Tokyo, Japan). The samples were placed
into the stub and coated with platinum (30 s, 10 mA). AM-CS and AM-CS/HA photomicro-
graphs were taken at 10 kV with 20,000 magnifications [27,28].

2.2.5. Determination of Entrapment Efficiency and Drug Loading

The entrapment efficiency (EE) and drug loading (DL) of nanoparticles were calcu-
lated by spectroscopy. Briefly, AM-CS/HA was mixed with ethyl acetate and centrifuged
(6000× g rpm, 5 min). After collecting the supernatant, the absorbance at 245 nm was
measured with a spectrophotometer. The supernatant was then resuspended in sufficient
ethanol to determine the amount of AM encapsulated and the total amount of AM. Serial
concentrations of AM (2–12 µg/mL) were measured at 245 nm to generate the standard
curve. EE and DL of AM in AM-CS/HA were calculated by Equations (1) and (2) [27,28]:

EE (%) =
mass o f the AM in AM − CS/HA

mass o f AM used
× 100% (1)

DL (%) =
mass o f the AM in AM − CS/HA

mass o f AM − CS/HA
× 100% (2)

2.2.6. Fourier-Transform Infrared Spectroscopy Analysis

The chemical interaction of raw materials and nanoparticles was investigated using a
Fourier-transform infrared spectrophotometer (FTIR) (Thermo Fisher, Waltham, MA, USA)
and measured at 4000–400 cm−1 [27,56].

2.2.7. X-ray Diffraction Analysis

X-ray diffraction (XRD) (X-pert MPD diffractometer type, Rigaku International, Tokyo,
Japan) was used to examine the crystallinity of AM-CS/HA. The samples were scanned
throughout an angular range (2 theta) of 5–60◦ [27,57].
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2.2.8. Differential Scanning Calorimetry Analysis

Differential scanning calorimetry (DSC) (Perkin Elmer DSC-6, MA, USA) was used to
study the thermal properties of AM-CS/HA. The samples were carried out at a heating
rate of 10 ◦C/min from 30 to 300 ◦C, with a stream of flowing nitrogen at 50 mL/min [27].

2.2.9. In Vitro Release Studies

The release profile in phosphate-buffered saline (PBS) solution was investigated at
pH 7.4 and 5.5. Typically, 5 mg of nanoparticles were dispersed in PBS and transferred
to a dialysis tube (molecular weight cut-off 12,000 Da). The dialysis tube was immersed
in PBS medium before being put into a beaker containing 50 mL of release medium at
37 ◦C and 100 rpm. At determined time intervals, 5 mL of dissolution medium was taken
and replaced with an equal quantity of fresh medium. The collected samples were then
measured using a spectrophotometer at a wavelength of 245 nm [55].

2.2.10. Cytotoxicity Studies

The MTT assay was used to assess the cytotoxic activity of AM and nanoparticles on
MCF-7 cells. Here, 5000 cells/well of MCF-7 cells (ATCC) were seeded on 96-well plates
in the presence of RPMI culture media containing 10% FCS for 24 h. Then, the media
was aspirated and replaced with cell culture media containing various amounts of AM
(2–6 µg/mL). Next, 0.5 mg/mL of MTT solution was added and incubated for 4 h at 37 ◦C.
The formed formazan crystals were treated with 100 µL of SDS in 0.01% HCl, and then the
absorbance was measured at 450 nm using an ELISA plate reader (EpochTM Microplate
Spectrophotometer, VT, USA). Cell viability was represented as a percentage of the treated
cells compared to the control cells, as stated in Equation (3), and IC50 was calculated from
the dose–response curves [58]:

Cell viability (%) =
absorbance o f treated sample
absorbance o f control sample

× 100% (3)

2.2.11. Statistical Analysis

The quantitative data were expressed as the mean ± standard error of the mean
(S.E.M.). The two-way ANOVA was used for statistical analysis. p-values < 0.05 were
considered significant.

3. Results
3.1. Characterization of AM Nanoparticles
3.1.1. Particle Size, PDI, Zeta Potential, Morphology, EE, and DL

The mean particle size, PDI, and zeta potential of various AM nanoparticle formulas
are shown in Table 2. The data show that the nanoparticle size is in the range of 200–400 nm.
The zeta potential of AM-CS showed a positive value, then the AM-CS/HA showed a
negative value. In addition, the PDI of all formulas was <1. In this study, AM-CS/HA1 was
selected for further characterization and cytotoxicity evaluation on MCF-7 cells because
this formula produced the smallest particle size.

