Dynamic Fracture Resistance under Plane Strain Conditions of High-Density Polyethylene Nanoclay Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and HDPE–Nanoclay Composites Preparation
2.2. Material Characterization Techniques
2.2.1. Wide Angle X-ray Diffraction (WAXD)
2.2.2. Melt Flow Index (MFI)
2.2.3. Dynamic Mechanical Analysis (DMA)
2.2.4. High-Speed Double Torsion (HSDT)
2.2.5. Stereo Microscopy and Scanning Electron Microscopy
3. Results and Discussion
3.1. Wide Angle X-ray Diffraction
3.2. Melt Flow Index
3.3. Dynamic Mechanical Analysis
3.4. High-Speed Double Torsion Tests
Specimen | Test Number | Mean Striker Force [N] | Striker Speed [m/s] | Crack Propagation Speed [m/s] | [kJ/m2] |
---|---|---|---|---|---|
HDPE-0 | 1 | 131 | 2.6 | 207 | 0.14 |
2 | 145 | 2.7 | 211 | 0.15 | |
3 | 150 | 2.7 | 201 | 0.21 | |
Mean | 142 ± 10 | 2.7 ± 0.1 | 206 ± 5 | 0.17 ± 0.04 | |
HDPE-1 | 1 | 136 | 2.7 | 172 | 0.24 |
2 | 113 | 2.6 | 150 | 0.21 | |
3 | 109 | 2.6 | 145 | 0.26 | |
Mean | 119 ± 15 | 2.6 ± 0.1 | 156 ± 14 | 0.23 ± 0.03 | |
HDPE-3 | 1 | 101 | 2.6 | 144 | 0.20 |
2 | 107 | 2.7 | 181 | 0.15 | |
3 | 104 | 2.7 | 162 | 0.19 | |
Mean | 104 ± 3 | 2.7 ± 0.1 | 162 ± 19 | 0.18 ± 0.03 | |
HDPE-5 | 1 | 103 | 2.7 | 86 | 0.26 |
2 | 127 | 2.7 | 124 | 0.29 | |
3 | 111 | 2.6 | 79 | 0.27 | |
Mean | 114 ± 12 | 2.7 ± 0.1 | 96 ± 24 | 0.28 ± 0.02 |
3.5. Fracture Surface Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Tanniru, M.; Yuan, Q.; Misra, R. On significant retention of impact strength in clay-reinforced high-density polyethylene (HDPE) nanocomposites. Polymer 2006, 47, 2133–2146. [Google Scholar] [CrossRef]
- Sun, L.; Gibson, R.F.; Gordaninejad, F.; Suhr, J. Energy absorption capability of nanocomposites: A review. Compos. Sci. Technol. 2009, 69, 2392–2409. [Google Scholar] [CrossRef]
- Hussain, F.; Hojjati, M.; Okamoto, M.; Gorga, R.E. Review article: Polymer-matrix nanocomposites, processing, manufacturing, and application: An overview. J. Compos. Mater. 2006, 40, 1511–1575. [Google Scholar] [CrossRef]
- Deshmane, C.; Yuan, Q.; Perkins, R.S.; Misra, R.D.K. On striking variation in impact toughness of polyethylene–clay and polypropylene–clay nanocomposite systems: The effect of clay–polymer interaction. Mater. Sci. Eng. A 2007, 458, 150–157. [Google Scholar] [CrossRef]
- Sarathi, R.; Sahu, R.K.; Rajeshkumar, P. Understanding the thermal, mechanical and electrical properties of epoxy nanocomposites. Mater. Sci. Eng. A 2007, 445–446, 567–578. [Google Scholar] [CrossRef]
- Ou, Y.; Yang, F.; Yu, Z.-Z. A new conception on the toughness of nylon 6/silica nanocomposite prepared via in situ polymerization. J. Polym. Sci. Part B Polym. Phys. 1998, 36, 789–795. [Google Scholar] [CrossRef]
- Kinloch, A.J.; Taylor, A. The mechanical properties and fracture behaviour of epoxy-inorganic micro- and nano-composites. J. Mater. Sci. 2006, 41, 3271–3297. [Google Scholar] [CrossRef]
- Akbari, B.; Bagheri, R. Deformation mechanism of epoxy/clay nanocomposite. Eur. Polym. J. 2007, 43, 782–788. [Google Scholar] [CrossRef]
