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Abstract: Dielectric elastomer actuation has been extensively investigated and applied to bionic
robotics and intelligent actuators due to its status as an excellent actuation technique. As a conical di-
electric elastomer actuator (DEA) structure extension, push-pull DEA has been explored in controlled
acoustics, microfluidics, and multi-stable actuation due to its simple fabrication and outstanding per-
formance. In this paper, a theoretical model is developed to describe the electromechanical behavior
of push-pull DEA based on the force balance of the mass block in an actuator. The accuracy of the
proposed model is experimentally validated by employing the mass block in the construction of the
actuator as the object of study. The actuation displacement of the actuator is used as the evaluation
indication to investigate the effect of key design parameters on the actuation performance of the
actuator, its failure mode, and critical failure voltage. A dynamic actuator model is proposed and used
with experimental data to explain the dynamic response of the actuator, its natural frequency, and
the effect of variables. This work provides a strong theoretical background for dielectric elastomer
actuators, as well as practical design and implementation experience.

Keywords: dielectric elastomer; push-pull DEA; key design parameters; dynamic response; natural
frequency

1. Introduction

As an emerging type of actuation, soft actuators have been widely explored and
applied to intelligent actuators [1–3], deep-sea exploration [4,5], bionic robotics [6–8],
tunable optical devices [9,10], and morphological control [11,12] due to their outstanding
features such as softness and flexibility, strong environmental adaptability, and excellent
biocompatibility. Among the various soft actuation principles [13], dielectric elastomers
have attracted great attention due to their large actuation deformation, fast response, and
high energy density [14]. Existing research has shown that dielectric elastomers can produce
area strains of up to 380% [15], and even more than 2000% under voltage [16]. However, the
particular actuation performance of dielectric elastomer actuators depends on the actuator
structure. Currently, the most common structures for dielectric elastomer actuators are
tubular [17], spherical [18], stacked [19], conical [20], and minimum-energy structures [21].
Among them is the conical dielectric elastomer actuator (conical DEA), which employs
spring components or mass blocks to develop a flat sheet of elastomer film into a conical
one in three dimensions. The actuator produces out-of-plane deformation along the axial
direction when a voltage is applied to the conical dielectric elastomer [22,23]. This actuator
structure is preferred for dielectric elastomers to achieve unidirectional actuation owing to
its high output force, compact system, convenient preparation, and robust scalability.
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When a dielectric elastomer film is used instead of the required spring element or
mass block in a conical DEA, a novel actuation structure is developed that is often called
a push-pull dielectric elastomer actuation (push-pull DEA) [24]. As an evolved version
of the conical DEA, this design has found applications in various fields, including tactile
display [25], fluid control [26], and multi-stable actuation [27]. Similarly to the push-pull
DEA, the double conical actuation design integrates two conical DEA back-to-back via
rigid support or magnets [28,29]. Bionic vehicles [30], binary actuation [31], and pipeline
robots [32] have been implemented in a double conical actuator. Theoretical and experimen-
tal studies have been conducted to evaluate the actuation performance of conical DEAs, as
reported in references [22,23,33–35]. For instance, an electromechanical coupling model,
which was developed based on thermodynamics and continua mechanics for conical DEAs,
was utilized to examine the non-uniform deformation and potential failure modes of the ac-
tuator [22,23]. The multi-mode dynamic response of conical DEAs under varying excitation
frequencies was analyzed through experiments [33]. Additionally, an electromechanical-
magnetic coupling model was established to study the bistable performance of conical
DEAs under magnetic fields [34]. The actuation performance of conical DEAs was also
analyzed using the finite element method under different excitation voltages [35]. However,
research into the performance of push-pull DEAs remains limited both theoretically and
experimentally. Therefore, in this paper, the push-pull DEA’s design analysis and actuation
performance, along with its influencing factors, are investigated and analyzed from theoret-
ical and experimental perspectives. This work provides a reliable theoretical background
and practical experience for the future widespread use of conical DEA.

2. Design and Theoretical Model of the Push-Pull DEA

A circular dielectric elastomer film with an initial thickness of H0 is pre-stretched in
an equal biaxial direction and then attached to a circular rigid frame with an inner radius
of B. The purpose of applying a biaxial pre-stretch is to increase the electric field strength
under a constant voltage by reducing the thickness of the dielectric elastomer film, thus
enhancing the actuation performance of the DEA. The mass block with radius A is bonded
to the film’s center to create a completed actuation part. Two actuation components of the
same size are assembled and bonded at the mass block utilizing a rigid support with a
length of L0. The compliant electrodes are painted on both sides of the film of one actuation
component, which is defined as the active actuation part. On the other hand, the passive
actuation part describes the other actuation component. The equal biaxial pre-stretching
of the films of the active and passive parts are λa(p) and λp(p), respectively. The particular
push-pull DEA preparation process used in this study, with experimental photographs, is
shown in Figure 1.