Table 2. Particle size, distribution, and zeta potential of AM nanoparticles.

Formulation Particle Size (nm) PDI Zeta Potential (mV)

AM-CS 229.133 ± 5.685 0.382 ± 0.015 33.83 ± 1.92
AM-CS/HA1 304.833 ± 6.288 0.362 ± 0.038 −24.43 ± 1.76
AM-CS/HA2 369.300 ± 2.467 0.360 ± 0.028 −28.44 ± 2.26
AM-CS/HA3 412.767 ± 6.001 0.346 ± 0.034 −33.31 ± 1.85

The morphologies of nanoparticles were examined by SEM (Figure 1). As shown
in Figure 1, the nanoparticles were approximately spherical. The EE and DL are dis-
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played in Table 3. The average entrapment efficiency of the AM-CS and AM-CS/HA1
was 85.32% ± 0.40% and 90.40% ± 0.161%, respectively, indicating that AM did not escape
from the nanoparticles during the HA coating process.
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Figure 1. SEM photomicrographs of (a) AM-CS and (b) AM-CS/HA1.

Table 3. The average of EE and DL of the nanoparticles.

Formulation EE (%) DL (%)

AM-CS 88.325 ± 3.340 8.674 ± 0.018
AM-CS/HA1 90.404 ± 2.161 8.514 ± 0.007

3.1.2. FTIR Analysis

The results of the FTIR analysis are displayed in Figure 2. The AM spectrum showed
the presence of O–H stretch at 3411.15 and 3234.88 cm−1, stretching vibrations of C–H
at 2988.11, 2961.04, and 2910.40 cm−1, C=O at 1638.20 cm−1, C–C at 1448.33 cm−1, orto–
OCH3 stretch at 1197.83 cm−1, and C–O–C stretch at 1073.82 cm−1 [59,60]. The CS spec-
trum displayed broad peaks around 3332.14 cm−1 corresponding to the amide (N-H)
and O-H groups, C–H stretch at 2871.62 cm−1, C=O stretch at 1637.26 cm−1, N–H bend
at 1582.86 cm−1, C–H bend at 1422.38 cm-1, C–N at 1375.93 cm−1, C–O–C stretch at
1149.98 cm−1, and C–O at 1022.44 cm−1 [61,62]. The characteristic absorption peaks of HA
were 3409 cm−1 corresponding to the N–H and O–H groups, amide II and III at 1557 and
1337 cm−1, C–C stretching of the COONa group was observed at 1404 cm−1, and C–O
stretch at 1042 cm−1 [63]. The spectra of AM-CS/HA1 presented absorption bands at
1515.21 and 1735.45 cm−1 due to –NH3 of CS and –COOH of HA, respectively [64].
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3.1.3. XRD Analysis

The XRD patterns are displayed in Figure 3. The AM showed sharp multiple peaks at
2θ of 5.4◦, 11.6◦, and 13.3◦, which indicated a crystalline pattern [65,66], and the CS showed
peaks at 10.4◦, 19.7◦, and 29.3◦ that exhibited semi-crystalline patterns [67–69]. The XRD
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spectrum of HA showed no specific diffraction pattern, indicating the amorphous nature
of HA [64]. The peaks exhibited by the AM-CS/HA1 resembled those of HA and showed
an amorphous nature.
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3.1.4. DSC Analysis

DSC thermograms for AM exhibited the endothermic phase at 177 ◦C, and HA had
an obvious glass transition peak at 85 ◦C and an exothermic peak at 241 ◦C. The DSC
thermogram of chitosan showed an endothermic peak between 95.1 and 102.3 ◦C and an
exothermic peak between 303.77 and 304.28 ◦C. The AM-CS/HA1 displayed patterns that
corresponded to the glass transition (103.1 ◦C). The results of the DSC analysis are shown
in Figure 4.
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3.2. In Vitro Release Studies

The profile of the in vitro release of AM from nanoparticles in PBS (pH 7.4 and 5.5)
within 96 h is shown in Figure 5, and the Higuchi parameters for release kinetics are
summarized in Table 4. The release of AM from nanoparticles demonstrated an initial burst
of up to 11% during the first hour, followed by a sustained release for 96 h.
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Table 4. Higuchi regression parameter for AM release from AM-CS and AM-CS/HA1.