- Hedayatnasab, Z.; Eslami-Farsani, R.; Khalili, S.M.R.; Soleimani, N. Mechanical characterization of clay reinforced polypropylene nanocomposites at high temperature. Fibers Polym. 2013, 14, 1650–1656. [Google Scholar] [CrossRef]
- Mohagheghian, I.; McShane, G.; Strongea, W. Impact response of polyethylene nanocomposites. Procedia Eng. 2011, 10, 704–709. [Google Scholar] [CrossRef] [Green Version]
- Pettarin, V.; Brun, F.; Viana, J.C.; Pouzada, A.S.; Frontini, P.M. Toughness distribution in complex PP/nanoclay injected mouldings. Compos. Sci. Technol. 2013, 74, 28–36. [Google Scholar] [CrossRef]
- Greig, J.; Leevers, P.; Yayla, P. Rapid crack propagation in pressurised plastic pipe—I. Full-scale and small-scale RCP testing. Eng. Fract. Mech. 1992, 42, 663–673. [Google Scholar] [CrossRef]
- Hsuan, Y.G. Data base of field incidents used to establish HDPE geomembrane stress crack resistance specifications. Geotext. Geomembr. 2000, 18, 1–22. [Google Scholar] [CrossRef]
- Sharma, A.; Mukhopadhyay, T.; Kushvaha, V. Experimental data-driven uncertainty quantification for the dynamic fracture toughness of particulate polymer composites. Eng. Fract. Mech. 2022, 273, 108724. [Google Scholar] [CrossRef]
- Joudon, V.; Portemont, G.; Lauro, F.; Bennani, B. Experimental procedure to characterize the mode I dynamic fracture toughness of advanced epoxy resins. Eng. Fract. Mech. 2014, 126, 166–177. [Google Scholar] [CrossRef]
- Rabbi, M.; Chalivendra, V.; Li, D. A novel approach to increase dynamic fracture toughness of additively manufactured polymer. Exp. Mech. 2019, 59, 899–911. [Google Scholar] [CrossRef]
- Fond, C.; Schirrer, R. Dynamic fracture surface energy values and branching instabilities during rapid crack propagation in rubber toughened pmma. Comptes Rendus Acad. Sci.-Ser. IIB-Mech. 2001, 329, 195–200. [Google Scholar] [CrossRef]
- Kopp, J.-B.; Schmittbuhl, J.; Noel, O.; Lin, J.; Fond, C. Fluctuations of the dynamic fracture energy values related to the amount of created fracture surface. Eng. Fract. Mech. 2014, 126, 178–189. [Google Scholar] [CrossRef]
- Leevers, P.S.; Williams, J.G. Double torsion testing of high velocity crack resistance. J. Mater. Sci. 1987, 22, 1097–1107. [Google Scholar] [CrossRef]
- Wheel, M.A.; Leevers, P.S. High speed double torsion tests on tough polymers. I: Linear elastic steady state and dynamic analysis. Int. J. Fract. 1993, 61, 331–348. [Google Scholar] [CrossRef]
- Wheel, M.; Leevers, P.S. High speed double torsion tests on tough polymers. II: Nonlinear elastic dynamic analysis, Int. J. Fract. 1993, 61, 349–359. [Google Scholar]
- Lai, C.Y.; Groth, A.; Gray, S.; Duke, M. Impact of casting conditions on PVDF/nanoclay nanocomposite membrane properties. Chem. Eng. J. 2015, 267, 73–85. [Google Scholar]
- Chen, B. Polymer–clay nanocomposites: An overview with emphasis on interaction mechanisms. Br. Ceram. Trans. 2004, 103, 241–249. [Google Scholar] [CrossRef]
- Mo, Z.; Zhang, H. The degree of crystallinity in polymers by wide-angle x-ray diffraction (WAXD). J. Macromol. Sci. Part C Polym. Rev. 1995, 35, 555–580. [Google Scholar] [CrossRef]