We define the condition in which the mass blocks are not bonded as the pre-stretched

state when the active and passive part film thicknesses are H0

(
λa(p)

)−2
and H0

(
λp(p)

)−2
,

respectively, as shown in Figure 2a. The reference state is established when the mass block
of the active and passive parts is bonded together. The elastomeric films on both sides
display a conical surface in space, and the displacement of the mass block M along the
actuation direction is D0. The actuator produces the actuation deformation when a voltage
Φ is applied to the active part. Parameter D is the new position of the mass block and λa(r)
and λa(c) represent the current radial and hoop deformations of the active film, respectively.
The radial and circular deformations of the passive film are correspondingly described by
λp(r) and λp(c). This state is called the actuation state of the actuator. The force analysis
diagram of push-pull DEA is depicted in Figure 2d. Since the mass of the elastomer film on
both sides and the gravity effect are neglected, the analysis of the displacement of the mass
block is employed to describe the electromechanical performance of the actuator under
voltage excitation.
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Figure 1. Push-pull DEA preparation process and experimental photos: (a)–(c): the DE film, with an 
initial thickness of H0, is pre-stretched and fixed to a rigid frame with an inner radius of B. A mass 
block with a radius of A is attached to the central position on both sides of the film; (d): two identical 
actuated units are assembled via a rigid support of length 𝐿. The DE film of one of the actuated 
units is coated with compliant electrodes, which serve as the active part, and the equal biaxial pre-
stretching applied to the film is 𝜆(). Meanwhile, the other actuated unit serves as the passive part, 
and its film is subjected to equal biaxial pre-stretching of magnitude 𝜆(). The push-pull DEA is 
accomplished by bonding the mass blocks in the active and passive parts; (e): front and top views 
of the push-pull DEA in the experiment. 

We define the condition in which the mass blocks are not bonded as the pre-stretched 
state when the active and passive part film thicknesses are 𝐻൫λ()൯ିଶ and 𝐻൫λ()൯ିଶ, 
respectively, as shown in Figure 2a. The reference state is established when the mass block 
of the active and passive parts is bonded together. The elastomeric films on both sides 
display a conical surface in space, and the displacement of the mass block M along the 
actuation direction is D0. The actuator produces the actuation deformation when a voltage Φ is applied to the active part. Parameter D is the new position of the mass block and λ() and λ() represent the current radial and hoop deformations of the active film, re-
spectively. The radial and circular deformations of the passive film are correspondingly 
described by λ() and λ(). This state is called the actuation state of the actuator. The 
force analysis diagram of push-pull DEA is depicted in Figure 2d. Since the mass of the 
elastomer film on both sides and the gravity effect are neglected, the analysis of the dis-
placement of the mass block is employed to describe the electromechanical performance 
of the actuator under voltage excitation. 

Figure 1. Push-pull DEA preparation process and experimental photos: (a–c): the DE film, with an
initial thickness of H0, is pre-stretched and fixed to a rigid frame with an inner radius of B. A mass
block with a radius of A is attached to the central position on both sides of the film; (d): two identical
actuated units are assembled via a rigid support of length L0. The DE film of one of the actuated units
is coated with compliant electrodes, which serve as the active part, and the equal biaxial pre-stretching
applied to the film is λa(p). Meanwhile, the other actuated unit serves as the passive part, and its film
is subjected to equal biaxial pre-stretching of magnitude λp(p). The push-pull DEA is accomplished
by bonding the mass blocks in the active and passive parts; (e): front and top views of the push-pull
DEA in the experiment.

The thickness of the dielectric elastomer film in the conical DEA displays a nonlinear
distribution in space under electromechanical coupling loading [22,23], and the actual
shape of the dielectric elastomer film in the conical DEA is similar to a hyperbolic sur-
face, formed by the solid gray line rotating 360 degrees around the actuation direction
in Figure 2d. However, for the convenience of analysis, it is commonly simplified as a
cone surface [30,34,36], which is formed by the red dotted line rotating 360 degrees around
the actuation direction. Assuming that the forces exerted on the mass block by the active
part and the passive part are Fa and Fp, respectively, and the resistance of the mass block

during the actuation process is represented by ζ
.

D, where ζ represents the linear damping
coefficient, the equilibrium control equation of the mass block at this moment is:

Fpsinθp − Fasinθa − ζ
.

