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Abstract: A DNA structure, known as triple-stranded DNA, is made up of three oligonucleotide
chains that wind around one another to form a triple helix (TFO). Hoogsteen base pairing describes
how triple-stranded DNA may be built at certain conditions by the attachment of the third strand to
an RNA, PNA, or DNA, which might all be employed as oligonucleotide chains. In each of these
situations, the oligonucleotides can be employed as an anchor, in conjunction with a specific bioactive
chemical, or as a messenger that enables switching between transcription and replication through the
triplex-forming zone. These data are also considered since various illnesses have been linked to the
expansion of triplex-prone sequences. In light of metabolic acidosis and associated symptoms, some
consideration is given to the impact of several low-molecular-weight compounds, including pH on
triplex production in vivo. The review is focused on the development of biomedical oligonucleotides
with triplexes.

Keywords: oligonucleotides; triplex; nucleic acids; pH; aptamer; biosensor

1. Introduction

Triplexes are non-canonical DNA structures that contain an extra single-stranded RNA
or DNA binding region that is unique to the primary groove of double-stranded DNA.
Triplex-forming oligonucleotides (TFOs) bind in the duplex major groove and produce
a triple-helical structure. By creating hydrogen bonds with exposed groups on Watson-
Crick base pairs, substances that directly interact with duplex DNA are of interest as gene
targeting techniques. Research on these substances has centered on the use of triplex-
forming oligonucleotides (TFOs), which interact with one another from the major groove
side of duplex DNA to generate triplex DNA in a sequence-specific way [1,2]. The ability to
inactivate and activate gene expression, recombination, and repair through the production
of triplex DNA make this technique potentially useful for analyzing activities involving the
genome [3–5]. With every sequence of duplex DNA, the ability to generate stable triplex
DNA is, however, inherently constrained. With guanine at the GC base pair and adenine
at the AT base pair from the main groove side of the target duplex DNA, respectively,
guanine and adenine nucleobases in TFOs rich in purines create two reverse Hoogsteen-
type hydrogen bonds (Figure 1) (e.g., [6]). The formation of stable triplex DNA using
TFOs made of natural nucleosides is not conceivable, though, since the CG and TA base
pairs only have one hydrogen bonding site at the main groove side of the cytosine and
thymine nucleobases.

Triplex technology still has some flaws [7], most of which are related to (i) their low
stability, (ii) sequence restrictions due to the requirement of polypurine tracks in the triplex
target sequence, (iii) susceptibility to nucleases, and (iv) difficulties in delivering TFOs in
the cellular nucleus. A substantial amount of chemical, biochemical, and biotechnological
research is presently being directed toward resolving the practical issues associated with
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triplex technology [8–11]. In this study, we conduct a thorough examination of the most
recent advances in biological applications of oligonucleotides with triplex-forming capacity.
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Figure 1. Hoogsteen-based triads are shown schematically in parallel and anti-parallel triplexes, as
well as in triads based on the reverse Hoogsteen algorithm.

2. Results and Discussion
2.1. Oligonucleotides with Triplex-Forming Ability in Targeted Delivery

Genomic DNA is frequently under torsional stress, which can cause the DNA double
helix to be both over- and underwound. A decrease in the number of links (Lk) connecting
the two strands of a closed-circular DNA (a negative Lk) causes negative superhelical
stress. The untwisting of the helix (change in twist; Tw) and a coiling distortion of the
DNA backbone (writhe; Wr) are the two components of the conformational response to this
stress, known as negative supercoiling [12–15]. Genomic DNA in prokaryotes supercoils
with an average density of (Lk/original Lk) of 0.065. Nuclear-associated proteins and
supercoiling collaborate to control bacterial gene expression [16]. Supercoiling produced
by transcription in eukaryotes is thought to be involved in the control of oncogenes such
as c-Myc. It affects the positioning of RNA guide sequences by the CRISPR-Cas9 gene
editing toolkit [17] and plays a crucial role in the development and stability of looped DNA
structures [18] and DNA R-loops [19].

