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Abstract: This paper provides a viewpoint of the technology of the fast-scanning calorimetry with
the relaxation behavior of disordered side chains of poly[2,5-bis(3-dodecylthiophen-2-yl)thieno[3,2-
b]thiophene] (PBTTT-C12) around the glass transition temperature of the side chains (Tg,γ). PBTTT is
an ideal model of the high-performance copolymer of poly(alkylthiophenes) with side chains. The γ1

relaxation process of the disordered side chains of PBTTT was detected as a small endothermic peak
that emerges before the γ2 relaxation process. It shows an increase with increasing temperature as it
approaches the glass transition temperature of the disordered side chains of PBTTT. The ductile–brittle
transition of PBTTT in low temperatures originating from the thermal relaxation process is probed and
illustrated by physical aging experiments. The signature is shown that the relaxation process of the
disordered side chain of PBTTT at low temperatures varies from Arrhenius temperature dependence
to super Arrhenius temperature dependence at high temperatures. These observations could have
significant consequences for the stability of devices based on conjugated polymers, especially those
utilized for stretchable or flexible applications, or those demanding mechanical robustness during
tensile fabrication or use in a low-temperature environment.

Keywords: calorimetry; physical aging; side chain; PBTTT

1. Introduction

Conjugated polymers have useful electronic [1], photonic [2], and thermoelectric [3–5]
properties which are used in various flexible devices. Conjugated polymers are often com-
posed of side chains and main chains, such as poly(3-alkylthiophene) [6,7], poly[2,5-bis(3-
dodecylthiophen-2-yl)thieno[3,2-b]thiophene] (PBTTT) [8,9], and diketopyrrolopyrrole-
based polymers [10–13]. The side chain improved the processing technology [14] and
ameliorated the glass transition temperature [15] of conjugated polymers. It has become
a research hotspot to control the morphology and properties of conjugated polymers
through side-chain engineering [16]. The different aggregation states of the side chain of
the conjugated polymer PBTTT mainly affect the microstructure in two aspects. On the
one hand, it was found that the side chains would form an interdigital ordered aggregate,
and the size of the interdigital structures was related to the side chain tilt angle [17], and
the processing [18]. Compared with the side chains of PBTTT without interdigitation, the
interdigitated state of the part of the side chains is the preferred state at room tempera-
ture [17], so that local nanocrystalline domains could be formed eventually. On the other
hand, there is a disordered fraction of side chains in the aggregation state of conjugated
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polymers, and the lamellar spacing with non-interdigitation side chains becomes more
prominent than that with interdigitation side chains from X-ray diffraction or atomic force
microscopy measurements [17,19]. The lamellar spacing was increased by solution shearing
due to increased disorder of side chains. Furthermore, their mechanical property under
variable morphologies of side chains also cannot be ignored for it is closely associated
with the device’s performance [20,21] and the polymer’s chemical structure [22,23]. In-
creasing the temperature of the rubbing process generates a more disordered fraction
of alkyl side chains of PBTTT. Additionally, the plasticity of the polymer in mechanical
properties is increased because the temperature has an important influence on the size of
the oriented domains following the main chain direction and alongside the side chains [20].
For the different chemical units of regioregular poly(3-hexylthiophene) and poly[N-9′-
heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)], the frozen
state and relaxation of side chains of regioregular poly(3-hexylthiophene) are crucial contri-
butions to the toughness change in channel-like cracks at 243 K and 163 K. Similarly, the
fracture behaviors and the crack features of poly[N-9′-heptadecanyl-2,7-carbazole-alt-5,5-
(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)] at room temperature and 243 K were attributed
to the relaxation of the branched side chains [22].

