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Abstract: Short-fiber-reinforced polymers (SFRPs) based on unidirectionally arrayed chopped strands
(UACSs) have excellent formability and outstanding mechanical response. The low-velocity impact
response, such as the delamination, damage tolerance and energy absorption of UACS composites,
are essential to guarantee the stability and safety of composite components in service. The current
study investigates the low-velocity impact response of continuous carbon-fiber-reinforced polymer
(CFRP) and UACS laminates with vertical slits under drop-weight impact with various impact
energies (4, 7 and 11 J). The in-plane size of the studied samples is 100 mm × 100 mm, and the
stacking sequence is [0/90]4s. The time–history curves of load and energy are examined during
low-velocity impact experiments, as well as the nonvisible damages are obtained by ultrasound
C-scan imaging technique. A user-defined subroutine VUMAT, including the Johnson–Cook material
and failure model, which is used to simulate the elastic–plastic property of the slits filled with resin,
is coded in ABAQUS/Explicit. According to C-scan inspections of the impact-damaged laminates,
UACS specimens show more severe delamination as impact energy increases. The damaged area of
continuous CFRP laminates under impact energy of 11 J is 311 mm2, while that of UACS laminates
is 1230 mm2. The slits have a negative effect on the load-bearing capacity but increase the energy
absorption of UACS laminates by approximately 80% compared to the continuous CFRP laminates at
7 J. According to the variables of different damage modes in numerical simulation, cracks appear at
the slits and then expand along the direction perpendicular to the slits, leading to the fracture of fiber.
Nevertheless, as the damage expands to the slits, the delamination confines the damage propagation.
The existence of slits could guide the path of damage propagation.

Keywords: UACS laminates; low-velocity impact; damage behavior; finite element simulation

1. Introduction

Due to their high specific stiffness and strength, fiber composites have been used in
many fields over recent years [1]. Among them, carbon-fiber-reinforced polymer composite
(CFRP) materials, as an advanced composite material, have sets of benefits such as their
low thermal expansion coefficient, lightweight, high specific strength and high modulus.
They are extensively used in the aerospace industry, wind power industry, automobile
industry, structural reinforcement engineering and other fields [2]. Traditional continuous
CFRP composites have certain limitations when they are used to form components with
complex shapes. In the curing process, uneven fiber and resin distribution easily occur.
The existence of this kind of defect will inevitably produce a complex stress distribution
inside the material, which will affect the structure’s safety performance. As a result, SFRP
with exceptional fiber fluidity has been the subject of extensive research since the 1960s.
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For example, sheet molding compound (SMC) has been developed by leaps and bounds
due to its excellent fiber fluidity and lower cost [3,4]. The molding processes can achieve
proper formation; however, they are unable to regulate the microstructure of short fiber
distribution and result in poor mechanical properties [5]. Taketa et al. [6] introduced UACS
in which continuous CFRP prepreg is chopped into regular discontinuous distribution
to further improve the equilibrium relationship between mechanical property and fiber
flowability. Similarly, UACSs and SMCs are all stacked from multiple sheets. However, the
primary distinction between UACSs and SMCs is the high structural regularity. When fibers
are arranged in a regular pattern, UACSs exhibit excellent stiffness, which is comparable
to continuous CFRPs, a strength that is much greater than SMCs, and high formability
that is similar to SMCs. Hang Li et al. [7] also suggested new designs of UACSs by
incorporating discontinuous angled slits, and their results showed better strength and
flowability compared to the conventional UACS laminates.

Due to the fact that low-velocity impact is one of the major potential hazards for
laminates, and UACS laminates are now being used in composite structures primarily for
their strength and damage tolerance, an impact test on them is required to understand
their impact behavior. Aircraft are concerned about low-velocity impact damage during
taxiing, landing, and maintenance. Low-velocity impact damage to the wing skin can result
from tool drops during maintenance or small pieces of ground debris hitting the wing skin
when taxiing. The kind of instrument or object that strikes the structures will determine
the type of impact damage that occurs. It could have a smooth, soft edge or a sharp
edge. Due to accidents that occur during the manufacturing or maintenance processes, the
components could lose more than half of their strength when confronted with low-velocity
impact issues [8]. Conventional nondestructive testing methods are unable to find surface
flaws or damages that are scarcely perceptible, as is typical in low-velocity impacts on
composites. Numerous factors, including impact velocity and energy, projectile/impactor
shape, stacking sequence, and boundary conditions, affect impact behavior and damage [9].
Damage modes for composite-fiber-reinforced laminates include matrix cracking, fiber
breaking, and delamination. Under impact loading, these different damage modes are
exhibited collectively [10]. Since most composites are fragile, plastic deformation is not the
cause of the damage. Low-velocity impacts are characterized as incidents that can happen
at speeds between 1 and 10 m/s based on the stiffness, mass and material qualities of the
impactor [11]. A drop-weight impact testing device can simulate a variety of actual impact
situations and gather thorough performance data [12].