2.1.1. Substantial RNA–DNA Interactions

RNAs have been assigned many regulatory roles, some of which involve interactions
with both DNA and proteins [20,21]. The addressing and recruitment of transcription
factors [22,23], the structuring of the transcription factor machinery [22,24], and the medi-
ating of histone modifications are all tasks performed at the RNA–protein interface. The
functional role of the XIST transcript in the silencing of the X chromosome during dosage
compensation is just one example of the epigenomic effects associated with RNA–DNA
interactions [25]. G-quadruplex [26] creation is another further instance of RNA–DNA
interactions. R-loop [27]. R-loops, which are associated with chromatin condensation and
cancer, are interactions between single-stranded DNA and RNA that are made possible by
Watson-Crick base pairing [28,29]. In addition to these, there is another type of RNA–DNA
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interaction in which the double helix’s primary groove is occupied by single-stranded
RNA, maintaining the double helix’s structural integrity, which results in the development
of a triple helix (triplex) comprising RNA and DNA. triplex production, is an aspect of
epigenetics that, despite long-standing knowledge in the biophysical sense [30,31], is still
not fully understood this is due to a few factors, primary among which is the difficulty
of conducting experiments to investigate triplex formation on a genome-wide level in
living cells. In the past, approaches for capturing the genomic interaction locations of
individual transcripts have been used to experimentally investigate triplex formation in
the setting of cells [32,33]. However, across a wide range of species, tissues, and cell types,
regulatory transcripts have been connected to epigenetic processes [34–37]. Herein lies
the significance of creating instruments that can precisely forecast RNA–DNA interaction
points as possible sites of triplex formation. Hoogsteen base pairing rules [38], which are
canonically accountable for triplex formation, have been used as the basis for previously
reported computational tools (Triplexator/Triplex Domain Finder [39,40], as well as Long-
Target [41]). These are tools for applying Hoogsteen rules. A comparison of Triplexator and
LongTarget utilizing MEG3 ChOP-seq data [32] shows significant space for improvement in
this area, even though the use of canonical rules to predict triplex formation offers insight
into potential RNA–DNA interactions [42]. These benchmarking data imply that base
pairing rules that go beyond the Hoogsteen base pairing rules now in use may be necessary
to implement reliable prediction of triplex formation in a cellular context. In relation to
this, research has been conducted on the prediction of triplex-forming RNA and DNA
sequences using previously documented triplex interactions [43], albeit this method cannot
predict entire triplex interactions. Experiments with comparable goals have been used in
conjunction with computational methods to anticipate RNA–DNA interactions across the
entire genome. In terms of triplex creation, the genome-wide isolation of triplexes, followed
by sequencing (triplex seq), are the most important of these [44]. This technique enables the
identification of triplex-forming sequences throughout the genome (triplexDNA-seq) and
transcriptome (triplexRNA-seq), but it does not provide information on how the sequences
couple up with one another. Numerous approaches have been described to find all to
all contacts between transcripts and chromatin aside from specifically triplex-mediated
RNA–DNA interactions [45–48]. However, RNA and DNA interacting complexes ligated
and sequenced (RAD-ICL-seq) [49] and RedC [50] have nucleotide processing processes
that are the most similar to those of triplex-seq. Through the proximity-based ligation of
RNA and DNA via a linker sequence, these approaches together discover relationships
between transcripts and areas of the genome. Although they are still relatively new and
experimentally challenging, RADICL-seq and RedC are valuable sources of information
on RNA–DNA interaction. Therefore, it is not now viable to conduct such studies under a
variety of steady-state and differential situations. As a result, the most broadly applicable
use for this data may be as inputs for machine learning algorithms, which could enable the
prediction of RNA–DNA interactions under a condition of interest.

