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Abstract: The aim of the study was to prepare and characterize composite materials based on
thermoplastic starch (TPS)/deep eutectic solvent (DES). Potato starch was plasticized with ternary
DES: urea:glycerol:sorbitol and modified with the selected fillers: microcrystalline cellulose and
sodium montmorillonite. Films were prepared via twin-screw extrusion and thermocompression of
the extrudates. Then, the physicochemical properties of the TPS films were examined. The ternary
DES effectively plasticized the polysaccharide leading to a highly amorphous structure of the TPS
(confirmed via mechanical tests, DMTA and XRD analyses). An investigation of the behavior in water
(swelling and dissolution degree) and water vapor transmission rate of the films was determined.
The introduction of the two types of fillers resulted in higher tensile strength and better barrier
properties of the composite TPS films. However, montmorillonite addition exhibited a higher impact
than microcrystalline cellulose. Moreover, a cone calorimetry analysis of the TPS materials revealed
that they showed better fire-retardant properties than TPS plasticized with a conventional plasticizer
(glycerol).

Keywords: cone calorimetry; deep eutectic solvents; fillers; fire behavior; microcrystalline cellulose;
montmorillonite; thermoplastic starch

1. Introduction

Starch plasticizers are low molecular polar compounds that enable the polysaccharide
processing into more amorphous “plastic-like” materials called thermoplastic starch (TPS).
The TPS materials can be obtained e.g., via gelatinization of starch in aqueous media
casting and evaporation of water or via extrusion [1]. The modification via extrusion is
solventless (water, more often in form as starch moisture, acts as a co-plasticizer), does not
require water evaporation from casted materials and allows processing the material on a
large scale in a short time, which is crucial issue from the industrial point of view. Due
to native starch having a glass transition close to its degradation temperature, it needs a
special additive to facilitate its modification. Starch plasticizers disrupt H-bonding between
polysaccharide chains and form new ones with OH groups of anhydroglucosidic units
of the polymer. The most common starch plasticizers are glycerol (G) or other higher
polyalcohols (sorbitol, maltitol) [2–4], amides [5–7], sugars [8,9] or carboxylic acids (in a
smaller amount, they can also act as crosslinkers) [10]. In the last two decades, interest in
ionic liquids (ILs) as polysaccharide processing media rapidly increased [11–13]. Due to
the high cost of ILs and often non-green character, deep eutectic solvents are used as more
eco-friendly tailorable, alternative media not only for starch treatment (e.g., plasticizing,
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dissolution) [14–19] but also for polysaccharides processing such as their extraction [20,21],
biomass pretreatment (e.g., delignification, fractionization, and separation) [22–24]. DES
are mixtures that exhibited phase transition temperatures at much lower temperature that
their components. In comparison with ILs, DES are easy-to-prepare media from “greener”
(often from natural sources) and cheaper components obtained via mixing [15].

TPS materials are highly hydrophilic, thus some fillers are introduced into polymer
matrix not only to increase barrier properties and decrease moisture sensitivity but also to
facilitate mechanical properties or add some functionality (i.e., conductivity or antimicrobial
properties [25]). However, there are only few works that describe studies of mutual
interactions between starch, DES as a plasticizer and a filler [26–30].

In the previous work, we confirmed that DES based on urea, glycerol, and sorbitol
(UGS) effectively plasticizes starch via thermocompression [31]. In this work, ternary DES
UGS is used for starch processing via extrusion for the first time. Moreover, two selected
fillers were added: mineral sodium montmorillonite (M) and organic microcrystalline
cellulose (C) to investigate their influence on TPS/DES materials. Fillers were added in two
concentrations: 5 and 10 pph on dry starch. Mechanical tests, sorption tests, water vapor
transmission rate (WVTR) determination, and dynamical mechanical thermal analysis
(DMTA), and X-ray diffractometry (XRD) for TPS and TPS composites were performed. In
our previous work we studied the fire behavior of TPS plasticized with ternary DES based
on choline chloride:resorcinol:urea with lignin addition [30]. However, there are only few
works describing the fire behavior of TPS materials [32–34]. Due to M being known as a
fire retardant, a cone calorimetry analysis for TPS with clay addition was performed. The
results were compared to starch plasticized with a conventional plasticizer (glycerol).