The low-velocity impact response of composite laminates has been studied in several
pieces of research using experimental observation [13], theoretical analysis [14–19] and
numerical modeling. Numerical modeling is thought to be a useful tool to obtain precise
damage propagation and is also ideal for parametrical research, considering the high cost of
impact experiments. The progressive damage model (PDM), considering failure initiation
and stiffness degradation, is the most common among the numerical theoretical models.
When the failure criterion is reached in some area of the composite, the damage begins to
occur, and visible or invisible cracks begin to expand, resulting in stiffness degradation
and gradually reducing load capacity. Due to the correlation with mechanical parameters,
the method based on fracture energy is widely used to predict the progressive damage
behavior of composites, such as the equivalent displacement method, which has been well
verified by a large number of experimental results [20–22]. In the main damage types that
occur in laminates, delamination is viewed as the crucial one because it might drastically
decrease the compression strength, stability and integrity of composites [23]. Considering
the essentiality of this failure mechanism, researchers have used two basic techniques
to anticipate delamination in laminates: the virtual crack closure technique (VCCT) [24]
and the cohesive zone model (CZM) [25]. Nevertheless, the VCCT cannot anticipate
fracture initiation and requires the use of an adaptive mesh reconstruction method in the
delamination front. On the other hand, the CZM utilizes criteria based on strength and
fracture energy to forecast damage beginning and propagation.
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The interactive mixed mode serves as the foundation for the traction–separation law of
cohesive elements for simulating delamination beginning and propagation. It makes sense
when the through-thickness normal stress is under tension, but the delamination inhibition
effect, which is highlighted by Hou et al. [26], is neglected when the normal stress is under
compression. Through-thickness compression stress should be included in CZM because
it might significantly increase the interfacial shear strength. In order to investigate the
impact of compressive stress on the evolution of mode II damage, Li et al. [27] suggested
a contact failure model to study the maximum compression stress on mode II damage
propagation. This model used a separately derived parameter to link the rise in interlaminar
strength properties and mode II key crack energy to the compression stress. In the quasi-
static delamination modeling of composite structures, Zhang et al. [28,29] introduced an
interfacial model to appreciate the interaction-force-generated friction impact on shear-
induced mode II damage. In order to forecast low-speed impact damage in composite
materials utilizing a cohesion contact based on surfaces and a quasi-static stress model,
Zhang and Zhang [29] devised a numerically effective approach. By including interface
friction in the shear strength directions, this model studied the impact of compressive
interlaminar stress on deformation.

Based on the literature, there are few reports about research on UACS laminates under
low-speed impact; hence, the goal of the current investigation is to determine its damage
response and explore the influence of slits on the impact performance of UACS laminates
with vertical slits. The damage mechanisms underlying this topic are of importance for
the application of UACS composites. This triggered the analysis of the experimental
and numerical study of the influence of vertical slits on the impact behavior of UACS
laminates in the present work. A series of drop-weight impact experiments are conducted
on the UACS composites under different impact energies. The impact response curves
are analyzed, and the internal damage is examined with C-scan inspection. Parallelly, in
order to model the progressive damage process of UACS composite structures, a 3D finite
element simulation model is made in ABAQUS/Explicit, and the progressive damage
model (PDM) is suggested and encoded in the user-specified subroutine (VUMAT), which
incorporates the Hashin criterion and a computation technique for equivalent movement in
the damage propagation model. To describe the effect of delamination occurring at the slits
on the damage evolution, interface cohesive pieces with the nonlinear traction–separation
law are inserted among plies. Finally, a discussion on the UACS laminates with vertical
slits is performed for impact performance in damage tolerance and energy absorption.