- Murthy, N.; Minor, H. General procedure for evaluating amorphous scattering and crystallinity from X-ray diffraction scans of semicrystalline polymers. Polymer 1990, 31, 996–1002. [Google Scholar] [CrossRef]
- Baniassadi, M.; Laachachi, A.; Hassouna, F.; Addiego, F.; Muller, R.; Garmestani, H.; Ahzi, S.; Toniazzo, V.; Ruch, D. Mechanical and thermal behavior of nanoclay based polymer nanocomposites using statistical homogenization approach. Compos. Sci. Technol. 2011, 71, 1930–1935. [Google Scholar] [CrossRef]
- Chafidz, A.; Ali, M.A.-H.; Elleithy, R. Morphological, thermal, rheological, and mechanical properties of polypropylene-nanoclay composites prepared from masterbatch in a twin screw extruder. J. Mater. Sci. 2011, 46, 6075–6086. [Google Scholar] [CrossRef]
- Khan, A.; Shamsi, M.H.; Choi, T.-S. Correlating dynamical mechanical properties with temperature and clay composition of polymer-clay nanocomposites. Comput. Mater. Sci. 2009, 45, 257–265. [Google Scholar] [CrossRef]
- Yasmin, A.; Luo, J.; Abot, J.; Daniel, I. Mechanical and thermal behavior of clay/epoxy nanocomposites. Compos. Sci. Technol. 2006, 66, 2415–2422. [Google Scholar] [CrossRef]
- Autodesk. Moldflow Adviser Thermoplastics Database (Alathon H 5618), Autodesk Moldflow Adviser 2020. (accessed on 1 February 2020); Autodesk Inc.: San Francisco, CA, USA, 2022.
- Rivera-Santana, J.; Figueroa-López, U.; Guevara-Morales, A. Multiscale numerical methodology for assessing fracture toughness enhancement due to nanoclay inclusion in fiber-reinforced polymer composites. Int. J. Solids Struct. 2022, 246–247, 111632. [Google Scholar] [CrossRef]
- Tong, Q.; Li, S. A concurrent multiscale study of dynamic fracture. Comput. Methods Appl. Mech. Eng. 2020, 366, 113075. [Google Scholar] [CrossRef]
- Ritchie, S. The High Speed Double Torsion Test. Ph.D. Thesis, Imperial College of Science, Technology and Medicine, London, UK, 1995; p. 157. [Google Scholar]
- Yuan, Q.; Misra, R.D. Impact fracture behavior of clay-reinforced polypropylene nanocomposites. Polymer 2006, 47, 4421–4433. [Google Scholar] [CrossRef]
- Kopp, J.-B.; Girardot, J. Dynamic fracture in a semicrystalline biobased polymer: An analysis of the fracture surface. Int. J. Fract. 2020, 226, 121–132. [Google Scholar] [CrossRef]
- Lesiuk, G.; Sawicka, A.; Correia, J.; Frątczak, R. Fracture resistance analysis of PEEK-polymer. Eng. Struct. Technol. 2017, 9, 207–213. [Google Scholar] [CrossRef]
- Zimmerman, D.L.; Jones, R.W. SEM analysis of polymeric mechanical failures in polyetherimide. Int. J. Polym. Mater. 1994, 23, 151–165. [Google Scholar] [CrossRef]
- Voleppe, Q.; Ballout, W.; Van Velthem, P.; Bailly, C.; Pardoen, T. Enhanced fracture resistance of thermoset/thermoplastic interfaces through crack trapping in a morphology gradient. Polymer 2021, 218, 123497. [Google Scholar] [CrossRef]
- Kytopoulos, V.; Badalouka, B.; Bourkas, G.; Sideridis, E. A SEM-Fractographic Study of Dynamic Crack Propagation Effects in Particulate Epoxy Systems under Impact Loading Conditions. J. Reinf. Plast. Compos. 2009, 28, 353–377. [Google Scholar] [CrossRef]