A type of direct RNA–DNA interaction mechanism known as a triplex is created by
the binding of RNA sites to a purine-rich strand of duplex DNA in accordance with either
the forward or reverse Hoogsteen base-pairing rule. It has been established that some
lncRNAs create DNA to carry out certain functions. For instance, promoter-associated
lncRNA interacts with TTF-I to inhibit the transcription of rRNA [51], and FENDRR in-
creases PRC2 occupancy at the triplex formation sites [52]. MEG3 forms a DNA-lncRNA
triplex with the TGF gene to regulate the activity of the gene [32], and the particle binds to
the MAT2A promoter CpG island as a triplex to support gene-silencing mechanisms [53].
KHPS1 and SPHK1 interact to bind the lncRNA and associated effector proteins to the
gene promoter [54]. HOTAIR and PCDH7 and HOXB2 form a triplex to control adipogenic
differentiation [55]. MIR100HG controls p27 via the formation of a triplex [56], and the pro-
moter and pre-rRNA antisense direct associated CHD4/NuRD to the rDNA promoter [57]
chromatin isolation by RNA purification (ChIRP-seq) [33]. Capture hybridization anal-
ysis of RNA targets (CHART-seq) [58], RNA antisense purification (RAP-seq) [59], and
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chromatin oligo affinity precipitation (ChOP-seq) [52] are examples of recently developed
high-throughput techniques that have assisted in creating the genome-wide map of lncRNA
chromatin interactions for specific ones. As a result, they are unable to offer trustworthy
sources for research into DNA: RNA triplex production. Cetin et al. [44] devised a method
to map the genome-wide DNA: RNA triplexes by eliminating the chromatin crosslinking
to demonstrate the existence of the DNA: RNA triplex interactions in vivo. The physiolog-
ical significance of DNA: RNA triplex complexes was demonstrated using this method.
Currently, base paring rules related to mathematical statistics are primarily used to predict
DNA: RNA triplex. Hoogsteen and reverse-Hoogsteen base-pairing are taken into consider-
ation in the proposed triplexator to systematically discover the probable triplex formation
sites of RNA and the targeting sites on DNA [39]. Triplex-Inspector was created to choose
sequence-specific ligands and targets while taking genomic architecture and gene location
into account [60]. A long target was created to find motifs and binding sites in triplex
formation while taking non-canonical rules into account [41], and triplex Domain Finder
(TDF) was created to predict triplexes and to characterize lncRNA and the corresponding
DNA targets [40].

In several biologically significant processes, including DNA replication, transcription,
telomere replication, and HIV replication by reverse transcription [61–65], DNA: RNA
hybrids are generated as intermediary structures. Additionally, they have been found to
form R-loops in a variety of organisms, including bacteria and humans, and these loops are
essential for controlling gene expression, DNA and histone modifications, immunoglobulin
class switch recombination, DNA replication, and genome stability [66]. Small organic com-
pounds having the capacity to specifically restrict DNA replication via Okazaki fragments,
therefore also preventing transcription, offer a great deal of promise in the treatment of can-
cer because the replication is frequently enhanced in cancer cells furthermore, telomerase
and RNase inhibitors, which are tiny compounds selective for hybrid duplexes, may be
used therapeutically [67–70].

The discovery of substances that specifically attach to DNA: RNA hybrids have only
been briefly discussed in the literature [71–73]. The existence of a few ligands that selec-
tively bind DNA: RNA hybrids are shown by the literature sources [71–76]. A common
structural motif that preferentially binds to the hybrid structures was discovered in exten-
sive research by Arya and Chaires using quick screening assays, competition dialysis, and
thermal denaturation of mixtures [71–77]. Ethidium bromide, coralyne, amino glycoside,
propidium, thiazole orange, and ellipticine, among others, showed preferential binding
to hybrid duplexes among other nucleic acid structures. These substances all possess the
common motif planar aromatic ring system with a “bay” area. Triplex structures have been
discovered in biologically important RNA molecules, such as telomerase RNAs, [78,79],
long noncoding RNAs (lncRNAs) [80,81], RNA pseudoknots responsible for 1 programmed
ribosomal frameshifting (PRF) [82], catalytic centers of spliceosomes [83], bacterial SAM-II
riboswitch [1], or self-splicing group I [84].

Given the importance of triplexes in RNA biology, tiny compounds capable of rec-
ognizing, binding, and stabilizing triple helical RNA structures are gaining attention as
potential molecular biology tools and therapeutic agents in contrast to many investigations
on DNA triplexes [85,86]. The interaction of small molecules with RNA triplexes has re-
ceived significantly less attention than organic compounds, aminoglycosides, and various
dyes, which are examples of compounds that stabilize RNA triplexes, such as neomycin [87]
tunable diphenylfuran based scaffold (furamidine) [88], imidazoles, benzimidazoles [89],
flavonoids [90], alkaloids, and their analogs [91,92]. Proflavine and its conjugate [93] and
transition metal [94–96] intercalation and groove binding are the key mechanisms by which
these chemicals interact with RNA triplexes.

2.1.2. PNA

Noncoding RNA (ncRNA) participates in crucial but poorly understood biological
processes, and the emergence of illness [97–99] research tools for sequence-specific recogni-
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tion, detection, and functional inhibition of such RNAs would be very beneficial for both
theoretical applications in biology and real-world biotechnology and medical applications.
A lot of non-coding RNAs acquire complicated tertiary structures with double helical
sections that can be targeted via triple helical recognition. The molecular identification of
such helical RNA structures has not, however, received much research [100,101].