2. Materials and Experimental Setup
2.1. Materials

The composite materials used in this research were UIN12500 (T800) (Guangwei,
Weihai, China), a commercial continuous CFRP prepreg of 0.15 mm thickness lamina and
60% fiber volume fraction. A quasi-isotropic lay-up sequence of [0/90]4S was tested, and
all the composite laminates were fabricated using 16 layers of the UACS laminates. The
laminate was placed into a hot press machine at a pressure of 0.6 MPa and a compression
temperature of 130 ◦C, according to the prepreg manufacturer’s supplied curing curve.
The specimens were cut precisely using a water-jet cutting machine, and the vertical
slits on the UACS prepreg were made by a commercial cutting tool. The final slit had
nominal dimensions of 25 mm × 0.2 mm. Each of the UACS laminates had vertical slits, as
illustrated in Figure 1. The specimen’s standard dimensions were kept at 100 mm in length
and 100 mm in width. The laminates had an average thickness of 1.99 mm.
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surface’s edges were tightened after synthetic rubber pads were positioned in the gap [30]. 
Samples from the UACS laminates were evaluated under impact loading using an im-
pactor with a hemispherical shape with a 16 mm diameter. The drop-weight mass of the 
hemispherical impactor was 5.265 kg. As depicted in Figure 2b, test data were collected 
using an acceleration sensor mounted to the impactor and a drop tower impact system 
(Instron CEAST 9350). The preset impact energies were achieved by adjusting the drop 
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were tested for each energy level according to the ASTM D7136/D7136M-20 standard. Be-
cause the repeatability of the drop-weight impact test is acceptable, only one sample for 
impact energy value was used [31]. Finally, the nondestructive inspection characteriza-
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Figure 1. Unidirectional CFRP prepreg with vertical, chopped slits.

2.2. Experimental Procedure

The cross-ply UACS composite materials were put through low-velocity impact tests
for various impact energies of 4 J, 7 J, and 11 J at room temperature. Figure 2a shows
the impact test setup and the impactor that was employed in this study. The specimen
was fastened by a clamping steel plate with a 75 mm diameter hole in the center, and
the top surface’s edges were tightened after synthetic rubber pads were positioned in the
gap [30]. Samples from the UACS laminates were evaluated under impact loading using
an impactor with a hemispherical shape with a 16 mm diameter. The drop-weight mass of
the hemispherical impactor was 5.265 kg. As depicted in Figure 2b, test data were collected
using an acceleration sensor mounted to the impactor and a drop tower impact system
(Instron CEAST 9350). The preset impact energies were achieved by adjusting the drop
height of the impactor and the compression degree of the spring. At least three specimens
were tested for each energy level according to the ASTM D7136/D7136M-20 standard.
Because the repeatability of the drop-weight impact test is acceptable, only one sample for
impact energy value was used [31]. Finally, the nondestructive inspection characterizations
were assessed by ultrasound C-scanning systems (Olympus NDT 2.10R25).
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Figure 2. Impact setup on UACS laminate using the hemispherical impactor. (a) Schematic diagram.
(b) Instron CEAST 9350 Drop Tower Impact System 3. Finite element modeling.

3. Finite Element Modeling

In order to model the low-speed impact damage in UACS composite structures, a
3D finite element simulation model was created by using the ABAQUS/Explicit Dynamic
simulation method. The researchers’ main priority was to analyze the impact damage prob-
lems of composite structures, such as the accurate experimental monitoring of the barely
visible impact damage and the numerical simulation of impact response, for predicting
the complex structural damage mechanisms in a fairly short time. The experiment was
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carried out at room temperature in an enclosed space; therefore, the numerical simulation
did not consider the influence of ambient temperature. The 16 mm diameter hemispherical
head impactor was simulated as an analytical rigid body. The model of the laminate was
cut and given different material properties, as seen in Figure 3. The material of the slits
in the model was defined as resin, and the other parts were defined as received CFRP
prepreg [32]. All freedoms along the periphery of the plate were constrained to zero to
simulate the experimental clamped conditions, and all freedoms of the indenter except
the z-axis were constrained to zero to simulate the drop-weight low-velocity impact. The
distance between the external surface of the impactor and the plate was set as 0 mm. The
initial velocities of 1.23 m/s, 1.65 m/s and 2.04 m/s over the z-axis and 5.265 kg of mass
were given to the indenter to generate three impact energies of 4, 7 and 11 J.
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The eight-node solid elements with reduced integration (C3D8R) were used in the
plate. Table 1 shows the details of the material properties of the prepreg used in this research.
These parameters were provided by the manufacturer of prepreg (Weihai Guangwei) based
on experimental analysis and empirical calculation. In addition, the zero-thickness eight-
node three-dimension cohesive elements (COH3D8) were inserted between adjacent layers
to simulate delamination. In order to improve the computational accuracy and efficiency,
the mesh with an element size of 1 mm× 1 mm was used in the model. Therefore, the mesh
of composite laminates consisted of 99216 C3D8R elements and 93015 COH3D8 elements.
Regarding the interface cohesive element, Liu [33] selected the best parameters for the
cohesive element in their work after comparing the impacts of various contact strengths on
crack propagation damage. Table 2 lists the parameters of the interface cohesive elements
that were employed in this investigation. All freedoms along the periphery of the plate
were constrained to zero to simulate the experimental clamped conditions. A general
contact algorithm in ABAQUS/Explicit was adopted to simulate contact between the
impactor and the plate, as well as ply to ply in the laminate. The penalty method with a
friction coefficient was used to describe the tangential behavior, while the hard contact
method was employed to describe the normal behavior. Between the layers, there was an
average friction coefficient of 0.5, and between the impactor and the plate, it was 0.3 [22,34].
Typically, the two categories used to describe the damage types of composite laminates
under low-speed impact are intralaminar damage (matrix cracking and fiber breaking)
and interlaminar damage. Damage simulations, including the damage initiation criterion
and damage propagation law, can simulate the impact damage process. The equivalent
displacement model selected in this paper has good accuracy for simulating damage
development [22,30,35].
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Table 1. Material properties of continuous CFRP laminate.