- Ritchie, S.J.K.; Leevers, P.S. Non-uniform and dynamic torsion of elastic beams Part 2: The double torsion test. J. Strain Anal. Eng. Des. 1999, 34, 313–322. [Google Scholar] [CrossRef]
- Anderson, T.L. Fracture Mechanics-Fundamentals and Applications, 3rd ed.; Taylor & Francis: Boca Raton, FL, USA, 2005; p. 630. [Google Scholar]
- Messiha, M.; Frank, A.; Heimink, J.; Arbeiter, F.; Pinter, G. Mechanisms of rapid fracture in PA12 grades. Theor. Appl. Fract. Mech. 2022, 117, 103145. [Google Scholar] [CrossRef]
- Pawlak, A.; Galeski, A.; Rozanski, A. Cavitation during deformation of semicrystalline polymers. Prog. Polym. Sci. 2014, 39, 921–958. [Google Scholar] [CrossRef]
- Zare, Y. Study of nanoparticles aggregation/agglomeration in polymer particulate nanocomposites by mechanical properties. Compos. Part A Appl. Sci. Manuf. 2016, 84, 158–164. [Google Scholar] [CrossRef]
- Faber, K.T.; Evans, A.G. Crack deflection processes—I. Theory. Acta Metall. 1983, 31, 565–576. [Google Scholar] [CrossRef]
- Ponnusami, S.A.; Turteltaub, S.; van der Zwaag, S. Cohesive-zone modelling of crack nucleation and propagation in particulate composites. Eng. Fract. Mech. 2015, 149, 170–190. [Google Scholar] [CrossRef]
- Opelt, C.V.; Coelho, L.A. Reinforcement and toughening mechanisms in polymer nanocomposites–Reinforcement effectiveness and nanoclay nanocomposites. Mater. Chem. Phys. 2016, 169, 179–185. [Google Scholar] [CrossRef]
Sample | d-Spacing [nm] | Crystallinity [%] | MFI [g/10 min] | E’ @−5°C [MPa] | E’’ @−5°C [MPa] | tan δ @−5°C (×10−2) | Gd1 [kJ/m2] |
---|---|---|---|---|---|---|---|
HDPE-0 | N/A | 59.1 | 3.5 ± 0.1 | 1903 | 80 | 4.20 | 0.17 ± 0.04 |
HDPE-1 | Exfoliated/Intercalated | 58.9 | 3.3 ± 0.1 | 2294 | 97 | 4.23 | 0.23 ± 0.03 |
HDPE-3 | 2.32 | 57.2 | 2.6 ± 0.2 | 1908 | 84 | 4.40 | 0.18 ± 0.03 |
HDPE-5 | 2.40 | 55.9 | 2.1 ± 0.1 | 2270 | 100 | 4.41 | 0.28 ± 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Cabrera, H.R.; Figueroa-López, U.; Taylor, A.C.; Guevara-Morales, A. Dynamic Fracture Resistance under Plane Strain Conditions of High-Density Polyethylene Nanoclay Composites. Polymers 2023, 15, 813. https://doi.org/10.3390/polym15040813
López-Cabrera HR, Figueroa-López U, Taylor AC, Guevara-Morales A. Dynamic Fracture Resistance under Plane Strain Conditions of High-Density Polyethylene Nanoclay Composites. Polymers. 2023; 15(4):813. https://doi.org/10.3390/polym15040813
Chicago/Turabian StyleLópez-Cabrera, H. R., U. Figueroa-López, A. C. Taylor, and A. Guevara-Morales. 2023. "Dynamic Fracture Resistance under Plane Strain Conditions of High-Density Polyethylene Nanoclay Composites" Polymers 15, no. 4: 813. https://doi.org/10.3390/polym15040813
APA StyleLópez-Cabrera, H. R., Figueroa-López, U., Taylor, A. C., & Guevara-Morales, A. (2023). Dynamic Fracture Resistance under Plane Strain Conditions of High-Density Polyethylene Nanoclay Composites. Polymers, 15(4), 813. https://doi.org/10.3390/polym15040813