D−M
..
D = 0 (1)

where θa and θp represent the inclination angle of the force exerted on the mass block by
the active and passive parts, respectively, M is the total mass of the mass block, and D is
its displacement.
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ysis diagram of the mass block in the actuator. 
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Figure 2. Diagram of the push-pull DEA states and mass block force analysis: (a–c) are the pre-stretch,
reference, and actuation states, respectively, of the push-pull DEA; (d) is the force analysis diagram of
the mass block in the actuator.

The force Fa applied on the mass block, the radial stress σa(r) in the active part, the
force Fp applied on the mass block, and the radial stress σp(r) in the passive part are related
as follows [22]:

Fa = 2πAhaσa(r)

Fp = 2πAhpσp(r)
(2)

where ha and hp denote the thickness of the active and passive part films in the actuation
state, respectively. Assuming that the dielectric elastomer is an incompressible material,
ha = H0λ

−1
a(r)λ

−1
a(c), hp = H0λ

−1
p(r)λ

−1
p(c). Based on the theory of dielectric elastomer [37,38],

the radial stresses in the active and passive part films can be expressed as follows (see
Appendix A):

σa(r) =
∂Wa(λa(r),λa(c))

∂λa(r)
λa(r) − εΦ2

H2
0
λ2

a(r)λ
2
a(c)

σp(r) =
∂Wp(λp(r),λp(c))

∂λp(r)
λp(r)

(3)

where ε is the dielectric constant of the dielectric elastomer, Φ represents the applied
voltage to the active part, and Wa and Wp represent the strain energy density functions of
the active and passive elastomer films, respectively.

Among the many functions that characterize the strain energy density of dielectric
elastomers, the Gent free energy model is widely used for its ability to characterize the
limit stretching properties of polymeric materials [39]. Detailed expressions of the Gent
free energy model are shown below:
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W(λ1, λ2) = −
µJlim

2
ln

(
1−

λ2
1 + λ2

2 + λ−2
1 λ−2

2 − 3
Jlim

)
(4)

where µ and Jlim denote the dielectric elastomer’s shear modulus and limiting stretch,
respectively.

Since the dielectric elastomer is assumed to be distributed in space with a circular
table surface, the deformation of the active and passive parts in the hoop direction during
the actuation process is always constant, i.e., λa(c) = λa(p), λp(c) = λp(p). Furthermore,
the radial deformation of the active and passive parts can be written as follows (see
Appendix A):

λa(r) = λa(p)

√
1 + D2

(B−A)2

λp(r) = λp(p)

√
1 + (L0−D)2

(B−A)2

(5)

According to the geometric relationship in Figure 2d, the sinθa and sinθp can be expressed
as follows:

sinθa =
D√

D2+(B−A)2

sinθp = L0−D√
(L0−D)2+(B−A)2

(6)

The control equation that describes the actuation performance of the push-pull DEA can be
obtained by combining Equations (1)–(6):

d2D
dt2 +

ζ

M
dD
dt

+ G(D, Φ) = 0 (7)

where the specific expression for G(D, Φ) is:

G(D, Φ) = 2πAH0µ
M

[(
λa(r)λ

−1
a(p)−λ

−3
a(r)λ

−3
a(p)

1−
(
λ2

a(r)+λ2
a(p)+λ−2

a(r)λ
−2
a(p)−3

)
/Jlim
− εΦ2

µH2
0
λa(r)λa(p)

)
sinθa

−
(

λp(r)λ
−1
p(p)−λ

−3
p(r)λ

−3
p(p)

1−
(
λ2

p(r)+λ2
p(p)+λ−2

p(r)λ
−2
p(p)−3

)
/Jlim

)
sinθp

] (8)

3. The Static Actuation Performance Analysis of Push-Pull DEA

The composition of the dielectric elastomer is one of the most important determinants
of its actuation performance. The VHB 4910/4905 (3M Company, Saint Paul, MN, USA)
is widely used in the development of dielectric elastomer actuators due to its superior
dielectric properties. However, its significant viscoelasticity often leads to a non-negligible
response delay in the actuator under dynamic excitation [40]. OPPO Band 8003TM (Oppo
Medical Inc., Seattle, WA, USA), a commercially available natural rubber film, is a candidate
for use in dielectric elastomeric materials due to its low viscosity, good durability, and high
toughness [41–43]. In uniaxial tensile testing, the stress–strain hysteresis area of OPPO Band
8003TM was just 2.3%, whereas the VHB was up to 19.3% [41]. OPPO Band 8003TM [42,43],
produced by Oppo Medical Inc Company, was selected as the dielectric elastomer material
for this study. It is a natural rubber material with 0.9 wt% organic filler and 0.56 wt% carbon
added, and its initial thickness H0 is only 0.224 mm. The pre-stretch applied to the active
and the passive part of the film is λa(p) = 1.5 and λp(p) = 1.5, respectively. The circular
mass block, with a mass of 15.16 grams and a radius of 15 mm, as well as the annular rigid
frame, with an inner diameter of 35 mm, are both made from 4 mm-thick acrylic sheets that
have been processed using laser cutting. The rigid support is fabricated using metal bolts
with a length of L0 = 28 mm.

