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Abstract: Directed self-assembly of block copolymers is evolving toward applications that are more
defect-tolerant but still require high morphological control and could benefit from simple, inexpensive
fabrication processes. Previously, we demonstrated that simply casting ultra-thin block copolymer
films on topographically defined substrates leads to hierarchical structures with dual patterns in a
controlled manner and unraveled the dependence of the local morphology on the topographic feature
dimensions. In this article, we discuss the extreme of the ultraconfined thickness regime at the border
of film dewetting. Additional non-bulk morphologies are observed at this extreme, which further
elaborate the arsenal of dual patterns that could be obtained in coexistence with full placement control.
It is shown that as the thickness confinement approaches its limit, lateral confinement imposed by
the width of the plateaus becomes a critical factor influencing the local morphology.
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1. Introduction

Block copolymers (BCPs) are macromolecules that contain two or more distinct poly-
mer chains that are covalently bonded to one another. BCPs undergo microphase separation,
forming arrays of nanostructures such as lamellae, cylinders, and spheres [1,2]. Thin films
of microphase-separated BCPs have been used to create stripe or dot patterns for a number
of applications [3–6]. Commonly, patterned BCP thin films are used as etch masks in
pattern transfer steps of semiconductor materials [7–10], as well as to organize nanoparti-
cles [11–18] or functional materials [19,20], for nanoporous filtration membranes [21–25],
nanotextured surfaces [26], and biomedical devices [27,28].

Domain orientation can be controlled by a process of directed self-assembly (DSA),
where pre-patterning of the substrate is used to guide the self-assembly of the BCP during
microphase separation [5,29–32]. DSA is one of the most promising approaches for high-
end applications requiring oriented nano-domains. To this end, research in the field of DSA
of BCPs for nanofabrication applications has centered on achieving highly ordered periodic
features [5,33–41] and programmable design control for defect-intolerant applications such
as integrated circuits [10,42–57]. The prerequisites to these applications are the ability to
obtain complex patterns, exacting control over feature size, and reproducibility [58–64].
Addressing these demands often requires prepatterning nanofabrication stages [65], usually
performed by chemoepitaxy [35,39,66–68], topographical patterning [16,37,38,42,61,69], or
in combination with other techniques [5,65,70].

The exacting requirements necessary for defect-free nanofabrication usually lead to a
complex and expensive fabrication process. Recently, efforts have been directed toward
broadening the scope of DSA of BCPs to applications that are less stringent in their require-
ment for defect-free structures but still require a moderate-to-high level of ordering and
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placement control [6] and could be realized by simple and inexpensive fabrication pro-
cesses. We have recently demonstrated a simple fabrication process that capitalizes on the
combination of substrate topography with thickness confinement to effect the formation of
co-existing, dual patterns, where the location of each pattern is dictated in a fully controlled
manner by the pre-designed location of the topographic feature [71]. This behavior was
rationalized by the topography-driven variation in film thickness between the film coating
the plateaus and the film deposited in the trenches, which is coupled to the extreme sensi-
tivity of the morphology to the local film thickness for films confined to thicknesses lower
than half the lamellar period [72,73]. In a follow-up study, we have unraveled the intricate
relationship between the trench depth, lateral topographical dimensions, and film surface
profile, allowing us to predict the morphology of the film under various experimental
conditions while the nominal film thickness remained constant [74].

The current work expands the fundamental exploration of the morphological behav-
ior of ultraconfined films cast on topographically defined substrates to the boundary of
dewetting. As will be shown below, additional co-existing, non-bulk morphologies are
obtained at this limit, and a new dependence on the lateral dimensions of the plateaus and
trenches emerges.

2. Materials and Methods

PS-b-PMMA diblock copolymer (Mn 312 kDa, PDI 1.27, 45 wt% PS, L0 = 84 nm)
was synthesized by standard anionic polymerization under a nitrogen atmosphere. The
molecular weight, size distribution, and polystyrene weight percentage were determined
by gel permeation chromatography (GPC) in tetrahydrofuran against PS standards for the
PS block and by comparison of the 1H NMR signals for the phenyl and methoxy groups for
the PMMA block. L0 was determined by SAXS.