In recent years, researchers proved the close relationship between the mechanical
relaxation process and the side chains of conjugated polymers [24–26]. In the dynamic
mechanical analysis studies of conjugated polymers [16], the side chain transition tem-
perature has an important influence not only on the side chain motion but also on the
mechanical parameters [27] and other stretchable devices’ properties [28,29]. It was found
that a greater drop in modulus change after side-chain relaxation due to the side-chain
density increased, and the more mobile structure of side chains induces a drop in sev-
eral conjugated polymers [30]. Polymers are considered to show moderate ductility at
temperatures below the glass transition temperature of the disordered side chains (Tg,γ).
Below their secondary glass transition temperatures, the deformation of the conjugated
polymers occurs through active slip systems with dissipating energy [31]. In addition,
the side chains of conjugated polymers play a dominant role in the extent of mechanical
relaxation [30]. The research indicated that the relaxation temperature of the side chains
(241 K) of non-thiophene-linked fluorinated benzotriazole is lower than the one (249 K)
of poly{4-(5-(4,8-bis(3-butylnonyl)-6-methylbenzo[1,2-b:4,5-b′]dithiophen-2-yl)thiophen-2-
yl)-2-(2-butyloctyl)-5,6-difluoro-7-(5-methylthiophen-2-yl)-2H-benzo[d][1,2,3]triazole} (PB-
nDT-FTAZ) due to the higher density of the side chains in a given volume. The thiophene
rings of side chains in PBnDT-FTAZ provide a less free volume [30].

However, the study on the motion behavior and the thermal relaxation characteristics
of disordered side chains of conjugated polymers below Tg,γ is still unclear. The disordered
side chain structure is in a metastable state, and the time scale of side chain segmental
motion is often very short, requiring a fast-scanning device to capture. The formation of a
disordered state of side chains requires a high cooling rate from the molten state. Therefore,
studying the relaxation behavior of disordered side chains below Tg,γ is challenging work.
In this study, fast scanning calorimetry (FSC) was used to control the side chain in different
disordered states. PBTTT, unlike the P3HT, has dense side chains, a model-conjugated
polymer that consists of an alkyl side chain and a thiophene main chain. The FSC has
the characteristics of extremely high heating and cooling rates [32,33], which can not only
probe the crystallization process of different arrangements of polymer chains around the
temperature of glass transition by isothermal crystallization but also is capable of the
requirement of rapidly quenching the side chains of PBTTT in the molten state to the
disordered state. Without the thermal degradation to the sample, it is available to detect
the relaxation behavior of the side chains of PBTTT in a broad time and temperature scale.
Our research provides systematic insight into conjugated polymer structure and related
thermal relaxations around the Tg,γ.

In this study, we identified the motion behavior of the side chain segment from lower
temperatures to higher temperatures. It was found that the disordered side chain is frozen
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at low temperatures. With the temperature increase from below 233 K, the motion behavior
of the side chain segment varies from Arrhenius behavior (γ1) to super Arrhenius behavior
(γ2). This transition temperature helps us to divide the two relaxation behaviors (γ1, γ2) of
the disordered side chains of PBTTT. Namely, the local motion behavior of the side chain
segment and the motion behavior of the whole side chain. Further, such two kinds of
relaxation behavior help us obtain the glass transition temperature of the disordered side
chain. The study of the relaxation behavior of the disordered side chain is beneficial for the
understanding of the ductile–brittle transition process of side chains of PBTTT.

2. Materials and Methods
2.1. Materials

PBTTT (Mw = 31,800, Ð = 1.9) conjugated polymer was supplied by Luminescence
Technology Corp (New Taipei City, Taiwan).

2.2. Methods

Different temperature annealing studies of the sample were performed using the
custom-made ultrafast FSC device in combination with XI-395 sensors (Xensor Integration,
EJ Delfgauw, The Netherlands) calibrated by indium. The XI-395 sensor has a thermally
active area of 60 µm × 70 µm. The sample of PBTTT was cut under the optical microscope
by a purified scalpel and then put on the center of the temperature control area of the
sensor by a thin copper wire. Because of the tiny sizes of the thermally active area and
the sample, controlled heating (cooling) rate of up to 10,000 K/s can be achieved using
liquid nitrogen as a refrigerant. All measurements were performed under an atmospheric
nitrogen atmosphere. Without otherwise specified, the cooling and heating rates of FSC
used in this paper were 10,000 K/s and 10,000 K/s, respectively.