Figure 3a depicts the experimental setup of the actuator performance test. The exci-
tation voltage is supplied by a high-voltage amplifier (Model 610E, Trek, New York, NY,
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USA) and a wave generator (DG4062, Rigol, Suzhou, China). The displacement response of
the actuator is measured by a laser displacement sensor (LK-Navigator 2, Kenyence, Osaka,
Japan) and controlled by a personal computer. The experiment discovered that OPPO Band
8003TM was susceptible to electrical breakdown failure while using commercial carbon
grease (MG Chemicals, Burlington, Canada). This problem was successfully prevented by
utilizing a mixture of graphite and dimethyl silicone oil with a mass ratio of 3:10. There-
fore, the commercial carbon grease and the custom-made electrode were deposited on the
same-size film using a mask template and a brush, then kept in the same environment
for 24 h. Because the modulus of the compliant electrode was much smaller than that of
the dielectric elastomer, the influence of the electrode on the actuation deformation can be
disregarded. However, when a solid electrode such as a hydrogel is used, the impact of
electrode thickness usually needs to be considered [44]. A broken surface was discovered
on the film coated with the commercial electrode, as demonstrated in Figure 3b. However,
the film’s surface remained unchanged when covered with the homemade electrode. Con-
sequently, OPPO Band 8003TM is more likely to experience electrical breakdown failure
when commercial electrodes are utilized. This might be because the components in Carbon
Grease modify the dielectric and mechanical characteristics of the dielectric elastomer
material. The displacement response of the actuator under static voltage is demonstrated
in Figure 3b. The results showed that the experimental data are mostly consistent with the
theoretical results, hence validating the accuracy and validity of the theoretical model. The
following calculated parameters are employed in this study [42,43]: relative permittivity
εr = 2.7, shear modulus µ = 620 kPa, and material limit stretch properties Jlim = 538.
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According to the structural characteristics of the push-pull DEA, film pre-stretching
λa(p) and λp(p), mass block radius A, rigid frame inner diameter B, and the support connec-
tor length L0 constitute the set of parameters for the actuator design. The critical design
parameters λa(p), λp(p), B, and L0 are studied and analyzed based on the theoretical model
to investigate the influence on the actuation performance and its effect under various design
parameters. It is assumed that the mass block radius A = 15 mm and the actuation voltage
Φ = 3 kV are constant, as depicted in Figure 4.
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Figure 4. The influence of key design parameters on the actuation performance of the push-pull DEA:
(a) the actuation performance of the push-pull DEA with the L0 and B parameters; (b) the actuation
performance of the actuator by combination of λa(p) and λp(p) parameters.

The actuation displacement with respect to the inner diameter B of the rigid frame and
length L0 of the support connector is shown in Figure 4a. Within the figure, the active and
passive parts of the film pre-stretch are set at λa(p) = 1.5 and λp(p) = 1.5, respectively. The
value of the actuation displacement increases with B and L0. For a fixed L0, the actuation
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displacement increases gradually with B. Similarly, the actuation displacement is positively
related to L0 when B is held constant.

The effects of active part film pre-stretching λa(p) and passive part film pre-stretching
λp(p) on the actuation displacement are illustrated in Figure 4b. The inner diameter of the
rigid frame is B = 35 mm, and the length of the support frame is L0 = 28 mm. The figure
demonstrates that the passive part film pre-stretching λp(p) has a negligible influence on
the actuator’s performance. However, the influence of the active part film pre-stretching
λa(p) is more evident because the film becomes thinner with an increase in the active part
film pre-stretching. Consequently, the electric field increases at the same voltage, increasing
the response.