Topographically patterned substrates were prepared by etching 38 nm-deep trenches
with varying widths into polished silicon wafers (~0.25 nm roughness) coated with a
native oxide layer. Substrates were coated with a 250 nm-thick PMMA resist (495 kDa,
Microchem), and the features were defined using electron beam lithography (Raith e-
LINE), followed by cold development (2 min, −5 ◦C) in MIBK:IPA (1:3) developer solution
and reactive ion etching with C4F8 and SF6 (Oxford Instruments Plasmalab System 100).
The topographically defined substrates were subsequently cleaned by oxygen plasma
and piranha solution. Trench depth measurements were performed using scanning force
microscopy (SFM; see Figure S1).

Block copolymer thin films were prepared on patterned substrates by spin coating
toluene solutions of BCP of various concentrations (0.3% to 1% w/w) for 30 s at 3000 rpm.
All films were annealed for 15 min in a closed petri dish with a saturated chloroform vapor
environment at ambient temperature.

Film characterization was performed using a high-resolution scanning electron mi-
croscope (FEI Sirion HR-SEM) and scanning force microscopy (SFM, Dimension 3100 or
Dimension Icon XR, Bruker). Film thicknesses above the trenches and plateaus were de-
termined by scratching away part of the film with a 19-gauge syringe needle, followed by
SFM scanning and analysis of the seam between the intact BCP film and the exposed silicon
substrate using the step analysis tool (Nanoscope Analysis Program v. 1.40 and 2.0, Bruker),
which averages height values of different scan lines of selected areas. These thicknesses
were determined by referencing the measured heights to the SFM height values of the
corresponding, completely exposed features (see Figure S2) [71]. Film height contrast was
measured using step analysis from the highest area of the plateau to the lowest area of the
trench [74]. For films where the substrate became exposed by dewetting (i.e., BCP droplets),
cross-section analysis was used to measure the film thickness at the desired location. At
least three height boundaries on two separate scans were measured for each plateau width,
and an average value was used for the data plot.
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3. Results and Discussion

Lamellar polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) diblock copoly-
mer (Mn 312 kDa, PDI 1.27, f PS = 0.48, L0 = 84 nm) was spin coated from toluene solutions
over topographically patterned substrates yielding films with nominal film thicknesses,
h, in the range of 8–24 nm. The high limit of this thickness range overlaps with the nomi-
nal film thicknesses studied in our previous works (22–23 nm) [71,74], which are already
considered ultra-confined (i.e., h < 0.5 L0), whereas the other film thicknesses extend the
investigations to even stronger confinement. The topographically patterned substrates
were made of silicon wafers that were etched with an array of 38 nm-deep, parallel trenches
(the trench depth was kept constant throughout this study). In contrast to our previous
investigations, this trench depth was larger than all the nominal film thicknesses explored
in this study. The plateau widths varied in the range of 160 to 640 nm (~2–8 L0), and the
trench widths varied in the range of 160 to 2000 nm. After spin coating, the films were
annealed in saturated chloroform vapor for 15 min at ambient temperature. Chloroform
was selected for solvent annealing because it is rather nonselective toward PS and PMMA
(χCHCl3,PS and χCHCl3,PMMA values calculated using Hansen solubility parameters equal to
0.47 and 0.50, respectively) [75].

Figure 1 shows scanning electron microscopy (SEM) images of an 18 nm nominal film
thickness film. No surface pattern is visible in the trenches that are 640 nm-wide or less
(Figure 1a–e). The local film thicknesses in the trenches were measured in the range of
20 to 25 nm (see the Experimental section for additional details), which, in accordance with
our previous work, yields a lying lamellar morphology [71]. The films on the plateaus are
much thinner, in the range of 9 to 14 nm. In this film thickness range, the surface pattern
on the plateaus is primarily dependent on the plateau width. For wide plateaus, dots
are visible over the central area of the plateau; striped domains are observed close to the
edge of the plateau (Figure 1a). As will be shown below, these stripes are not associated
with charging artifacts, but represent PMMA domains. A mixture of co-existing patterns,
namely dots and stripes (oriented both parallel and perpendicular to the plateau), is visible
on 280 and 320 nm wide plateaus (Figure 1b,c). For plateau widths of 240 nm or less, a
stripe oriented parallel to the topographic features is also seen at the center of the plateau
(Figure 1d). It is interesting to note that while the surface patterns exhibited by thicker films
(22–23 nm nominal thickness) cast over shallower trenches, which were described in our
previous study, showed a trivial dependence on the plateau width (i.e., the width merely
dictated the number of dots across the plateau) [74], the 18 nm-thick films investigated in
this study exhibited a different morphology on the narrowest plateaus. This observation
shows that increasing the ratio between trench depth and film thickness and utilizing
narrow plateaus provides access to non-bulk patterns of co-existing domain types that have
not been observed before.