The temperature–time profile for studying the physical aging behavior of PBTTT is pre-
sented in Figure 1a. Due to the tiny sampling amount on the chip sensor (60 µm × 70 µm,
Figure 1b), a well-controlled scanning rate of up to 10,000 K/s can be achieved by FSC.
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Figure 1. Different temperature annealing information of PBTTT conjugated polymer. (a) Chemical
structures of PBTTT. (b) Temperature–time profile for generation and analysis of annealing peaks in
FSC heating scans.

3. Results

Heat capacity curves at the indicated aging times and the following aging temperatures
are shown in Figure 2. In all cases, the area of heat capacity peaks increases with aging time
induced by the segmental motion of the side chain. Aging at temperatures from 173 K to the
Tg,γ, the heat capacity peak progressively shifts to higher temperatures. At 223 K, for short
aging times, the heat capacity peaks are well separated from the step at the Tg,γ. However,
it progressively overlaps with such steps for longer aging periods, similar to aging at higher
temperatures. When aging at 183 K, the heat capacity peaks show significant deviation
from the step at the glass transition range, at an even lower temperature range.



Polymers 2023, 15, 794 4 of 11

Polymers 2023, 15, x FOR PEER REVIEW 4 of 12 
 

 

3. Results 

Heat capacity curves at the indicated aging times and the following aging tempera-

tures are shown in Figure 2. In all cases, the area of heat capacity peaks increases with 

aging time induced by the segmental motion of the side chain. Aging at temperatures from 

173 K to the Tg,γ, the heat capacity peak progressively shifts to higher temperatures. At 223 

K, for short aging times, the heat capacity peaks are well separated from the step at the Tg, 

γ. However, it progressively overlaps with such steps for longer aging periods, similar to 

aging at higher temperatures. When aging at 183 K, the heat capacity peaks show signifi-

cant deviation from the step at the glass transition range, at an even lower temperature 

range. 

  

Figure 2. Heat capacity curves at the indicated aging times and the following aging temperatures: 

(a) 183 K; (b) 203 K; (c) 223 K; (d) 233 K; (e) 243 K; and (f) 253 K. 

With the increase in temperature, the flexibility of the linear polymer segment in-

creases, and the mobility of the segment increases [34]. A conjugated polymer of PBTTT 

can be regarded as a series of subsystems formed by the dodecyl side chains. Each side 

chain has its statistical behavior and establishes an equilibrium with the main chains or 

other side chains. The transformation is divided into two categories based on the simpli-

fication of this empirical view [35]. 

The metastability of polymer glasses is proven by relaxation processes which 

straightforwardly may be analyzed by annealing experiments [36]. In one of the 

Figure 2. Heat capacity curves at the indicated aging times and the following aging temperatures:
(a) 183 K; (b) 203 K; (c) 223 K; (d) 233 K; (e) 243 K; and (f) 253 K.

With the increase in temperature, the flexibility of the linear polymer segment increases,
and the mobility of the segment increases [34]. A conjugated polymer of PBTTT can be
regarded as a series of subsystems formed by the dodecyl side chains. Each side chain has
its statistical behavior and establishes an equilibrium with the main chains or other side
chains. The transformation is divided into two categories based on the simplification of
this empirical view [35].

The metastability of polymer glasses is proven by relaxation processes which straight-
forwardly may be analyzed by annealing experiments [36]. In one of the approaches [36],
the time evolution of the decrease in the enthalpy (H) during annealing can be described
using Equation (1)

∆Hrelax(Ta, t) = ∆Hrelax,max(Ta)[1− exp[ − t/τ]β] (1)

Here, t and τ are the annealing time and characteristic relaxation time constant of the
motion structure units of the side chains, respectively, and β is the Kohlrausch–Williams–
Watts parameter [37–41].