Dielectric elastomers commonly exhibit four failure types [45] during actuation, of
which loss of tension and electrical breakdown are often utilized to evaluate the maximum
actuation performance of the actuator. Loss of tension refers to the nullification of single-
direction stress in a dielectric elastomer film with an increase in the loading voltage, forming
wrinkles. For the conical DEA structure, the hoop stress of the elastomer film gradually
decreases as the excitation voltage increases, leading to wrinkling phenomena along the
hoop and rapid electrical breakdown failure [46]. Therefore, the critical voltage ΦLT at
which the actuator undergoes loss of tension can be determined by analyzing the hoop
stress σa(c) of the active film in the push-pull DEA:

ΦLT = H0

√√√√√µ

ε

λ−2
a(r) − λ−4

a(p)λ
−4
a(r)

1−
(
λ2

a(r) + λ2
a(p) + λ−2

a(r)λ
−2
a(p) − 3

)
/Jlim

(9)

Electrical breakdown of dielectric elastomers occurs when the electric field strength in
the thickness direction of the film reaches a critical value, forming a pathway current along
the thickness direction of the film and an accompanying electrical sparking phenomenon
that destroys the material. Electrical breakdown in dielectric elastomers may be attributed
to thermal escape due to heat accumulation [47,48]. Therefore, prolonged and continuous
high-voltage loading should be avoided throughout the actuation. Experimental tests
have yielded a semi-analytical expression for calculating the electric breakdown voltage of
OPPO Band 8003TM [42] (a similar mathematical formula has been used for the study of
the electric breakdown strength of the VHB material [49,50]), as follows:

ΦEB = EBH0

(
λa(r)λa(p)

)−0.52
(10)

where EB is the electrical breakdown strength of the material when it is in a stress-free
condition, and EB = 97 MV/m is the value that is used in the study since it is based on
known experimental data [42,43].

The effect of key design parameters on the actuator’s maximum deformation during
actuation and critical failure voltage are shown in Figure 5. The actuator failures shown
in Figure 5a,b may occur under various film pre-stretching conditions. In the figure, the
tension loss failure is represented by the solid square, while the solid triangle shows the
electrical breakdown failure. Figure 5c,d provides an in-depth analysis of the maximum
actuation displacement and critical voltage when the actuator fails for various combinations
of design parameters. As illustrated in Figure 5c, the actuator only fails due to an electrical
breakdown when B = 20 mm and L0 = 28–34 mm, whereas all other parameter combinations
result in loss of tension. Moreover, while L0 is constant, the bigger B is, the greater the
actuation displacement created by the actuator, and the greater the critical voltage when
the failure occurs. When B is constant, as L0 decreases, the critical failure voltage increases,
while the maximum actuation displacement decreases. As observed in Figure 5d, only
when the active film is pre-stretched to λa(p) = 1.0, electrical breakdown is a potential
failure mode for the actuator. All other parameter combinations result in failure which
is attributed to the loss of tension. In addition, the higher the pre-stretched value of the
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active film is, the lower the critical failure voltage of the actuator, while pre-stretching of
the passive film affects the maximum actuation displacement.
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Figure 5. The influence law of key design parameters on the maximum actuation deformation
and critical failure voltage of the actuator. (a,b) show the different types of failures that can occur
with different parameter combinations, where (a) produces loss of tension failure and (b) produces
electrical breakdown failure. The blue square represents a loss of tension in the actuation, while the
green triangle indicates electrical breakdown that occurred during the actuation process; (c,d) provide
the maximum actuation displacement and the critical voltage for actuator’s failure with different
parameter combinations, respectively.

4. Dynamic Actuation and Natural Vibration Characteristics of Push-Pull DEA

When the active film in the actuator is exposed to a sinusoidal voltage Φ = Φacsin(2π f t),
the governing equation describing the dynamic actuation behavior of the actuator can be
rewritten as follows:

d2D
dt2 + ζ

M
dD
dt + 2πAH0µ

M

[(
λa(r)λ

−1
a(p)−λ

−3
a(r)λ

−3
a(p)

1−
(
λ2

a(r)+λ2
a(p)+λ−2

a(r)λ
−2
a(p)−3

)
/Jlim

−εΦ2
ac(sin(2π f t))2

µH2
0

λa(r)λa(p)

)
sinθa

−
(

λp(r)λ
−1
p(p)−λ

−3
p(r)λ

−3
p(p)

1−
(
λ2

p(r)+λ2
p(p)+λ−2

p(r)λ
−2
p(p)−3

)
/Jlim

)
sinθp

]
= 0

(11)

where Φac represents the amplitude of the voltage, and f denotes the excitation frequency.
Figure 6 depicts the dynamic response of the actuator with the voltage amplitude

Φac = 2 kV and excitation frequency f = 24.1. The laser sensor measures the response
displacement, and the sampling frequency is 1 kHz. Figure 6a illustrates the displacement
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response curve of the actuator based on experimental data and theoretical results. When
the damping coefficient equals ζ = 0.181 Ns/m, the theoretical analysis matches the
practical test. Figure 6b displays the phase response diagram of the actuator under dynamic
excitation. The phase curve begins at the initial position and forms a ring-shaped band.
The limit cycle and Poincaré map are trusted methods to determine if a structure’s response
is periodic, as cited in references [51,52]. To reveal more about the actuator’s response,
Figure 6c analyzes the limit cycle and Poincaré map, revealing that the limit cycle is a
smooth, closed curve and the Poincaré map converges to a point on the limit cycle. This
confirms that the response of the actuator under dynamic stimulation is periodic.