Parameters Value

Density 1600 kg/m3

Stiffness properties E11 = 145 Gpa, E22 = E33 = 9 Gpa, G12 = G13 = 4.4 Gpa,
G23 = 3.7 Gpa, ν12 = ν13 = 0.3, ν23 = 0.4

Strength properties XT = 2600 Mpa, XC = 1050 Mpa, YT = 62 Mpa, YC = 192 Mpa,
S12 = S13 = 90 Mpa, S23 = 52 MPa

Fracture Energy Gft = 82 N/mm, Gfc = 70 N/mm, Gmt = 0.22 N/mm,
Gmc = 1.1 N/mm

Table 2. Material properties of interface cohesive elements.

Parameters Value

Elastic modulus En = Es = Et = 5 GPa/mm
Strength properties N = S = T = 30 MPa

Fracture energy Gc
n = 0.32 N/mm; Gc

s = 1 N/mm
Relevant coefficient η 1.45

3.1. Johnson–Cook Elastic–Plastic Model

The failure mechanism of slits filled with resin is a key factor associated with initial
damage growth. The elastic–plastic phase of resin is mimicked by the Johnson–Cook
model, and then, the ductile damage criterion determines the fracture to describe nonlinear
stress–strain behavior and failure mechanism. In the present study, the Johnson–Cook
plasticity model is expressed by the following Equation:

σ0 = A + B
(_
εpl
)n

(1)

where
_
εpl is the equivalent plastic strain, and σ0 is the static yield stress. A, B and n are

material parameters. Referring to the curve fitting in a previous study [36], A = 35, B = 109.7
and n = 0.259 are applied for the failure analysis of resin, as shown in Figure 4.
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3.2. Damage Initiation Criterion

One of the well-known standards for forecasting failure starts in composite structures
is the Hashin criterion [37], which is constructed using formulas based on material strengths.
The following are the four distinct Hashin criteria failure modes:
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Fiber tensile failure: (σ11 ≥ 0)

Fft =

(
σ11

XT

)2
+

(
σ12

S12

)2
+

(
σ13

S13

)2
≥ 1 (2)

Fiber compression failure: (σ11 < 0)

Ffc =

(
σ11

XC

)2
≥ 1 (3)

Matrix tensile failure: (σ22 + σ33 ≥ 0)

Fmt =

(
σ22 + σ33

YT

)2
+

(
1

S23

)2(
σ23

2 − σ22 σ33

)
+

(
σ12

S12

)2
+

(
σ13

S13

)2
≥ 1 (4)

Matrix compression failure: (σ22 + σ33 < 0)

Fmc =

(
σ22 + σ33

2S23

)2
+
σ22 + σ33

YC

[(
YC

2S23

)2
− 1

]
+

1
S2

23

(
σ2

23 − σ22σ33

)
+

(
σ12

S12

)2
+

(
σ13

S13

)2
≥ 1 (5)

The fiber direction tensile and compressive strengths are represented by the variables XT
and XC in the equations above; S12, S13 and S23 are the corresponding shear strengths, while
YT and YC represent the tensile and compression strengths in the cross-sectional direction.