Triplex forming oligonucleotides (TFOs), or their chemically modified counterparts,
can identify double-helical DNA and RNA in a sequence-specific manner [86], but a
significant obstacle to the synthesis of triple helices is that only the purine nucleobases can
be identified through two Hoogsteen hydrogen bonds in the naturally occurring T*A-T (or
U*A-U) and C + *G-C triplets. Because inverted U-A and C-G base pairs only have one
hydrogen bond donor or acceptor in the main groove of the duplex, it is extremely difficult
to recognize pyrimidine nucleobases in these base pairs. Due to the electrostatic attraction
between a TFO’s negatively charged phosphates and the target nucleic acid duplex, low
binding affinity and sluggish kinetics of TFOs are also issues, as is the requirement for
protonation of cytosine (pKa 4.5) to generate the unfavorable C + *G-C triplet. In recent
developments of cationic triplex-forming peptide nucleic acid, the latter two issues have
been resolved (PNA) [102–107]. The nucleobases of PNA are joined by a pseudopeptide
backbone, making it a neutral DNA counterpart. PNA was first designed as a double-
stranded DNA (dsDNA) triplex-forming ligand [108]. However, it was later shown that
PNA can invade dsDNA by dislodging a pyrimidine rich DNA strand and generating a
PNA-DNA-PNA triplex, opening a brand new and fascinating mode of DNA recognition.
Although triple-helical PNA binding to dsDNA has also been investigated, the first report
of PNA binding to dsRNA was made by Rozners and colleagues in 2010 [109–113], along
with others [104], who demonstrated that dsRNA and nucleobase-modified PNA produced
triple helices with great affinity and sequence specificity [109–113].

PNA-dsRNA triplex production at physiological pH and salt concentration was
made possible by swapping out the more basic cytosine nucleobase for the more basic
2-aminopyridine (M) nucleobase (pKa 6.7, hence partially protonated at physiological cir-
cumstances). Building on the work of Corey [114,115] and Gait [116,117], conjugation with
cationic lysine residues improved the binding affinity and accelerated cellular absorption
of the cationic triplex forming PNA without impairing the binding specificity [106,107].
The most striking finding was that PNA exhibited an approximately 10-fold greater affinity
for complementary dsRNA than for the same dsDNA sequence. However, sequences with
most purine nucleobases on one strand of the dsRNA were still required for the creation of
extremely stable PNA-dsRNA triplexes (polypurine tracts) [105–107].

One may argue that the most important restriction on triple helical identification of
nucleic acids is the requirement for polypurine tracts [118]. A few research teams have
created heterocyclic nucleobases that can join the exocyclic -NH2 of cytosine to form a
single hydrogen bond. Leumann demonstrated that the C–G inversion was preferentially
recognized by 5-methylpyrimidin-2-one (4HT, R2 = CH3) modified TFOs over other base
pairs, but the binding affinity was lower than that of conventional Hoogsteen triplets [119]
when pyrimidin-2-one (P, R2 = H) was added to triplex forming PNA targeting dsRNA [120]
despite having a decreased affinity, as well as P-modified PNA still bound to mRNA in a
triplex with a hairpin structure, which prevented it from being translated both in vitro and
in living cells [118]. The latter investigation was the initial proof of the biological impact of
PNA-dsRNA triplex production in living cells [121].

A tried-and-true technique for low-cost, high throughput relative quantification is the
use of DNA microarrays these arrays are used for quick screening of up/down-regulation.
However, they have a limited dynamic range, and their ability to hybridize is heavily
dependent on factors, including temperature, ionic strength, and probe affinity [122].
Another well-known technique, qRT-PCR, provides for the accurate quantification of
numerous miRs and is frequently used to validate the results of microarray analysis on
a particular collection of targets. Finally, RNA sequencing is a well-known technology
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used for the accurate identification and quantification of miR sequences, as well as for the
discrimination of closely related sequences.