Polymers 2023, 14, x FOR PEER REVIEW 11 of 17 
 

 

the damping coefficient equals ζ = 0.181Ns/m, the theoretical analysis matches the prac-
tical test. Figure 6b displays the phase response diagram of the actuator under dynamic 
excitation. The phase curve begins at the initial position and forms a ring-shaped band. 
The limit cycle and Poincaré map are trusted methods to determine if a structure's re-
sponse is periodic, as cited in references [51,52]. To reveal more about the actuator's re-
sponse, Figure 6c analyzes the limit cycle and Poincaré map, revealing that the limit cycle 
is a smooth, closed curve and the Poincaré map converges to a point on the limit cycle. 
This confirms that the response of the actuator under dynamic stimulation is periodic. 

 
Figure 6. Dynamic actuation performance of the actuator under sinusoidal voltage excitation: (a) 
the response displacement versus time of the actuator for the excitation frequency f=24.1 Hz and the 
comparison with the theoretical results; (b) and (c) provide the phase diagram, limit cycle, and Poin-
caré map of the push-pull DEA based on the theoretical analysis. 

The linear damping coefficient ζ of the dielectric elastomer actuator under dynamic 
driving can be expressed as a function of the excitation frequency [51]. Therefore, the re-
sponse displacement of the actuator at five frequencies was experimentally measured and 
then fitted to obtain the linear damping coefficient ζ of the actuator as a function of the 
excitation frequency f (as shown in Figure 7a): ζ = 0.1229𝑓ଶ − 5.7839𝑓 + 68.1729 (12) 

The natural vibration frequency of the structure is the fundamental parameter that is 
used to evaluate its dynamic response. Hence, the displacement response amplitude of 
the actuator was investigated via the abovementioned theoretical model at various exci-
tation frequencies, as shown in Figure 7b. According to the results, the actuator’s displace-
ment response amplitude peaks at the excitation frequency f=23.59 Hz. This result is con-
sistent with the experimental data. A sinusoidal excitation with a frequency range from 

Figure 6. Dynamic actuation performance of the actuator under sinusoidal voltage excitation: (a) the
response displacement versus time of the actuator for the excitation frequency f = 24.1 Hz and the
comparison with the theoretical results; (b,c) provide the phase diagram, limit cycle, and Poincaré
map of the push-pull DEA based on the theoretical analysis.

The linear damping coefficient ζ of the dielectric elastomer actuator under dynamic
driving can be expressed as a function of the excitation frequency [51]. Therefore, the
response displacement of the actuator at five frequencies was experimentally measured
and then fitted to obtain the linear damping coefficient ζ of the actuator as a function of the
excitation frequency f (as shown in Figure 7a):

ζ = 0.1229 f 2 − 5.7839 f + 68.1729 (12)
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Figure 7. Natural vibration characteristics of the push-pull DEA. (a): the mathematical relationship
between the linear damping coefficient ζ and the excitation frequency f ; (b): theoretical analysis and
experimental measurements were used to demonstrate the amplitude of the displacement response
of the actuators under different excitation frequencies; the results show that the actuator exhibits a
response peak at an excitation frequency of 23.59 Hz; (c,d): the time domain curves of the actuators
under swept frequency tests and the frequency domain obtained after fast Fourier transformation,
respectively. The time domain curve exhibits a peak at 24.02 s, while the frequency domain curve
exhibits a peak at 47.28 Hz, which are approximately in a multiple relationship.

The natural vibration frequency of the structure is the fundamental parameter that
is used to evaluate its dynamic response. Hence, the displacement response amplitude
of the actuator was investigated via the abovementioned theoretical model at various
excitation frequencies, as shown in Figure 7b. According to the results, the actuator’s
displacement response amplitude peaks at the excitation frequency f = 23.59 Hz. This result
is consistent with the experimental data. A sinusoidal excitation with a frequency range
from 0.1 Hz to 50.1 Hz was used for the sweep test of the actuator to further investigate
the dynamic behavior of the actuator, with a frequency change rate of 1 Hz/s and a
sampling frequency of 1 kHz, as shown in Figure 7c. The displacement response curve
of the actuator exhibits a peak response at approximately t = 24.02 s, and the excitation
frequency at this time may be determined from the frequency rate of change to be roughly
24.02 Hz. The results of a fast Fourier transform in MATLAB applied to the time domain
signal obtained from the experimental test are shown in Figure 7d. Hence, the natural
frequency of the actuator can be determined more intuitively. The results demonstrate
that the actuator response frequency is 47.28 Hz, i.e., approximately double the excitation
frequency, which is consistent with the previous research observations [53,54]. Although a
sinusoidal voltage signal is supplied to the elastomer, the actual electric field force on the
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elastomer is proportional to the square of the voltage signal. Consequently, a two-times
relationship between the response and excitation frequency is observed.