Films cast on substrates featuring wider trenches (i.e., a sparse topographic array)
reveal a dot pattern in the trenches (Figure 1f). This observation indicates that the resulting
film in wide trenches is thinner than in films cast on denser arrays of topographic features,
which is corroborated by the known tendency of the latter to retain more material during the
spin coating process [76,77]. Indeed, scanning force microscopy (SFM) measurements show
that the average film thickness in trenches that are at least 1 µm-wide is 15.7 ± 4.3 nm,
nearly 7 nm less than that of the trenches that are narrower than 1 µm (average film
thickness: 22.6 ± 1.3 nm). In contrast, the average thickness of films on the plateaus in
these cases differs by only 2 nm (9.9 ± 1.6 and 12.0 ± 1.4 nm, respectively). The strong
dependence of the film thickness in the trenches on trench width and the weak dependence
of the film thickness on the plateaus on trench width are explained by the considerably less
hindered motion of the solution across the plateaus during spin coating compared with its
motion in the trenches, where it is restricted by the trench walls. Hence, as dense arrays
retain more material than sparse arrays during spin coating, variation in trench width
would mostly influence the amount of material retained in the trenches than the amount of
polymer deposited on the plateaus, leading to less deposited polymer in wide trenches than
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in narrow trenches (whereas the amount of polymer deposited on the plateaus is rather
indifferent to the width of the trenches). A similar conclusion may be drawn by considering
that wide trenches present more surface area of floor and walls with respect to the surface
area of the narrow plateaus, and that the walls are expected to be slightly rougher than the
polished surfaces of the plateaus (which is known to influence polymer dynamics [78,79]).
Both effects promote the adhesion of more material to the trenches during spin coating.
Therefore, the amount of polymer deposited in the trenches is expected to depend more
strongly on the trench width than the amount of polymer deposited on the plateaus.
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Figure 1. SEM images of samples with nominal 18 nm-thick BCP film annealed over a topographically
patterned substrate featuring parallel plateaus and trenches (light and dark tones, respectively)
with 38 nm deep trenches and variable trench/plateau widths: (a) 640/640 nm, (b) 320/320 nm,
(c) 280/280 nm, (d) 240/240 nm, (e) 160/160 nm, and (f) 2000/240 nm. Insets in (a,e) show the edge of
the patterned area. White domains (dots and stripes) correspond to PMMA. All scale bars represent
500 nm.

Figure 2 shows SEM images for samples featuring a thinner, 15 nm nominal film
thickness cast over the same topographic array. The slightly thinner film gives rise to the
appearance of dots in the trenches, independent of the trench dimensions. The films on
the plateaus exhibit similar morphologies as the samples shown in Figure 1 above, with
some noteworthy differences. When dots coexist with parallel stripes on the plateaus,
the fraction of stripes is larger for the sample with the thinner nominal film (compare
Figure 2a to Figure 1a and Figure 2b to Figure 1b). Additionally, the middle stripes of the
3-stripe pattern on the plateaus in Figure 2d are nearly complete for the 15 nm nominal film
thickness, whereas in the slightly thicker (18 nm) film they are broken into stripe segments
and even dots (Figure 1d).
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Figure 2. SEM images of samples with nominal 15 nm-thick BCP film annealed over a to-
pographically patterned substrate featuring 38 nm deep trenches and variable trench/plateau
widths: (a) 600/600 nm, (b) 320/320 nm, (c) 280/280 nm, (d) 240/240 nm, (e) 2000/240 nm, and
(f) 1500/160 nm. Inset in (a) shows the edge of the patterned area. All scale bars represent 500 nm.