Some drawbacks to PNA use should be considered while designing probes. Reduced
solubility in aqueous media is a side effect of the neutral poly-amidic backbone, which
ensures the production of robust duplexes with natural nucleic acid targets. By adding
charged and hydrophilic residues, such as charged amino acids, this can be easily prevented
(i.e., arginine, glutamic acid, etc.) when operating at the low micromolar concentrations
typically used for oligonucleotide detection, this lowered solubility limitation is typically
less significant, but it could still be a problem when it comes to the manufacture of the
device. For instance, it has been demonstrated that the polyamidic backbone of PNA causes
issues when thiolated probes are conjugated to the surface of gold nanoparticles [123],
and to address this, alternate gold decorating protocols must be developed [124,125].
Furthermore, enzymes, such as ligases or polymerases, which are currently used for
amplification-based detection methods depending on DNA probes, are unable to recognize
PNAs due to their artificial origin. PNAs have found many uses in nucleic acid-targeting
strategies and have been proposed as biomolecule-based drugs and as probes for diagnostic
tools [126–129]. Despite these drawbacks, which may deter their application, given their
straightforward conjugation with peptide sequences and small functional groups and the
benefits in terms of duplex stability, PNAs have found a variety of applications in these
fields. The objective of this review is to provide a summary of current advancements in
PNA-based miR detection methods, paying particular focus to the key advantages over
conventional DNA-based approaches.

2.2. The Impact of TFOs on Gene Expression

The sequence of RNA and DNA defines its secondary and tertiary structure. Their
affinity and specificity are finally defined by the structure [130]. Single stranded DNA
or RNA molecules are purpose-built to attach to a certain target molecule. As a result,
they might be used as components of macromolecular devices for basic research and
technological applications. Because of interactions with complementary portions of the
chain and stacking, each aptamer has a distinct three-dimensional structure.

The in-cell NMR approach has been proven to be a reliable tool for determining
the intracellular structures of oligodeoxynucleotides. Several groups, including ours,
have used in-cell NMR to directly identify the production of DNA hairpins, [131] RNA
hairpins, I-motifs [132], G-quadruplexes [133], and Z-DNA [134] structures in living human
cells. The NMR approach was also used to assess tRNA changes in real-time in yeast cell
lysate [135–137].

According to research, approximately 97% of human genes have at least one triplex
forming sequence, with 86% having a unique arrangement [88]. Because of this, as well
as their programmability and selectivity, the creation of efficient TFOs is an essential
problem because it gives a mechanism to directly control gene expression [138] with further
applications in bionanotechnology and synthetic biology [1].

Triplex-Mediated Modulation of Gene Transcription

A multistep process called transcription involves the dynamic interaction of DNA
with various protein partners as well as the synthesis of DNA-protein complexes and
structures with various inherent stabilities. It has long been believed that it is simpler to
inhibit RNA synthesis during transcription elongation than to negatively (or positively)
modulate transcription initiation via triplex competition with transcription activators (or
repressors) [139].

2.3. Biosensor Based on Aptamers

Aptamer based biosensor designs have received a lot of interest in the disciplines of
biotechnology and chemistry [140–143]. Single stranded RNA or DNA oligonucleotide
aptamers with distinct intramolecular structures have been utilized to influence chemical
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production, and their selectivity and affinity for target have been used in various types of
biosensors [144,145]. Aptamers are usually intended to recognize and bind to the target
when paired with a biosensor to create an aptasensor, with the conformational change
employed to generate many detectable signals. Aptasensors have frequently been used
to test mycotoxins because of their capacity to concurrently measure bind constants for
most mycotoxins, as well as dissociation constants ranging within the nanomole [146–149].
Wu et al., for example, created a one-step electrochemical aptasensor for the assessment of
OTA utilizing a thiol and methylene blue dual-labeled aptamer-modified gold electrode
and demonstrated a detection limit of 0.095 pg/mL [150]. Lv et al. reported a fluorescence
test for OTA detection based on aptamers and gold nanoparticles with a detection limit of
5 nM [151]. Lin et al. created a simple, low-cost, and sensitive liposome-based colorimetric
aptasensor to detect OTA, with a detection limit of 0.023 ng/mL [152]. A triple helix
aptamer probe (TAP) was introduced as a biosensing strategy, with critical reference to
Watson-Crick and Hoogsteen base pairings. The probe consisted of an intended aptamer
sequence with two arm-like segments flanked by the sides of the aptamer and a triplex
forming oligonucleotide [153] This sensor offered various benefits over traditional duplex
DNA biosensors. Aside from its duplex DNA-like stability, the tap was painstakingly
developed with a longer aptamer sequence within the loop, strengthening selectivity,
binding affinity, and sensitivity to the targets [154–156]. Furthermore, the aptamer could be
changed without having to modify the probes for signal transduction, allowing it to be used
to detect a variety of targets. Because of these advantages, the tap has received increased
interest from scientists and has been used in a variety of innovative biosensing technologies.