3.3. Damage Evolution Law

Once the damage initiation standard is attained, a damage progression law is needed
for the damage development. The progressive damage model needs to be encoded in
the user-specified subroutine, which incorporates the Hashin criterion and a computation
technique for equivalent movement in the damage propagation model. Here, a gradual
deterioration approach coupled with a modified numerical model suggested by Zhou
et al. [22] is utilized to describe the progression of intralaminar damage. Each failure
mode’s damage variable is written as:

GI =
1
2
σI,eqεI,eqlc (6)

dI=
δf

I,eq

(
δI,eq − δ0

I,eq

)
δI,eq

(
δf

I,eq − δ0
I,eq

) (dIε[0, 1], I = ft, fc, mt, mc) (7)

where GI is the fracture toughness of different failure modes; lc is the element’s characteristic
length. The damage corresponding displacement of the related potential failure at initial
and final failure is represented by δf

I,eq and δ0
I,eq, respectively.

The constitutive Equation with nine independent cross-ply-layered composite lam-
inates treated as orthorhombic anisotropy materials was adopted to appreciate the me-
chanical response. The degraded flexibility matrix Sd and the corresponding degraded
stiffness matrix Cd, added with different damage variables in the constitutive Equations,
are expressed as:

Sd =



1
dfE11

−ν21
E22

−ν31
E33

−ν12
E11

1
dmE22

−ν32
E33

−ν13
E11

−ν23
E22

1
E33

1
dfdmG12

1
dfdmG23

1
dfdmG31


(8)
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C =
1
∆



dfE11(1− dmν23ν32) dfdmE11(ν21 + ν23ν31) dfE11(ν31 + dmν21ν32)
dmE22(1− dfν13ν31) dmE22(ν32 + dfν12ν31)

E33(1− dfdmν12ν21)
∆dfdmG12

∆dfdmG23
∆dfdmG13

 (9)

df = (1− dft)(1− dfc)
dm = (1− Smtdmt)(1− Smcdmc)

∆ = 1− dfdmν12ν21 − dmν23ν32 − dfν13ν31 − 2dfdmν21ν32ν13

(10)

where dI (I = ft, fc, mt, mc) are the fiber and matrix damage variables computed using the
damage evolution model. Smt and Smc are newly introduced coefficients that are adjusted
to 0.96 in the current study in order to manage the shear stiffness loss [33,38].

3.4. Interlaminar Damage

Before damage initiation and evolution, the traction–separation model is in the elastic-
ity phase. Interlaminar delamination occurs with the initiation of damage simulated by the
quadratic nominal stress criterion, and corresponding reduction behavior is determined
by the BK fracture criterion [39]. Equations (11) and (12) express the cohesive zone model
used to predict the growth of delamination damage (12).{

〈tn〉
to
n

}2
+

{
ts

to
s

}2
+

{
tt

to
t

}2
= 1 (11)

GC = GC
n +

(
GC

s −GC
n

){GS

GT

}η

(GS = Gs + Gt, GT = Gn + GS) (12)

where Gn, Gs and Gt are normal and shear directions fracture energies, and tn, ts, and tt
stand for normal and shear tractions; to

n, to
s , and to

t stand for interface normal and shear
strength. The quantities GC

n , GC
s and GC are critical fracture energy of the normal, the shear

and total directions, respectively, and η, set as 1.45, is a material parameter.

4. Results and Discussion

As part of the impact test process at various energies (4, 7 and 11 J), the force–time,
force–displacement and energy–time curves were documented. For numerical simula-
tion, the analysis was carried out from damage modes, including fiber tensile damage,
intralaminar matrix cracking and fatigue cracks at the interfaces.

4.1. Impact Response

Energy–time, force–displacement and force–time histories of both continuous CFRP
and UACS laminates were compared for each impact energy in order to make an accu-
rate comparison of the impact performance of the experimental data (see Figure 5). The
energy–time curve of UACS laminates associated with penetration at 11 J will be discussed
in the comparison of the numerical and experimental results. For both continuous CFRP
and UACS laminates, 11 J impact energy presents the highest impact time, displacement
and energy, whereas laminates impacted with 4 J display similar impact response behaviors
due to no obvious damage occurring in the laminates under this impact energy. Table 3 lists
the final results from the experiment with various impact energies. The peak force of UACS
and CFRP laminates differs by 14% at 4 J, and subsequently, with the failure of UACS
laminates, the increasing gap indicates a decrease in load capacity for UACS laminates.
However, in the case of non-failure (4 J), the UACS laminates show better toughness with
a maximum displacement of 4.48 mm compared to 3.61 mm of CFRP. Compared to the
continuous CFRP laminates, the UACS laminate shows a larger maximum displacement by
about 24%, and its peak force is about 37% less than continuous CFRP laminates under the
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impact energy of 7 J due to the fiber breakage of UACS laminates. The final energy absorbed
by the CFRP laminates is about 1.99 J for the impact energy of 4 J, which is approximately
10% lower than that of the UACS (2.21 J). For each of the three types of impact energy,
the impact energy–time histories are displayed in Figure 5c. For 11 J impact energy, the
ultimate energy absorbed by the laminates in the event of damage and friction is 10.38 J
and 5.34 J for UACS and CFRP, respectively. In the case of 7 J, however, the UACS value of
6.05 J is closer to the CFRP value of 3.29 J. It appears that absorbed energy increases with
increasing impact energy, and it is clear that the UACS laminates absorb more energy than
the CFRP laminates.
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Table 3. Experimental values of different specimens.