The differences observed in the local morphologies on the plateaus and their depen-
dence on slight variations in film thickness are explained as follows. Within the ultra-thin
confinement regime, three types of morphologies were identified by computer simula-
tions [71]. At the low film thickness limit within this regime, the films exhibit a striped
pattern because orienting the PS/PMMA lamellae normal to the substrate minimizes the
PS/PMMA interfacial area per chain. Conversely, at the high film thickness limit within the
ultra-thin confinement regime, where thickness allows the accommodation of an average
normal orientation of the chains, orienting the domains parallel to the substrate yields a
lower interfacial area. This phenomenon is particularly pronounced for highly selective
substrates. In between these limits, for intermediary substrate selectivity and film thick-
ness, which correspond to the BCP and substrate used in this study, a dot pattern appears.
This pattern is the manifestation on the free surface of the film of a non-bulk, neck-like
morphology, where the more substrate-compatible PMMA domains create the widened
bases of the neck-like structure. Thus, when the local film thickness on the plateaus is close
to the transition from stripes to dots, co-existing patterns are observed on the plateaus (as
is evident with the 15 nm nominal thickness films).

For samples featuring plateaus of 240 nm or less, the films on the plateaus exhibit a
pattern of only stripes, which are oriented parallel to the plateau direction (Figure 2d,e).
The ability to influence the pattern on the plateaus using the plateau width and obtain
contrasting, distinct patterns on the plateaus and in the trenches (stripes and dots, re-
spectively) manifests the control provided by substrate topography on obtaining not only
dual, coexisting patterns but also dictating the boundaries between them using simple
preparation steps.
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Even though the pattern on the plateaus seems to be primarily dependent on the
plateau width, a comparison of samples with the same plateau width and different trench
widths reveals a mild dependence on the trench width as well. Figure 3 shows the patterns
observed on three arrays featuring the same plateau width (320 nm) and varying trench
widths (320, 560, and 2000 nm). In all cases, the patterns on the plateaus consist of co-
existing dots and stripes, where the composition gradually changes from dots to stripes
as the trench separating adjacent plateaus becomes wider. As shown in Figure 3d, as the
trench width increases, the film becomes locally thinner both on the plateau and in the
trench. Consequently, according to the arguments mentioned above [71], the fraction of dot
structures on the plateau decreases and the fraction of stripes increases.
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Figure 3. SEM images of samples of 18 nm-thick films cast over substrates with 38 nm-deep trenches
and lateral trench/plateau widths of: (a) 320/320 nm, (b) 560/320 nm, and (c) 2000/320 nm. All
scale bars represent 500 nm. Insets in panels a-c show SFM height images of the corresponding
sample (identical magnification as the SEM images). Blue ellipse indicates defects in the stripe at the
right-hand edge of the plateau. (d) An illustration showing the experimental height cross-section
corresponding to each of the SEM images overlaid on schematics of the substrate topography. The
height of the film over the plateau was established according to local film measurements for these
samples.

Although the films are continuous and do not dewet from the sidewalls of the trenches
(possibly also because of the slightly increased roughness of the sidewalls compared with
the horizontal surfaces [78,79]), the overlays shown in Figure 3d indicate that the surface of
the film, regardless of trench width, is extremely close to the edge of the plateau, which
suggests pinning of the film to the plateau edges. The formation of stripes at the edges
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of all of the plateaus shown in Figures 1 and 2 (which were not observed with the thicker
films in our previous studies [74]) may be templated by such pinning.

In our previous study [74], we presented phase diagrams that relate the morphologies
on the plateaus and in the trenches to the film’s height contrast, ∆h, and the fraction of the
film that resides in the trench, ftr. The height contrast is defined as the difference between
the highest part of the film deposited on the plateau and the lowest part of the surface
of the film deposited in the trench, which is directly measured from the SFM images (as
shown schematically in Figure 3d). The fraction of the film that resides in the trench is
approximated from the lateral dimensions of the topographic features and the local film
thicknesses measured by SFM (see Experimental Section and supplementary Figure S2 for
additional details) according to the following equation:

ftr =
htrwtr

htrwtr + hplwpl
(1)