The influence of the design parameters and the excitation signal on the dynamic prop-
erties of the actuator is analyzed in Figure 8 to investigate the resonant frequency of the
actuator and the resonant response. The influence of the excitation voltage bias component
Φdc on the resonance frequency and response amplitude is examined in Figure 8a. The re-
sults demonstrate that the resonant frequency of the structure is reduced while the response
amplitude at the resonance increases when the bias voltage Φdc is increased. According
to Figure 8b, the resonance frequency and the response amplitude of the actuators both
increase with the length L0 of the support connection. Moreover, according to Figure 8c, the
rigid frame’s inner diameter B increases, and the actuator’s resonant frequency decreases
significantly. However, the displacement response amplitude at the resonant frequency
shows a quadratic rule; it increases at first and then decreases as B increases. The pre-stretch
λa(p) of the active film shows a positive correlation between both the resonant frequency
and the actuator’s response, as shown in Figure 8d.

Polymers 2023, 14, x FOR PEER REVIEW 13 of 17 
 

 

8a. The results demonstrate that the resonant frequency of the structure is reduced while 
the response amplitude at the resonance increases when the bias voltage Φௗ  is in-
creased. According to Figure 8b, the resonance frequency and the response amplitude of 
the actuators both increase with the length L0 of the support connection. Moreover, ac-
cording to Figure 8c, the rigid frame’s inner diameter B increases, and the actuator’s reso-
nant frequency decreases significantly. However, the displacement response amplitude at 
the resonant frequency shows a quadratic rule; it increases at first and then decreases as 
B increases. The pre-stretch λ() of the active film shows a positive correlation between 
both the resonant frequency and the actuator’s response, as shown in Figure 8d. 

 
Figure 8. The influence of design and driving parameters on the resonant frequency and actuator’s 
response. (a), (b), (c), and (d): the influence of the excitation voltage bias component Φௗ, rigid con-
nector length L0, rigid annular frame inner diameter B, and active film pre-stretch λ(), respec-
tively, on the resonant frequency of the actuator and its actuation response. 

5. Conclusions 
As an extended conical dielectric elastomer actuator structure, push-pull DEA shows 

promise for application in controllable acoustics, haptic displays, microfluidic control, 
and multi-stable actuation. In this paper, an electromechanical coupling model describing 
the actuation performance of push-pull DEA was established based on analysis of the 
force of the mass block in the actuator. Moreover, the model was experimentally vali-
dated. Based on the theoretical model, the influence of key design parameters on the ac-
tuator’s actuation performance, failure type, and failure critical voltage was investigated 
and analyzed. The actuator’s dynamic response and natural vibration characteristics were 
experimentally and theoretically explored. In contrast, the effects of key design parame-
ters and excitation signals on the resonant frequency and response amplitude were further 
investigated. This study enriches the design theory and techniques of dielectric elastomer 

Figure 8. The influence of design and driving parameters on the resonant frequency and actuator’s
response. (a–d): the influence of the excitation voltage bias component Φdc, rigid connector length L0,
rigid annular frame inner diameter B, and active film pre-stretch λa(p), respectively, on the resonant
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5. Conclusions

As an extended conical dielectric elastomer actuator structure, push-pull DEA shows
promise for application in controllable acoustics, haptic displays, microfluidic control, and
multi-stable actuation. In this paper, an electromechanical coupling model describing the
actuation performance of push-pull DEA was established based on analysis of the force of
the mass block in the actuator. Moreover, the model was experimentally validated. Based
on the theoretical model, the influence of key design parameters on the actuator’s actuation
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performance, failure type, and failure critical voltage was investigated and analyzed. The
actuator’s dynamic response and natural vibration characteristics were experimentally
and theoretically explored. In contrast, the effects of key design parameters and excitation
signals on the resonant frequency and response amplitude were further investigated. This
study enriches the design theory and techniques of dielectric elastomer actuators while
providing theoretical background and practical experience for the broad application of
push-pull DEA.
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Appendix A