Specimen Impact
Energy (J)

Peak Force
(kN)

Maximum
Displacement (mm)

Absorbed Energy
(J)

Damage Area
(mm2)

CFRP
4 2.33 ± 0.08 3.51 ± 0.18 1.89 ± 0.03 153 ± 14.50
7 3.35 ± 0.11 4.49 ± 0.23 3.19 ± 0.13 250.5 ± 25.25

11 4.56 ± 0.21 5.53 ± 0.46 5.24 ± 0.08 311 ± 22.05

UACS
4 1.97 ± 0.09 4.18 ± 0.30 2.31 ± 0.08 485.75 ± 41.75
7 2.13 ± 0.15 6.86 ± 0.58 6.05 ± 0.38 889.75 ± 56.05

11 1.46 ± 0.11 10.79 ± 0.71 10.38 ± 0.24 1230 ± 87.85

Figure 6 exhibits the correlation between experimental and numerical impact force–
time graphs of UACS laminates at three impact energies. Figures 6 and 7 show that the
initial contact stage of the impact force–time curves always exhibits substantial oscillation,
which can be attributed to the early fracture of the layers on the impact side. Meanwhile,
sudden drops in the force and displacement under the energy of 7 J occur at 2 ms and
3.95 ms, respectively. In the beginning, the delamination grows quickly at the slits, which
causes the initial drop in force. With damage accumulation due to the continuous absorp-
tion of kinetic energy by the laminate, the failure of the laminate leads to a steeper drop
than the first drop. When the initial kinetic energy increases to 11 J, the drop in force is
obviously earlier. The establishment of material structure in the numerical model is based
on the ideal situation compared to the experiments. Therefore, the accurate simulation of
the mechanical response of brittleness composite laminates is relatively difficult. Premature
failure of impact side layers causes the penetration of composite laminates, and that is why
the impact process of 11 J is prolonged. As a result of the actions of laminate vibration,
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damage initiation and progression with various modes, the impact force increases swiftly
and fluctuates dynamically. As the value gets closer to the maximum, extremely intense
oscillations occur, and the rate at which the impact force increases declines. The impact
force then starts to decrease, indicating the impactor will bounce after that. In contrast to the
experiment test’s limited acquisition points, a large amount of data sets may be obtained in
brief time intervals, and simulation can effectively depict the intensive oscillation patterns
of the impact force. The simulation’s rapid oscillation history depicts the laminates’ increas-
ing damage due to several failure types. It does, however, differ somewhat from the actual
experimental method. The impact force–displacement graphs for the three impact energies
are shown in Figure 7. Due to the crack formation of laminates throughout the experiment,
the maximum displacement speculated by the numerical model was consistently a little
less than the results of the experiment. Figure 7a–c again demonstrate that the maximum
displacement of the impactor increases as the impact energy does. Due to the bending
deformation of composite laminates, the displacement of the indenter exceeds the thickness
of the laminates by a significant margin.
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Figure 7. Comparison of numerical and experimental force–displacement curve of UACS laminates
under impacts (a) 4 J, (b) 7 J and (c) 11 J.

The impact energy–time graphs for three impact energies are depicted in Figure 8.
After contact, the impactor’s kinetic energy quickly starts to transfer to the composite
laminates. The elastic energy of the laminates absorbs a portion of the kinetic energy, while
the damage and vibration of the laminates disperse the remainder. An accurate numerical
model is used to simulate the peak energy absorption. As shown in Figure 8b,c, the energy
absorbed by laminates is released by means of fiber brittle fracture and delamination near
the slits, and the indenter takes longer in the experimental test than in the numerical
simulation to reach zero velocity and stable bouncing back velocity; as a result, the last
absorbed energy determined by the numerical methods is never more than the results of
the experiment. The laminates absorb more energy as the impact energy rises, indicating
that the damage issue worsens.
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4.2. Post Impact C-Scan Inspection