where htr and hpl are the local film thicknesses in the trenches and on the plateaus, respec-
tively, and wtr and wpl are the respective widths of the trench and plateau. Figure 4 shows
phase diagrams constructed with the data shown in this paper.
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The choice of ∆h and ftr as the variables for the phase diagrams is rationalized as
follows. The height contrast correlates with the steepness of the slope of the film profile
across the edge of the plateau. A mild slope indicates a gradual change in the film thickness
near the edge of the plateau, which contradicts the natural tendency of block copolymer
films to favor discrete film thicknesses. As we have argued in our previous study [74],
the conformational frustration caused to the polymer chains by this situation may lead to
nucleation of perpendicularly-oriented PMMA domains at the edges of the plateaus [3,80],
which further template the formation of additional domains, which propagates toward the
center of the plateaus. The observation of the stripes at the edges of the plateaus in this
study seems to corroborate this explanation. Whereas the vertical coordinate of the phase
diagram relates to the film profile, the horizontal coordinate relates to the dimensions of
the topographic features of the substrate, which have been shown to influence the film
profile [76,77]. The choice of ftr among other possible variables that relate to the substrate
topography (such as duty cycle or feature density) was made because it provided the best
separation between different morphologies, which emphasized the need to include the
local film thicknesses in this variable.
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The resulting phase diagrams, based on ∆h and ftr, tie the morphologies that develop
on the plateaus and in the trenches to the film profile, local film thicknesses, and the topo-
graphic features dimensions. Yet, the need to know ∆h and ftr for a given polymer system
hinders the ability to predict the local morphologies from the given dimensions of the
topographic features. Fortunately, we have shown in the previous study that both variables
exhibit simple relationships to the trench depth, d, and the widths of the plateaus and
trenches (wpl and wtr). When applied to films featuring the same nominal film thicknesses
cast over topographic substrates with different feature depths, we obtained the following
equation (where all variables are given in nm) [74]:

∆h =

(
0.8140 − 93.44

wtr + wpl

)
d (2)

The same analysis was now applied to the data discussed in the current study, where
the trench depth was fixed at d = 38 nm and the nominal film thickness was varied. Figure 5
shows the dependence of the experimentally measured height contrast on the feature
density, (wpl + wtr)−1, for different types of arrays: symmetric (i.e., wpl = wtr), asymmetric
(i.e., wpl < wtr), and largely asymmetric (i.e., where the plateaus are spaced by very wide
trenches). In accord with our previous results, the data, which were obtained from the
data on the 18 and 15 nm-thick films combined with the data previously reported on
24 nm-thick films cast on the same substrates [74], show a linear relationship between the
height contrast and the feature density, which is found to be independent of the nominal
film thickness (at least for the range that was investigated thus far):

∆h = 32.32 − 3669
wtr + wpl

(3)
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trench depth.

This equation, which was mostly derived from the new data presented in this article,
agrees within 5% deviation with equation 2, enables to estimate the expected value of ∆h
from the widths of the plateaus and trenches and thus facilitates the prediction of the local
morphologies from the phase diagrams before performing the experiment.

A similar analysis yielded the following dependence of ftr on the duty cycle (defined
as wpl/(wpl + wtr)) and the trench depth for films featuring nominal film thickness of
22–23 nm [74]:

ftr = 1 + (0.005672d − 0.9602)
wpl

wpl + wtr
(4)
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The data we now have on thinner films (15 and 18 nm) cast on topographic substrates
with d = 38 nm show a somewhat weaker dependence of ftr on the duty cycle (i.e., smaller
negative slopes than the ones observed for 22–23 nm-thick films; see Figures 6 and S3). At
the regime of extreme confinement, this relationship seems independent of film thickness.
Nonetheless, the difference of ~15% between the slopes calculated from the data on the
films in the extreme confinement regime (hnominal ≤ 18 nm) and the slope calculated for
the 22–23 nm-thick films hint that there might be two distinguished thickness regimes. Yet,
additional data on films cast at additional film thicknesses in 38 nm-deep trenches as well
as data on films with variable film thicknesses cast on substrates featuring other trench
depths are required to substantiate the influence of the nominal film thickness on ftr.
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We observed that the thinnest films (15 nm nominal thickness) exhibit partial dewetting
when cast on narrow plateaus that are separated by wide trenches (Figure 2f). As discussed
above, topographic patterns featuring widely spaced plateaus retain less material on the
substrate during spin coating. Additionally, relatively deep trenches direct a larger fraction
of the material into the trench by capillary force. The combination of both effects depletes
the amount of BCP that remains on the plateau after spin coating. Below a critical thickness
that depends on the surface energies of the polymer and the substrate, the film dewets
from the surface of the plateau.