2. Materials and Methods
2.1. Materials

Potato starch with a moisture content of 15.5 wt% (average molecular weight
4.37 × 107 g/mol; 29.7 wt% amylose content) was supplied by Nowamyl SA (Nowogard,
Poland). Urea—U (≥98%) and glycerol—G (99%) were purchased from Chempur (Poland)
and sorbitol—S (99%) from Alfa Aesar (Kandel, Germany). As fillers were used one se-
lected organic filler—microcrystalline cellulose—C (particle size 20µm purchased from
Sigma–Aldrich), and sodium montmorillonite—M (Cloisite Na+, Southern Clay Products,
Gonzales, TX, USA) as an inorganic filler.

2.2. Eutectic Mixtures Preparation

Eutectic mixtures were prepared as follows: selected components: U, G and S at molar
ratio 2:1:1, respectively, were placed in a glass reactor heated up to 95 ◦C and stirred until
the homogenous pellucid liquid was obtained; then the mixture was poured into a glass
vial and placed in a vacuum chamber (105 ◦C, 250 mbars, 1 h) to remove the remaining
moisture and then kept in sealed vials. The melting point of the DES UGS according to
DSC analysis is 59 ◦C [31].

2.3. Preparation of TPS Films via Extrusion

Preparation of TPS films was as follows: premixtures of starch, filler and DES were
processed after 1 day of storage. The systems were extruded with a laboratory twin-screw
co-rotational extruder with an L/D ratio of 40:1 and a screw diameter of 16 mm (PRISM
Eurolab Digital, Thermo Electron Co., Waltham, MA, USA). The temperature profile from
the feed throat to the nozzle was 80/100/110/120 × 7 ◦C, and the screw speed was
maintained at 150 rpm. After processing, extrudates were pelletized with a granulator
(Prism Varicut), obtaining ca. 3 mm pellets. After 14 days of storage at ambient conditions
in sealed PE bags, pellets were thermocompressed at 120 ◦C under 12 tons (153 bars), cooled
down under pressure to ca. 85 ◦C and stored in a climate chamber (25 ◦C, RH 50%) for 48 h
before testing.
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2.4. Mechanical Tests

Mechanical tests for TPS films were performed using Instron 5982 (Instron, Norwood,
MA, USA, load cell 1 kN) according to ASTM D822-02 standard. The films (thickness
0.50–0.65 mm) were cut into 10 mm wide, 120 mm long stripes. The initial grip separation
was 50 mm, and the crosshead speed was set to 10 mm/min. At least eight replicated
samples for each system were tested and the mechanical parameters (EB—elongation at
break, TS—tensile strength and YM—Young’s modulus) were calculated with the Bluehill
3 software.

2.5. DMTA Measurements

The measurements were carried out with a film tension clamp at a frequency of 1 Hz,
a heating rate of 3 ◦C/min, and a temperature range from −90 to 140 ◦C using Dynamic
Mechanical Analyzer Q800 (TA Instruments, New Castle, DE, USA). The analysis was
conducted twice for each material.

2.6. Microstructure Analysis

The microstructure of composites was examined using a scanning electron microscope
TM3000 (Hitachi, Tokyo, Japan), equipped with a backscattered electron detector (BSE). The
samples were fixed to carbon tape and coated with gold using POLARON SC7640 (Quorum
Technologies Ltd., Newhaven, UK). Images were taken with an accelerating voltage of
5–15 kV. The magnification of 1000× was used.