2.4. G-Quadruplex Forming Aptamer

The finding is related to nanobiotechnology and molecular medicine and involves
DNA aptamers to the thrombin exosite I interact with prothrombin. These chemicals have
the potential to be exploited to develop treatments that prevent intravascular thrombus
development. Aptamer-based biosensors for sensing lateral flow are described here [157].
Aptamers are extremely valuable and include biorecognizing chemicals for the construc-
tion of biosensors. Aptamers are single-stranded strands of DNA that are used to select
protein targets. SELEX is a selection approach that permits the separation of motivated
nucleic acid molecules from a huge collection (more than 1015) of individual molecules,
known as a combinatorial library [158,159]. Some of the aptamers in Figure 2 (modified by
authors from [160]) have a good probability of not only identifying their targets, but also of
destroying their biological vitality.
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Figure 2. Aptamer secondary structure (a) and aptamer with a marker (b).

The SELEX technique is used to find and select aptamers. It happens because of
exponential enrichment in the systematic development of ligands. The oligonucleotide
library is gradually enriched with sequences that have a higher affinity for the target
molecule. The process of producing target incubation, elution, and amplification of the
binding sequence is continued in classical SELEX [161] until the great majority of the stored
pool consists of target binding sequences.
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2.5. Nucleic Acid Motifs with pH Sensitivity

Many pH-responsive motifs have been discovered in DNA structure research that
may be carefully tailored to achieve conformation flipping at a chosen pH value (see
Figure 3) [162]. Other than the classic Watson-Crick orientation, nucleic acids can attach
in a variety of orientations, including reverse Watson-Crick, Hoogsteen, and “wobble”
base pairs. Many of these interactions may be found in aptamer structures. The G-quartet
motif, for example, is created by Hoogsteen interactions between guanines from four
different strands, with each guanine at right angles to the next on a linear plane [163]
(Figure 3). When numerous G-quartets (typically three) are layered, the resultant helical
structure is known as a G-quadruplex [164]. G-quadruplexes are often found in aptamers
and other synthetic DNA nanostructures, as well as mRNA and gene promoters [164].
Protonation of nucleobases can considerably enhance the stability of some base pair mis-
matches [163]. Adenine and cytosine, in particular, have been seen to become protonated
at moderately acidic pH depending on the structure of the folded nucleic acid. The pKa
of protonation can be adjusted up to neutrality, allowing mispairs to be stably absorbed
into a structure [165,166]. Because protonation allows various base pairs to become stable,
altering the pH of the environment can allow a DNA structure, such as an aptamer, to
change conformation reversibly [163]. This conformational shift influences features, such
as target binding.
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Figure 3. Nucleic acid base-pair binding and motifs that respond to pH. Illustration of the triplex
binding motif and C + GC triplex non-canonical base pair binding in (a). Illustration of the i-motif,
which is made up of C + C bonds, and non-canonical C + C base pair binding in (b). (c) Left: A non-
canonical base pair binding is shown. Right: Illustration of A + G non-canonical base pair binding.

The I-motif is a frequent pH-responsive DNA motif. The I-motif is made up of two
intercalated duplexes connected by antiparallel C + C base pairing [167]. Isolated cytosine
has a pKa of 4.58 [168] at neutral pH. I-motifs can develop due to crowding or super
helicity. A new study suggests that this structure affects replication and transcription
in vivo [169]. I-motifs, on the other hand, are completely folded at pH 5–6 and unstable
at neutral pH under most in vitro circumstances [168,169]. Because of its pH sensitivity,
the I-motif has become popular for nanodevices engineered to flip conformation under
moderately acidic circumstances [168]. Bielecka and Juskowiak developed a fluorescent
probe for pH monitoring based on I-motif creation in 2015, modifying the protonation
equilibrium of a fluorescent cytosine analog and thereby quenching it under more acidic
circumstances [170]. I-motifs have also been used in more complicated nanostructures,
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such as logic gates and motors [162]. Two aptamers that employ the I-motif to integrate
pH-dependent binding are mentioned below.