Generally, in all the previously described thermal procedures, the amount of recovered
enthalpy of glass for a profile of time ta at a given temperature Ta was evaluated by
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integration of the difference between thermograms of aged and unaged samples, according
to the relation [42,43]

∆Hrelax(Ta, ta) =

Ty∫
Tx

(Ca
p(T)− Cu

p(T))dT (2)

where Ca
p(T) and Cu

p(T) are, respectively, the specific heat of the aged and unaged samples
and Tx and Ty are, respectively, temperatures (appropriately chosen) below and above
the calorimetric Tg. ∆Hrelax,max, the difference between the enthalpy of the glass at the
beginning of the annealing experiment and that of the extrapolated liquid state at the
annealing temperature, that is, the maximum possible enthalpy of relaxation. The latter
value depends on the difference between the heat capacities of the vitreous and liquid states
at the temperature of vitrification, ∆Cp, and the difference between Tg and the annealing
temperature Ta [44].

The γ1 relaxation process (the small green ellipse represents the local motion of the
partial segment of the disordered side chain, and the light green area is the γ1 relaxation
region) of disordered side chains of PBTTT follows the Arrhenius temperature dependence
(green line), and the γ2 relaxation process (the local motion of the partial segments of the
disordered side chains are shown in little green ellipses, and the light blue area is the γ2
relaxation region) of disordered side chains follows the supper Arrhenius temperature
dependence (red line). The dark blue curves represent the main chains of PBTTT as shown
in Figure 3.
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rearrangement of the local segment of the disordered side chain; the green line represents the γ1

relaxation disordered of the side chains of PBTTT following the Arrhenius temperature dependence.
The little green ellipses on the left represent the local motion of the partial segments of the disordered
side chains; the light blue area represents the γ2 relaxation region; the black arrows among the light
blue ellipses represent the cooperative motion of partial segments of the disordered side chains;
the red line represents the γ2 relaxation of the disordered side chains follows the supper Arrhenius
temperature dependence. The dark blue curves represent the main chains of PBTTT.