Generally, the dewetting of films is difficult to control, hence it is not a desirable
phenomenon in directed self-assembly of block copolymers [81]. However, the employment
of topographic substrates provide a way to control the location of the occurrence of dewet
regions and thus confine the unique patterns formed by dewetting to the plateaus. This
allows not only to obtain complex, non-bulk patterns in a controlled fashion but also to
unravel the behavior of the BCP film in the extreme confinement regime.

Figure 7 shows samples with a nominal film thickness of 8 nm. Interestingly, upon an-
nealing, the film dewet over the patterned area but remained intact in unpatterned regions
(see supplementary Figure S4). Figure 7a,b show an area of dewet film cast on a substrate
featuring 280 nm-wide plateaus and trenches. White areas correspond to exposed regions
of the plateaus, from which the polymer dewet. We noticed that the dewetting pattern
is oriented perpendicular to the direction of the topographic features. This dewetting
behavior is common to all the patterned areas studied in this work. Previous research using
polystyrene-block-poly(2-vinyl pyridine) (PS-b-P2VP) showed the formation of islands and
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holes, which were structured similarly to the dewet domains in this study (i.e., islands
developed almost exclusively over the topographically patterned region of the substrate
and were elongated perpendicular to the direction of the topographic features) [82]. It was
concluded that the local thickness incommensurability that is inherently induced by the
topographic pattern led to the formation of islands and holes. Additionally, consideration
of the forces acting on the polymer film while it coarsens during annealing led to the
conclusion that the flow of material occurs mostly along the trenches and plateaus in a
correlated motion, and thus the islands that form appear elongated perpendicular to the
direction of the topographic features and continue smoothly across the plateau edge [82].
It seems reasonable to assume that the dewetting of ultrathin PS-b-PMMA films on deep
topographic patterns, which is analogous to the formation of islands and holes, occurs in a
similar fashion.

Figure 7d shows a three-dimensional SFM height image of the same sample, featuring
280 nm-wide trenches and plateaus. Although the film formed dewet domains and regions
with exposed plateau surfaces, the film did not dewet in the trenches but rather coarsened
during the annealing process, forming islands and holes along the trench direction. Analo-
gously to the correlated coarsening of PS-b-P2VP films [82], a spatial correlation is observed
between the terracing patterns in the trenches and the dewetting patterns on the plateaus.
Figure 7b,c, which show high-magnification SEM images of dewet films cast over different
patterns, reveal that trench regions that are flanked by exposed plateau regions on both
sides exhibit a dot morphology, which is consistent with the lower film thickness observed
in these regions (Figure 7d). Trench regions that are flanked by plateau regions covered by
the polymer appear patternless, which is consistent with the higher film thickness in these
regions (see the red enclosed areas in Figure 7b,c). It seems that as the film on the plateau
recedes along the plateau direction, exposing the plateau surface, the material in the trench
recedes with it along the trench direction.