A second common DNA pattern that reacts to pH is the triplex structure, several
base combinations can produce a triplex, which consists of two strands in a Watson-Crick
duplex and a third, extra strand connected to one of the other two through Hoogsteen
or reverse Hoogsteen interactions [171]. The triplex motif has been utilized to generate
structural change depending on a variety of triggers, the most prevalent of which is strand
displacement [170]. However, changes in pH can be utilized to maintain or disrupt a triplex:
the C + GC triplex motif, for example, is dependent on the protonation of the cytosine on
the third strand [171,172].

The possible pH range for triplex DNA production can be varied by using different
triplex DNA sequences. Idili et al. disclosed a logical design of a triplex DNA structure
with varying quantities of T A T/C G triplets that “opened” or “closed” based on an
intramolecular triplex structure [173]. In addition to constructing a pH-responsive sensor
with a large pH window, they were also able to fine-tune the pH below which the switch
was closed by altering the percentage of C + GC triplets (pKa 4.5) and TAT triplets (pKa 10.2).
These are two aptamers that govern target binding via pH-controlled triplex synthesis.
The A-motif, a parallel duplex comprised of A + A + base pairs that develop at pH 3–4, is
another pH-responsive motif. Because the motif is more acidic than the I-motif or triplex, it
has been proposed that the A-motif may be beneficial for developing pH-sensitive probes
below the 5.5–7.6 range, most easily identified by I-motif probes [174]. Other non-canonical
base pairs, in addition to the motifs mentioned above, can be employed to introduce
pH-controlled aptamer binding when protonated, A + G, A + C, and C + C base pairs all
become substantially more stable [173].

2.6. Triplex Cations

For single-molecule force spectroscopy, a rescue rope technique was created that
allowed us to repeatedly alter the structures generated at free ends of DNA, such as triplex
DNA, telomeric DNA, or broken dsDNA following click chemistry conjugation. DNA of
interest split apart from the rope DNA handle. The rescue rope DNA assumed a shaped
conformation, and DNA of interest creates structures at the crossing point, according to
AFM imaging. Further proof that the DNA of interest may repeatedly form structures after
being ruptured by stresses came from single-molecule magnetic tweezers. It has been also
shown how to mechanically probe DNA triplexes using the rescue rope approach. DNA
triplexes can be either YR*Y or YR*R (Y for pyrimidine and R for purine) arrangements,
depending on whether the TFOs attach to the dsDNA’s purine strand via forward or
reverse Hoogsteen pairings (*) in YR*Y or YR*R triplexes. The mutual orientation of the
chemically homologous strands might be either parallel or antiparallel. It has long been
suggested that a telomeric triplex model in a YR*R arrangement prevents digestion and
recombination with a dsDNA of (TTGGGG)3 and a 3 overhang of (TTGGGG)2. A DNA
triplex occurs in a small tetrahymena telomere, where the G rich overhang folds back and
resides in the main groove of the duplex by generating the CG*G triads in an antiparallel
YR*R configuration [175].

Using rescue rope strategy-assisted single molecule force spectroscopy, the production
of triplexes by a short human telomeric DNA with eight repetitions of TTAGGG in the
dsDNA and the ssDNA overhang has been looked at. The findings showed that the
three overhangs of TTAGGG, which are most likely formed by CG*G and TA*T triads,
can occasionally fold back to bind dsDNA and create mechanically stable triplexes. The
interactions between the overhang and the dsDNA may change because of the TTAGGG
repeating motif, resulting in a folding turn of different proportions. When folding a
DNA triplex, the turn might be as tight as one that is devoid of nucleotides [176]. The
telomeric duplex with repeated patterns cooperatively unfolds under the influence of forces
without creating a triplex. A force ramp assay or a force jump experiment may produce
a hopping characteristic or a stopping signal if there is a stabilizing triplex present. The
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remaining duplex area, which is around 17 bp long, may unfold before the triplex in this
case. We saw hopping signals in addition to halting signals for all the mutants. A telomere
sequence’s folding back triplex structures may hold together for an average of 3 s at a
force of 20 pN. Telomeric triplexes may obstruct DNA cleavage and recombination, as well
as force-regulated helicases [177,178] and force-sensitive RNA polymerases, due to their
great mechanical stability and extended endurance [179]. Thus, two thymines significantly
weaken the human telomeric triplex. This is further corroborated by the finding that
AA mutation of TTAGGG to AAAGGG improved the chance of triplex formation in
force-jump experiments by a factor of five. Our findings on GA TFOs revealed even
greater triplex formation probabilities than those on AA mutants, indicating that DNA
sequences significantly influence the likelihood that triplex structures will develop (Figure 4)
(e.g., [175]).