An overview of the kinetics of equilibrium recovery of disordered side chains of PBTTT,
in terms of the time scales to reach equilibrium calculated by the KWW equation, τeq, is
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shown in Figure 3. At lower temperatures, i.e., far from the glass transition temperature of
the disordered side chains of PBTTT, only on a time scale associated with the monotonous
decay to equilibrium, an Arrhenius behavior can be observed associated with the γ1
relaxation of disordered side chains of PBTTT. At higher temperatures, with τeq decreasing
in a super Arrhenius behavior that related to the γ2 relaxation of disordered side chains, and
a rapid time scale exhibiting temperature dependence and seemingly decreasing enthalpy
changes with increasing temperature is displayed in Figure 4. This result suggested that
the cooperativity rearranging region varies from the partial motion behavior of the side
chain segment to the motion behavior of the whole side chain [45]. So, it demonstrated
experimentally that the glass transition temperature of the disordered side chain is 233 K.
The side chain of PBTTT in the disordered state has a small amount of free volume that
permits only the local motion of the partial segment of the side chain (i.e., the γ1 relaxation
process is shown in Figure 3) below the Tg,γ. The γ1 relaxation of the disordered side chains
of PBTTT is a thermally activated process and can be initiated above certain temperatures.
An Arrhenius process is shown as a straight line in Figure 3. This process can be regarded
as generated from the non-cooperative rearrangement of local segments of the disordered
side chains in large regions, as shown by the purple arrows in the small green ellipses in
Figure 3. In the regions, a rigorous requirement of the cooperative motion has a relatively
fixed orientation of a large amount of the disordered side chains, such as the glassy state by
rapidly quenching from the molten state. So, the partial segments of the disordered side
chains in local motion are located as “islands” of the “islands mobility” in the γ1 relaxation.
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As the temperature increases and exceeds the Tg,γ, the segmental motion of disordered
side chains becomes more intense, the length of the mobile segment increases, and the free
volume rises, initiating the γ2 relaxation process (the process is shown in Figure 3) of the
disordered side chains. This process needs a great degree of cooperativity between the
segments of disordered side chains and side chains. As the free volume grows, temperature
increases, allowing the side chains to relax more independently. Here, the γ2 relaxation
structure lives the γ1 relaxation process. It is a temporary distribution of locally γ2 relax-
ation optimized real-space arrangements after the cooperativity motion. The γ1 relaxation
process decays at the γ2 relaxation process due to the γ1 relaxation process correlation in
space and time. The motion of partial segments of the disordered side chains in the γ2
relaxation process is related to the cooperative motion, as shown by the black arrows among
the light blue ellipses in Figure 3. The γ2 relaxation process depends on the cooperativity
of the high mobility of adjoining “islands”. Double time (t and τ) correlations describe the
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time-dependent dynamics of side chain motion structure units under different annealing
temperatures in Equation (1). The enthalpy changes (∆H) in the corresponding segmental
motion of the side chain at different annealing temperatures are displayed in Figure 4. In
all cases, the enthalpy changes increase with aging time induced by the segmental motion
of the disordered side chain. Aging at temperatures from 173 K to 233 K results in the
enthalpy changes progressively shifting to higher values. Aging at temperatures higher
than 233 K, the enthalpy changes gradually shift to lower values. When the conjugated
polymer PBTTT is cooled through 233 K, the segments of the disordered side chains lose
their flexibility. However, above 233 K the free volume has shrunk to a low value that
the motion of the flexible segment of the side chains is slightly hindered. In addition, the
slopes of ∆H values verse aging temperature show that the speed of the γ1 relaxation of
the side chain segmental motion is slower than the one of γ2 relaxation. The mobility of
the disordered side chain is enhanced at high temperatures. That suggested the size of
cooperativity rearranging regions from the partial segment motion behavior of the side
chain extend to the motion behavior of the whole side chain.

The parameter β in Equation (1) may be regarded as reflecting the breadth of distri-
bution of relaxation times or as a direct measure of the departure from an exponential
decay function [46]. In this case, changes in β with temperature correspond to changes in
the degree of cooperativity of disordered side chains of PBTTT. Here, we interpret β as a
measure of cooperativity, which can be usefully defined in terms of the number of side
chain segments involved in a particular relaxation process. Low values of β correspond to
a high degree of cooperativity and a large number of side chain segments. If it is assumed
that the activation enthalpy per segment is a weak function of the side chain, the involve-
ment of an amount of side chain segments would result in a large activation enthalpy for
the relaxation process. The observed inverse correlation between β (Figure 5), enthalpy
changes (Figure 4), and aging temperature are consistent with the assumption, indicating
that the activation energy per segment is indeed a weak function of side chains of PBTTT.
Some support for this reasoning is found in the theory proposed by Bendler and Ngai [47].
This theory provides theoretical support for the KWW function, with β determined by the
number of correlated low energy states in the heat bath around a reference molecule and
by the strength of coupling between the heat bath and conformational states of the side
chains. The relationship between β and the observed temperature is also consistent with
the glass transition temperature of the disordered side chain, as shown in Figure 3.
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An approach to obtain insights into the physical aging behavior relies on the structure
recovery process of glassy state polymer. The fictive temperature, Tf, describes the structure
state of glassy material that is implied the effects of thermal treatments. The thermody-
namic state in terms of Tf is shown in Figure 6 as a function of the aging temperature
at the indicated time. Close to Tg,γ, aging exhibits the standard behavior consisting of a
monotonous decay toward equilibrium, which is marked by the condition Tf > Tag. Far
more, at higher temperatures, specifically 223 K in Figure 6, aging takes place with a rapid
decay rate to reach the plateau with Tf = Tag.
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4. Discussion