The radial deformation of the DE film in the active part in the pre-stretch state shown
in Figure 2a is λa(p), and the radial size of the DE film at this time is B-A. Based on this, the
size of the DE film in the initial state (or free-strains state) can be obtained as (B− A)/λa(p).
When the actuator is in the actuated state under the voltage Φ, as indicated by the red
dotted line in Figure 2d, it can be seen that the radial size of the DE film changes to√
(B− A)2 + D2 at this time. Therefore, in the actuated state, the radial deformation λa(r)

of the DE film in the active part can be represented as:

λa(r) =

√
(B− A)2 + D2

(B− A)/λa(p)
= λa(p)

√
1 +

D2

(B− A)2 (A1)

By using a similar derivation, the radial deformation of the DE film in the passive part can
be obtained:

λp(r) =

√
(B− A)2 + (L0 − D)2

(B− A)/λp(p)
= λp(p)

√√√√1 +
(L0 − D)2

(B− A)2 (A2)

The radial stress and hoop stress of the active part can be derived from the Gent free energy
model shown in Equation (4) as follows:

σa(r) =
∂Wa(λa(r),λa(c))

∂λa(r)
λa(r) − εΦ2

H2
0
λ2

a(r)λ
2
a(c)

=
µ
(
λ2

a(r)−λ
−2
a(r)λ

−2
a(c)

)
1−
(
λ2

a(r)+λ2
a(c)+λ−2

a(r)λ
−2
a(c)−3

)
/Jlim
− εΦ2

H2
0
λ2

a(r)λ
2
a(c)

(A3a)

σa(c) =
∂Wa(λa(r),λa(c))

∂λa(c)
λa(c) − εΦ2

H2
0
λ2

a(r)λ
2
a(c)

=
µ
(
λ2

a(c)−λ
−2
a(r)λ

−2
a(c)

)
1−
(
λ2

a(r)+λ2
a(c)+λ−2

a(r)λ
−2
a(c)−3

)
/Jlim
− εΦ2

H2
0
λ2

a(r)λ
2
a(c)

(A3b)
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Similarly, the radial stress of the passive part can be obtained as follows:

σp(r) =
∂Wp

(
λp(r), λp(c)

)
∂λp(r)

λp(r) =
µ
(
λ2

p(r) − λ−2
p(r)λ

−2
p(c)

)
1−

(
λ2

p(r) + λ2
p(c) + λ−2

p(r)λ
−2
p(c) − 3

)
/Jlim

(A4)

By combining Equations (2), (A3) and (A4), and considering that λa(c) = λa(p) and
λp(c) = λp(p), the force Fa and Fp applied by the active part and passive part on the mass
block can be obtained, respectively.

Fa = 2πAhaσa(r) = 2πAH0µ

(
λa(r)λ

−1
a(c)−λ

−3
a(r)λ

−3
a(c)

1−
(
λ2

a(r)+λ2
a(c)+λ−2

a(r)λ
−2
a(c)−3

)
/Jlim
− εΦ2

µH2
0
λa(r)λa(c)

)

= 2πAH0µ

(
λa(r)λ

−1
a(p)−λ

−3
a(r)λ

−3
a(p)

1−
(
λ2

a(r)+λ2
a(p)+λ−2

a(r)λ
−2
a(p)−3

)
/Jlim
− εΦ2

µH2
0
λa(r)λa(p)

) (A5a)

Fp = 2πAhpσp(r) = 2πAH0µ

(
λp(r)λ

−1
p(c)−λ

−3
p(r)λ

−3
p(c)

1−
(
λ2

p(r)+λ2
p(c)+λ−2

p(r)λ
−2
p(c)−3

)
/Jlim

)

= 2πAH0µ

(
λp(r)λ

−1
p(p)−λ

−3
p(r)λ

−3
p(p)

1−
(
λ2

p(r)+λ2
p(p)+λ−2

p(r)λ
−2
p(p)−3

)
/Jlim

) (A5b)

By utilizing Equations (A5) and (1), the control equation that describes the performance of
the push-pull DEA can be easily obtained, as shown in Equation (8).

The critical condition for the push-pull DEA to experience loss of tension failure is
σa(c) = 0, that is:

σa(c) =
µ
(
λ2

a(p) − λ−2
a(r)λ

−2
a(p)

)
1−

(
λ2

a(r) + λ2
a(p) + λ−2

a(r)λ
−2
a(p) − 3

)
/Jlim

− εΦ2
LT

H2
0

λ2
a(r)λ

2
a(p) = 0 (A6)

Simplifying the equation yields the critical voltage for push-pull DEA to experience loss of
tension failure, as shown in Equation (9).
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