Polymers 2023, 15, x FOR PEER REVIEW 11 of 18 
 

 

 

Figure 4. A rescue rope approach for investigating an artificial telomere. (a) The DNA in telomeres 

adopts a triplex shape. The G-rich and C-rich strands are denoted by red and black, respectively. 

(b) Using a rescue rope to probe a telomere with a free end. Structures having a closed end can be 

repeatedly manipulated by conventional mechanical pulling experiments, such as a DNA hairpin 

(left). A construction with an open end cannot rotate mechanically in circles before relaxing (mid-

dle). A rescue-rope technique supported by dsDNA enables recurrent operations on a structure 

with a free end, such as a telomere (right). (c). Designing a synthetic telomere. The identical con-

figuration of the artificial telomere in melting/reannealing rings is guaranteed by a random se-

quence at the blunt upstream end. In a duplex and a three overhang, the TTAGGG motif count 

might change. With n = 5 and m = 2. 

3. Conclusions 

The research on oligonucleotides with triplex-forming ability (TFO) in biological ap-

plications continues to profit tremendously from triplex technology. Even though the pro-

cesses processing TFO-directed triplex formations and related lesions are not completely 

understood, it is known that proteins from numerous repair pathways are involved. 

This repair method, as demonstrated by TFO targeted mutation generation, may be 

prone to error. Because of developments in the manufacture of chemically modified TFOs, 

we now have a better understanding of the cellular DNA repair mechanism, where pro-

teins from distinct DNA repair pathways can work together or compete with one another 

in processing DNA lesions caused by TFOs. Triplex technology still has disadvantages, 

particularly for in vivo applications. These disadvantages include TFO absorption by cells, 

affinity and specificity for the binding site, and in vivo stability. As a result, current re-

search is primarily focused on improving the efficacy of this approach of genome editing 

by chemical alterations to TFOs and improved cellular delivery mechanisms. Although 

there are still limits, triplex technology has played an important role in developing the 

science of targeted genome editing. While aptamers have been successfully integrated into 

pH-activatable systems and methods for altering aptamer binding capacities exist, the ap-

plications of designed pH-activatable aptamers remain largely unexplored. Aptamers that 

Figure 4. A rescue rope approach for investigating an artificial telomere. (a) The DNA in telomeres
adopts a triplex shape. The G-rich and C-rich strands are denoted by red and black, respectively.
(b) Using a rescue rope to probe a telomere with a free end. Structures having a closed end can be
repeatedly manipulated by conventional mechanical pulling experiments, such as a DNA hairpin
(left). A construction with an open end cannot rotate mechanically in circles before relaxing (middle).
A rescue-rope technique supported by dsDNA enables recurrent operations on a structure with a free
end, such as a telomere (right). (c). Designing a synthetic telomere. The identical configuration of
the artificial telomere in melting/reannealing rings is guaranteed by a random sequence at the blunt
upstream end. In a duplex and a three overhang, the TTAGGG motif count might change. With n = 5
and m = 2.

3. Conclusions

The research on oligonucleotides with triplex-forming ability (TFO) in biological
applications continues to profit tremendously from triplex technology. Even though the
processes processing TFO-directed triplex formations and related lesions are not completely
understood, it is known that proteins from numerous repair pathways are involved.

This repair method, as demonstrated by TFO targeted mutation generation, may be
prone to error. Because of developments in the manufacture of chemically modified TFOs,
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we now have a better understanding of the cellular DNA repair mechanism, where proteins
from distinct DNA repair pathways can work together or compete with one another in
processing DNA lesions caused by TFOs. Triplex technology still has disadvantages,
particularly for in vivo applications. These disadvantages include TFO absorption by
cells, affinity and specificity for the binding site, and in vivo stability. As a result, current
research is primarily focused on improving the efficacy of this approach of genome editing
by chemical alterations to TFOs and improved cellular delivery mechanisms. Although
there are still limits, triplex technology has played an important role in developing the
science of targeted genome editing. While aptamers have been successfully integrated
into pH-activatable systems and methods for altering aptamer binding capacities exist, the
applications of designed pH-activatable aptamers remain largely unexplored. Aptamers
that activate at weakly acidic pH might operate as an additional layer of control for the
drug-delivery system as an extension of the drug-delivery systems mentioned above.
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