Additional information on the damage mechanisms is provided by the C-scan maps of
UACS and continuous CFRP laminates (see Figure 9). The impact-damaged specimens are
also compared to the C-scan maps. Each damaged UACS laminate is represented by either
the hemispherical impactor (front side) or a fracture surface (back side) corresponding to
the 4 J, 7 J and 11 J impact energies. The 4 J impact does not cause significant damage to
the specimens, whereas the 11 J impact induces the maximum damage in comparison to
the other energies. At 7 J, the hemispherical indentation on the impacted side becomes
clear (this is the first energy that makes an indentation over the BVID in the specimens).
Different from the hemispherical indentation, the delamination area of the UACS laminates
is shaped like a square influenced by slits. Additionally, there is a generalization of fiber
splitting and major development of warp/weft direction cracks on the non-impacted side.
Damage evolution in UACS is more severe than that of CFRP laminates. Obviously, for the
highest impact energy in UACS, the delaminated areas reach about 20% of the specimen,
as listed in Table 3. It can be concluded that the UACS laminates tend to delaminate to a
greater extent than CFRP laminates at increasing impact energy.
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4.3. Failure Modes Analysis

Matrix cracking, delamination and fiber breaking are the primary damage mecha-
nisms for composite structures in low-velocity impacts. Even with little impact energy,
matrix cracking and delamination can easily form, but fiber breaking only happens with
considerably large impact energy. These damage types can sometimes be invisible from the
outside of the laminates, yet they nonetheless significantly affect the remaining mechanical
performance of composite structures. High tension between laminas and shear stresses in
the impact zone result in delamination, which is an essential component of impact damage.

4.3.1. Fiber Tensile Damage

In the initial stage of the impact process, the resin in the slits is the first to crack after
the laminate is impacted. Then, the slits are completely fractured to release energy, which
is one of the reasons why UACS laminates absorb more energy. Because the slit direction of
adjacent layers is vertical, the fibers are subjected to a large amount of shear force when
the slits are damaged, resulting in lower impact performance of the laminate. However, in
this case, the interlaminar delamination induced by the notch failure will limit the damage
extending from the impact center point to the outside.

As shown in Figure 10a,b, slight damage appears in the central region at 4 J impact
energy; as a comparison, large-area fiber breakages are induced with the path of damage
evolution perpendicular to the slits under 7 J impact energy, which will result in the
penetration of UACS laminate at higher energy. Figure 10c illustrates fiber tensile damage
before penetration at 12.8 ms of the impact process. The layers on the impact and back side
present similar imaging with 4 J; namely, damage accumulates primitively in the center
zone because this region bears impact load in the first stage and then expands along the
fiber direction subjected to shear loading.

4.3.2. Matrix Tensile Damage and Compression Damage

Figure 11 depicts how matrix tensile damage is distributed across each layer of the
numerical models. The damage is evidently concentrated near the place of impact. More-
over, it is clear that when the equivalent layer is farther away from the contact side, the
anticipated matrix tensile damage area is bigger. This can be defined by the way the lami-
nates deform and fail, showing how matrix tensile damage begins upon the last laminate
and then spreads toward the top layers. It is noteworthy that the addition of slits changes
the damage propagation rule, especially in Figure 11a,b, where the matrix damage offers
the shape of a “vertical bar” in the vicinity of the slits as the threshold of the damage area
observed by ultrasound C-scanning systems. Similarly, from Figure 11c, which shows the
damage condition before the failure of the laminate, it can be seen that the matrix damage
of back side layers expands from the central region to damaged slits. The predictions of
matrix compression damage within every ply are shown in Figure 12. To be more specific,
the damage region for every ply from the 7 J impact is greater than the damage region from
the 4 J impact. According to this research, matrix compression damage starts on the contact
side and spreads toward the backside, which is why the top four layers of the matrix show
the most damage. For the majority of layers, the matrix compression damage region is less
than the previously analyzed matrix tensile damage region. Given the direction of the fiber,
matrix compression damage tends to concentrate at the site of impact and rarely extends in
other directions.
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4.3.3. Delamination of UACS Composite

For each interlaminar interface on the impact region, Figure 13 depicts the delamina-
tion morphology. For the overall value of the scalar damage variable (SDEG), variables
above that indicate whether the BK fracture criterion is satisfied or not, a value that is less
than 1.0 indicates that the criterion is not satisfied, while a value of 1.0 or higher indicates
that the delamination occurred. In total, the UACS cross-ply composite laminates examined
here have fifteen interfaces. As can be seen under the 4 J energy level, the majority of the
delamination region in each interface is not entirely damaged but only partly fails. The