The polymer droplets on the plateaus are also phase-separated, showing co-existing
stripes and dots (see supplementary Figure S5). The stripes are closest to the edge of the
polymer droplets, where the film gradually thins toward the exposed region. The formation
of standing lamellae at this gradient thickness region is explained by the interfacial area
consideration described above. The thickness of the PS domains, hboundary, at the grain
boundary separating the PMMA dots region and the margin of the droplet, where the
film gradually thins and shows stripes, was measured as shown in Figure 7e,f for various
samples featuring symmetric topographic patterns (wpl = wtr) with varying plateau/trench
widths. Interestingly, we find that hboundary correlates linearly with the width of the
plateau (Figure 7g), which means that the minimum thickness required for the formation
of the dot pattern increases with increasing plateau width. This observation expands
our understanding of ultraconfined films [65,71,72,74,83] and shows that the morphology
is influenced not only by the thickness confinement but also by the lateral confinement.
Hence, hboundary may serve as a quantitative manifestation of the lateral confinement effect.
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Figure 7. (a–c) SEM images of an ultrathin, 8 nm-thick film cast over topographically defined
substrates featuring 38 nm-deep trenches. Bright white areas correspond to exposed regions of
the plateaus. Lateral dimensions of trench and plateau are 280 (a,b) and 400 nm (c). (b) High
magnification image of the blue boxed area in (a). Red enclosed areas in (b,c) demark film regions
that are thicker than the adjacent regions on both the plateau and in the trench. (d) Three-dimensional
SFM height image of the sample shown in (a). (e,f) SFM image and corresponding cross-section of a
typical dewet area on the plateau, showing the transition (from top to bottom in (e)) from a pattern
of dots at the center of the dewet area through a pattern of stripes to the exposed plateau surface.
(g) Graph of the local film height at the boundary where the dot pattern transitions to a stripe pattern.
Error bars represent the standard deviation in the measurements; the dashed line represents the linear
regression. Blue and purple shaded regions in the graph denote the ranges of local film thicknesses
where stripes and dots are observed, respectively.
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4. Conclusions

This work focuses on the effect of the lateral dimensions of the trench and plateaus on
the directed self-assembly of ultraconfined block copolymer films at the limit of low film
thickness toward dewetting. In addition to the dependence of the BCP surface pattern on the
film thickness and the trench depth [71,74], the morphology of extremely thickness-confined
films is highly sensitive to the lateral confinement imposed by the widths of the plateaus
and trenches. Under the right conditions, new combinations of co-existing morphologies
can be achieved. Whereas the nominal film thickness and the trench depth cannot be
easily varied on a single sample, the lateral dimensions of the topographic pattern can be
designed at will to achieve the desired patterns, including spaced regions of one pattern
(e.g., dots and/or stripes) separated by regions of another pattern (e.g., non-patterned
or dots). Additionally, the spacing of the topographic features allows some control over
the local film thickness. Although the morphologies in this study were demonstrated on
topographic patterns composed of straight plateaus, irregular topographic patterns can be
used with equal success [71].

Examination of the morphologies of dewet polymer droplets on the plateaus unrav-
eled an unexpected dependence on the minimal film thickness required for the formation
of a dot morphology on the plateau width. This finding emphasizes that while the local
film thickness is the dominant factor dictating the morphology in the ultraconfined regime
(where the film thickness is lower than 0.5 L0), lateral confinement becomes an influential
factor at the extreme of low film thickness (toward dewetting) and adds to the consider-
ations that have to be taken into account. In non-dewet films, this insight explains the
formation of a stripe pattern on the narrower plateaus and a dot pattern on the wider (i.e.,
less confined) plateaus.

We expect that the ability to obtain co-existing patterns with precise locations over the
substrate by harnessing the combination of thickness confinement with the thickness differ-
entiation and lateral confinement afforded by topography will promote the development
of advanced photonic devices [6].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym15041035/s1, Figure S1: SEM image (a), SFM height image
(b), and SFM height profile (c) for a bare silicon substrate after patterning and cleaning. Substrate
dimensions are trench depth, 38 nm; trench/plateau widths, 640/640 nm. Figure S2: SFM height
image (a) and height profile (b) of an area that was partially exposed by film scratching (nominal film
thickness, 15 nm; trench depth, 38 nm; trench/plateau widths, 640/320 nm) showing the method of
local film thickness analysis. The height profile in (b) is overlaid on a schematic illustration of the
substrate topography. Figure S3: Dependence of fraction of BCP in the trench on the duty cycle for
different nominal film thicknesses: (a) 15 nm; (b) 18 nm; (c) 24 nm. Dashed lines indicate the linear
regression results. Figure S4: SEM overview image of 8 nm-thick film cast on a topographic substrate
(lateral trench/plateau widths: 2000/640 nm; trench depth: 38 nm). Note that dewetting occurs only
on the plateaus. Figure S5: SFM images of phase separated BCP droplets on the plateau areas.
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