Physical aging is an important phenomenon in polymers, inorganic glasses, and
some metals. The aging of the conjugated polymer has to be considered in the testing of
plastics, especially in the prediction of their mechanical behavior in the long term. The
very property of the side chain of conjugated polymer PBTTT that changes during aging is
segment mobility. The structure of segment motion and the relaxation times are directly
associated with segment mobility. According to the above, when the conjugated polymer
sample is heated to above Tg, especially in a molten state, it readily reaches thermodynamic
equilibrium. The history of the disordered side chains of PBTTT has been “forgotten”,
any previous relaxation process of the disordered side chains by aging experiments that
occurred below Tg has been erased. Therefore, the aging of the disordered side chains is a
thermo-reversible process that can be repeated a large number of times on the same PBTTT
sample for the research of the relaxation process of the disordered side chains.

The experimental phenomenon of physical aging of the conjugated polymer PBTTT
below Tg,γ mentioned in the above triggered by the relaxation of the side chain segment,
in which the typical time scale decreases to feasible values not too far below Tg,γ. The
importance of side chain relaxation on device stretchability of the polymer films cannot
be ignored for the thermal relaxation process of chain segments [45]. In all, the thermo-
mechanical behavior under low applied strain is well related to the stress–strain behavior
of the films. Additionally, the aging temperature substantially impacts the aging process
and the mechanical behavior of polymer films [48]. A retraction of this embrittlement was
observed when the aging temperature was further increased below Tg, indicating that the
aging embrittlement is possibly related to the segmental relaxation of the side chain.
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In addition, a physical aging approach is carried out to analyze the brittle–ductile
transition and mechanical properties of polylactic acid (PLA). Due to the reversible transfor-
mation of the disordered structure of PLA at low temperatures, different stable aggregate
states are formed by physical aging [49]. Therefore, controlled physical aging was used as
a new approach to modify the brittle–ductile transition of materials. Through observed
changes in relaxation behavior, the thermal relaxation process in PBTTT with side chains by
physical aging was reported in this work. The relaxation of the side chains of PBTTT at low
temperatures has been probed. Due to the non-equilibrium nature of the glassy side chain
of PBTTT, the thermodynamic parameters and physical properties vary continuously with
time, even when annealing below the Tg caused by reversible rearrangement of disordered
side chains. For ductility over a wide temperature range, the relaxation of the side chains
of the conjugated polymer has to lie at temperatures as low as possible. So, one way to
enhance the ductility is broadening the temperature range of the brittle–ductile transition
of side chains in which the conjugated polymer is sensitive to aging and thermal history.

5. Conclusions

The mechanical relaxation experiments of a conjugated polymer flexible device are
associated with the conjugated polymer chemical structure and structure recovery over a
wide range of temperatures. The ductile–brittle transition in these polymers is strongly
affected by temperature. The ductile–brittle transition of PBTTT in low temperatures origi-
nated from the thermal relaxation process and is probed and illustrated by physical aging
experiments. The γ-relaxation of the side chain of PBTTT at low temperatures is shown
the side chain segmental motion from Arrhenius temperature dependence to the super
Arrhenius at higher temperature dependence. The importance of low-temperature mobility
of the side chain of PBTTT has been emphasized, and it has been systematically studied
connected with detecting the relaxation of the disordered side chains and measuring their
behaviors of the different segmental motions. All in all, we believe that the relaxation of
the disordered side chain of PBTTT should be paid more attention to when studying the
physical aging of conjugated polymers. On the one hand, it does not seem likely that the
interdigitation of side chains would demonstrate any measurable melting point of nanocrys-
tal domains. On the other hand, it also exhibited a different type of segmental motion in
the sizes of cooperatively rearranging regions that were associated with the mechanical
relaxation experiments of conjugated polymer flexible devices in low temperatures.
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