Polymers 2023, 15, 840 17 of 21

composite structures could unexpectedly fail as a result of this partly failed delamination
continuing to spread secretly during subsequent use. The largest critical delamination can
be observed at the 11 J energy level followed by 7 J.
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It is common knowledge that the stress concentration in CFRP laminates responding
to low-velocity impacts is only high when close to the impact area and appears to reduce
along the laminates’ in-plane and thickness directions. However, for the UACS laminates,
the existence of slits makes the delamination generate along the slit direction of the upper
layer. This special delamination area appears at UACS laminates under different energy
levels, especially at 7 J. As shown in Figure 13b, the delamination area consists of two parts,
the elliptical impact region loading by hemispherical punch and the slits delamination.
Unlike the delamination area under the impact energy of 7 J, the slits delamination, as
shown in Figure 13a, only occurs on several backside layers. With the rise in impact energy,
the delamination area propagates from central to slits, as shown in Figure 13c, resulting in
the penetration of UACS laminates under the impact energy of 11 J.

5. Conclusions

This work examined the dynamic mechanical behavior and damage progression of
UACS laminates with vertical slits using a series of low-velocity impact tests and a PDM-
based finite element simulation integrating intralaminar damage and delamination. From
the numerical and experimental results, the following can be drawn:

1. At the same impact energy level, the UACS laminates with vertical slits show lower
peak force than the continuous CFRP laminates. The continuous CFRP laminate
shows a limited damage area, whereas the delamination of the UACS laminate offers
the shape of a “vertical bar” in the vicinity of the slits, resulting in a larger damage
area. With the increase in impact energy, the maximum displacement of UACS
laminates is larger than that of continuous CFRP laminates and shows superior energy
absorption capability.

2. The finite element model is developed by the Johnson–Cook elastic–plastic model
and PDM, and good accordance is determined between the numerical simulation
and experimental measurements on the peak force of the laminates, as well as the
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maximum displacement and the energy absorbed during the impact event. Moreover,
the effect of the dimension of slits, the stacking sequence and the thickness of laminates
on the low-velocity impact performance of UACS laminates could be investigated
further in future work.
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Abbreviations

Nomenclature Gmt Fracture toughness for tensile damage of matrix
Gfc Fracture toughness for compressive damage of fiber

Symbol definition Gft Fracture toughness for tensile damage of fiber
σ11 Component stress acting at fiber direction Fft Hashin criteria for fiber failure in tension
σ22 Component stress acting at normal to the fiber Ffc Hashin criteria for fiber failure in compression
σ33 Component stress acting at normal to the ply plane Fmt Hashin criteria for matrix failure in tension
σ12 Shear stress acting at the ply plane Fmc Hashin criteria for matrix failure in compression
σ13 Shear stress acting transverse to ply plane lc Element characteristic length
σ23 Shear stress acting transverse to ply plane dft Damage variable for fiber failure in tension
σ0 Static yield stress dfc Damage variable for fiber failure in compression
E11 Young modulus at fiber direction dmt Damage variable for matrix failure in tension
E22 Young modulus at normal to fiber dmc Damage variable for matrix failure in compression
E33 Young modulus at normal to the ply plane η Material parameter of the BK fracture criterion
G12 Shear modulus acting at the ply plane Smc Coefficients to manage the shear stiffness
G13 Shear modulus acting at the ply plane Smt Coefficients to manage the shear stiffness

G23 Shear modulus acting transverse to ply plane δf
I,eq

Damage corresponding displacement of failure at initial
failure

ν12 Poisson’s ratio acting at the ply plane δ0
I,eq

Damage corresponding displacement of failure at final
failure

ν13 Poisson’s ratio acting at the ply plane En Elastic modulus of normal direction
ν23 Poisson’s ratio acting transverse to ply plane Es Elastic modulus of shear direction
XT Fiber direction tensile strength Et Elastic modulus of shear direction
XC Fiber direction compressive strength to

n Interface normal strength
YT Tensile strength in the cross sectional direction to

s Interface shear strength
YC Compressive strength in the cross sectional direction to

t Interface shear strength
S12 Shear strength acting at the ply plane Gc

n Critical fracture energy of the normal direction
S13 Shear strength acting at the ply plane Gc

s Critical fracture energy of the shear direction
S23 Shear strength acting transverse to ply plane GC Critical fracture energy of the total direction
Gmc Fracture toughness for compressive damage of matrix

_
εpl Equivalent plastic strain
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