Parameter
AM-CS AM-CS/HA1

pH 7.4 pH 5.5 pH 7.4 pH 5.5

Intercept 0.852 ± 0.477 3.265 ± 0.129 0.889 ± 0.169 1.723 ± 0.3428
Slope 9.281 ± 0.489 11.821 ± 0.377 9.097 ± 0.160 10.289 ± 0.340

Correlation
coefficient (r) 0.994 ± 0.002 0.981 ± 0.005 0.995 ± 0.001 0.987 ± 0.002

3.3. Cytotoxicity Studies

The cytotoxic activity of AM, -CS/HA1, AM, AM-CS, and AM-CS/HA1 was evaluated
on MCF-7 cells, as shown in Figure 6. For -CS/HA, no cytotoxic activity was observed
in MCF-7 cells. On the other hand, the cytotoxicity of AM, AM-CS, and AM-CS/HA
significantly differed. AM, AM-CS, and AM-CS/HA had IC50 of 5.27, 4.48, and 4.37 µg/mL,
respectively. Thus, these results demonstrated that AM-CS/HA has higher cytotoxicity
compared to AM and AM-CS.
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4. Discussion

AM has shown potentiality in the treatment of various types of cancer. Previous
research has demonstrated that AM nanoparticles have a remarkable therapeutic impact



Polymers 2023, 15, 1025 8 of 13

on breast cancer [6,7]. In this study, AM-loaded nanoparticles were coated with HA for
breast cancer targeting. Nanocarriers with tumor-targeting moiety attachments, such as
hyaluronic acid, have the potential to increase tumor-targeted delivery, while minimizing
pharmacological adverse effects [42,70–73].

In this study, AM-CS was fabricated with HA (AM-CS/HA) via an electrostatic depo-
sition technique. As an experimental variable, three different concentrations of HA (20, 40,
and 60 mg) were used. As shown in Table 2, there was a correlation between the variations
in HA concentrations and particle size, or zeta potential. The higher concentration of HA
resulted in larger particle sizes and a lower zeta potential value. At low concentrations,
HA will enter more readily and deeply through the pores in AM-CS, resulting in denser
particles, which will further increase the particle size when the HA concentration increases
owing to the accumulation of the coated polymer chains on the exterior of the nanoparticles.
The coating of AM nanoparticles resulted in a conversion of the nanoparticles’ surface
charge. HA has been found to exert a negative charge on the nanoparticles’ surface because
HA molecules are mostly located in the outermost shell of nanoparticles. Positively charged
nanocarriers promote membrane attachment, uptake, and release of endosomes, while
nanocarriers with a negative zeta potential exhibit more selective and efficient absorption,
particularly when coated with targeting ligands [53,54,74].

The particle size of nanoparticles plays an important role in chemotherapeutic drug
delivery systems because it can affect cellular uptake via endocytosis and determine their
fate during systemic circulation [27]. Studies have shown that the nanoparticle size range
between 40 and 400 nm is suitable for extending the circulation time and increasing drug
accumulation in tumors [75]. This is a further reason for selecting AM-CS/HA1 for further
investigation to evaluate its characteristics and cytotoxicity.

The spectrum of the AM-CS/HA1 exhibited some characteristic vibrations of HA
and CS, then shifted to a higher wave number. The signal shift demonstrated that both
macromolecular chains were involved in the production of the nanoparticles. The absorp-
tion band at 1735.45 cm−1 showed the protonation that occurred in the formation of the
polyelectrolyte complex [63,76]. Moreover, the amplification of the peak corresponding to
the amide I and II bands, with a small shift to wave numbers 1628.39 and 1558.62 cm−1,
showed effective amide bonding between the amino and carboxylic groups on the HA and
the surface of the nanoparticles [42,63,77].

The AM-CS/HA1 diffractogram data demonstrated the transformation of the crys-
talline or semi-crystalline phase of the material component into an amorphous form. The
termination of the amine and hydroxy groups is thought to be the origin of CS’s semi-
crystalline transition, resulting in the development of an amorphous complex with the
coated polymer (HA). Furthermore, the AM crystal lattice no longer appeared, suggesting
that AM has been uniformly dispersed and encapsulated in the system [27,78].