2.7. X-ray Diffraction Analysis of TPS Films

The crystallinity of TPS films was analyzed using the XRD technique (X’pert Pro,
PANalytical, Almelo, The Netherland, operated at the CuK(alfa) wavelength 1.54 Å). The
d-spacing was calculated from the Braggs formula (2 d sinθ = n λ, where λ = 0.154 nm)
being the order of reflection, θ the angle of refraction).

2.8. Moisture Sorption, Water Sorption and Swelling Degrees

Samples (three samples for each test) with dimensions of 20 mm × 20 mm were
prepared for moisture sorption and swelling tests. The test was performed as in previous
work [35]. Samples were placed in a vacuum dryer (250 mbars) at 65 ◦C/24 h. Mass of
dried samples, as well as stored in a climate chamber and kept at 25 ◦C and 75% RH (for
moisture sorption evaluation) or immersed in distilled water for 24 h (for swelling behavior
investigation), were determined.

2.9. Forced Flaming Fire Behavior

Burning behavior was evaluated by cone calorimeter examinations conducted on
Fire Testing Technology apparatus (East Grinstead, UK,) following the ISO 5660-1 and
ISO 5660-2 procedures. The horizontally oriented samples were irradiated at a heat flux of
35 kW/m2, and spark ignition was employed to ignite the pyrolysis products. An optical
system with a silicon photodiode and a helium-neon laser provided a continuous survey of
smoke. The burning process during tests was photographed using a digital camera, EOS
400 D, from Canon Inc. (Tokyo, Japan).

2.10. Statistical Analysis

Statistical analysis of the mechanical test data for extruded samples was subjected
to one-way analysis of variance, and the significant difference was determined by the
significance difference test (t-Student’s test).

3. Results
3.1. Mechanical Test Results

Table 1 lists mechanical tensile test results for extruded TPS films. It can be seen from
the collected data that nonionic ternary DES based on urea, glycerol, and sorbitol led to
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better mechanical properties than choline chloride/U DES [27] or starch plasticized only
with glycerol (TPS-G) [36]. The introduction of S into plasticizing mixtures can increase the
tensile strength of the TPS films due to a higher amount of H-bonds formation. TS value is
similar to TPS/DES obtained via only thermocompression (5.3 MPa). However, EB is about
50% higher [31]. It can be caused by better distribution of plasticizer in the polymer matrix
and more untangled polymer chains formation during extrusion. Comparing TPS film
with the composites, both additives affected mechanical properties leading to increased
TS and YM and decreased EB. However, adding 5 pph of the filler did not affect the TS
significantly (p < 0.05). The higher content of the filler caused a higher TS value. In turn,
10 pph of M addition led to slightly higher TS than 10 pph of C.

Table 1. Mechanical test results.

Sample
Tensile

Strength
[MPa]

Elongation at
Break [%]

Young’s
Modulus [MPa]

Thickness
[mm]

TPS 4.6 (±0.26) d 148 (±11.6) a 112 (±14.3) d 0.61 (±0.04) a

TPS/5M 4.7 (±0.23) d 122 (±7.2) b 114 (±12.4) d 0.55 (±0.00) b

TPS/10M 6.2 (±0.30) a 99 (±14.0) d 232 (±15.2) a 0.52 (±0.04) d

TPS/5C 5.5 (±0.33) c 124 (±10.0) b 192 (±9.9) c 0.57 (±0.04) c

TPS/10C 5.9 (±0.32) b 116 (±6.8) c 211 (±16.4) b 0.61 (±0.04) a

a–d—averages marked with the same letters do not differ significantly from each other for p < 0.05.

Based on the literature results for TPS composites, the increase in tensile strength
depends on the plasticizer as well as the type of filler. For example, for TPS composites
plasticized with glycerol where unmodified M was added, an increase in TS was from 6.0
to 7.6 MPa for 10% of M addition [37] or from 6.9 to 7.3 MPa for 8% addition of M [38]
but when M is activated with plasticizer the increase in TS is more pronounced, due to
intercalation of M platelets with the modifier [7,39,40]. Interestingly, adding the filler to the
TPS matrix at high content (5 and 10 pph) did not affect it. A more discernible influence
of the additive on TPS/DES was registered for our previous work, where TPS/ternary
DES (choline chloride:resorcinol:urea) was prepared with dissolved lignin presence [30]. It
could be caused by better distribution of lignin that was in dissolved form.