The DSC thermogram of AM nanoparticles coated with HA exhibited a loss of the
peak from CS accompanied by shifting of the HA peak to 94 ◦C and a loss of the exothermic
peak at 236 ◦C from HA, which is thought to be due to the structural modification of HA
after electrostatic interaction with CS [77,79]. Furthermore, AM exhibited a significant
endothermal peak around 178 ◦C due to the melting of AM crystals. However, the AM-
CS/HA diffractogram did not show an endothermic peak of AM. It can be explained that
the crystallization of AM is inhibited by the nanoparticle matrix, and AM may be in a
molecular or amorphous state in the nanoparticle system [78].

The release profile of AM from the nanoparticle system exhibited biphasic behav-
ior, with early and fast release phases, followed by sustained release. Both coated and
uncoated nanoparticles showed an initial burst of AM release, which was related to the
quick diffusion of free drug adsorbed on the particles [42,76]. The delayed release rate
of HA-coated nanoparticles compared to uncoated nanoparticles indicated that the HA
coating on the surface of the nanoparticles inhibits the diffusion of drugs trapped in the
nanoparticle system to be released. It happens because the coating of HA on the surface of
the nanoparticles increases their density and structural hardness due to increased cross-
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linking interactions between the constituent components, and reduces the release of the
active substance [80]. Furthermore, because chitosan and hyaluronic acid are pH-sensitive
polymers, pH influences the release of AM from nanoparticles [81]. Due to the break-
down in the electrostatic balance between CS and TPP in AM-CS or between CS, TPP,
and HA in -CS/HA in an acidic environment, AM release was larger at pH 5.5 than at
pH 7.4. This pH-dependent release mechanism reduces the drug’s systemic toxicity due
to decreased bioavailability in healthy organs at physiological pH, which could reduce
drug side effects for patients [82,83]. Subsequently, pH-sensitive drug delivery systems
result in higher bioavailability for drugs at tumor sites at acidic pH and increase their
efficiency in malignant tissues [54,76,84,85]. To estimate the kinetic profiles of AM release
from the nanoparticle system, we carried out an analysis using the Higuchi model. Based
on the value of the correlation coefficient (r), this indicated that the type of release of AM
from nanoparticles was a matrix type, based on Fickian diffusion [80,86]. It is known that
Higuchi’s kinetic model involves drug release from the polymer matrix system, which
releases drugs in a controlled and sustainable manner [87,88]. This is very important for
the release of chemotherapy drugs to reduce their toxicity [89,90].

The cytotoxic study on drug-free nanoparticles (-CS/HA1) showed activity on cell
viability > 90% at all tested concentrations. These results indicate that the nanoparticle
carrier exhibited good biocompatibility and was less toxic to the tested MCF-7 cells. In
contrast, cells that were treated with AM, AM-CS, or AM-CS/HA1 demonstrated a dose-
dependent response to the drug. Moreover, the cells utilized were more sensitive to AM-CS
and HA than to AM and AM-CS. The cytotoxic activity of AM and AM-CS/HA1 at the
same doses was significantly different (p < 0.05). In conclusion, AM has lower cytotoxicity
than AM-CS/HA because the HA coating of nanoparticles interacts with the CD44 receptor
and is then internalized via receptor-mediated endocytosis.

5. Conclusions

The development of targeted drug delivery systems is necessary for the delivery of
anticancer drugs to reduce systemic side effects and increase the effectiveness of therapy.
Surface-modified nanoparticle delivery systems using specific ligands, such as hyaluronic
acid, to target cell receptors that are overexpressed on breast cancer cell membranes, such as
the CD44 receptor, have the potential to increase the efficiency of anticancer drug delivery
to breast cancer cells [42]. This research succeeded in developing a targeted delivery
system of hyaluronic acid-coated chitosan nanoparticles for the targeted delivery of alpha
mangostin for breast cancer. Our findings showed that alpha mangostin loaded in our
delivery system had a significant impact on MCF-7 cancer cells at a lower dose (IC50
4.37 µg/mL) compared to free alpha mangostin (IC50 5.27 µg/mL) or nanoparticles of
alpha mangostin with chitosan carriers without a hyaluronic acid coating (IC50 4.48 µg/mL,
IC50 6.7 µg/mL [27], IC50 4.90 µg/mL [91]). The most conclusive findings of this study
indicated that the developed alpha mangostin targeted nanoparticle delivery system can
be used as an effective treatment for breast cancer by specifically targeting cancer cells.
Further research needs to be conducted in vivo to determine the bioavailability, toxicity,
and anticancer activity of alpha mangostin nanoparticles coated with hyaluronic acid.
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