3.2. Dynamical Mechanical Thermal Analysis (DMTA) Results

In this work, DMTA is represented with tan delta and storage modulus curves pre-
sented in Figure 1. The TPS films revealed two main relaxation regions. The first with
maxima at a range from −18 to −12 ◦C is related to secondary β-relaxation (Tβ) of the do-
main rich in plasticizer’s molecules, and the second α-relaxation (Tα) with higher intensity
(maxima at range 36–63 ◦C) and is assigned to a polysaccharide-rich domain. Similar results
were also observed for TPS/UGS obtained via thermocompression [31]. The β-relaxation
for starch plasticized with ternary DES occurred at a much higher temperature than glyc-
erol (−52 ◦C) and even quite higher than DES based on sorbitol and choline chloride
(−21 ◦C) [41], indicating that sorbitol with urea and glycerol formed stronger H-bonding
than with choline chloride. It can result from U presence due to the amine group can form
stronger hydrogen bonds than choline salt. Films with the fillers exhibited much higher
temperatures of α-relaxations. It is caused by a more rigid structure with restricted mobility
of polymer chains with the fillers [2].

In the case of E’ curves, there is a rapid drop of the parameter at ca. 20 ◦C for TPS
without additive and at a range of 20–28 ◦C depending on the filler’s type and content. This
E’ drop is assigned to a region of glass transition of the TPS. In the case of composite films
E’ curve at higher temperatures is under TPS without filler. This behavior can be caused
by clay’s platelets that slip between polymer/plasticizer matrix [27]. Moreover, applied
plasticizer as a eutectic mixture may facilitate this behavior. Low E’ values of composite
films at higher temperatures indicated that filler presence does not affect the processing of
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TPS/DES. The impact of the solid fillers presented in this work is more noticeable than for
TPS/DES with lignin addition where the additive was introduced into the polymer matrix
in dissolved form in the DES [30].
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Figure 1. Storage modulus and Tan δ curves of TPS films.

3.3. Behavior of TPS Films in Moisture, Water, and Determination WVTR

The swelling degrees for extruded TPS films are in the range of 71.1–87.4, and these
values are lower than TPS/UGS obtained via thermocompression (221%) (Table 2) [31].
Introducing the fillers into the polysaccharide matrix lowered swelling and dissolution in
water, moisture sorption as well as WVTR values. The higher the filler content, the lower
values of the parameters. Comparing the type of fillers, the aluminosilicate addition led to
better barrier properties than microcrystalline cellulose.

Table 2. Swelling and dissolution degrees of TPS films distilled water, moisture adsorption degree
and WVTR at 75% for 24 h.

Sample
Swelling
Degree

[%]

Dissolution
Degree

[%]

Moisture
Sorption Degree

at RH 75%
[%]

WVTRRH75%
[g/m2·24 h]

TPS 87.4 (±0.9) 22.5 (±0.07) 24.0 (±0.07) 381 (±21.0)
TPS/M5 84.1 (±0.8) 21.6 (±1.02) 24.0 (±0.04) 352 (±8.2)

TPS/M10 71.1 (±0.0) 19.9 (±1.21) 23.6 (±0.40) 345 (±0.3)
TPS/C5 79.2 (±1.1) 20.9 (±1.15) 23.5 (±0.14) 369 (±3.2)
TPS/C10 77.7 (±9.9) 20.4 (±0.07) 23.0 (±0.08) 358 (±4.2)

3.4. SEM Results

The morphology of the composites with the highest fillers amount is demonstrated in
Figure 2. As can be seen, the material appearance is relatively smooth and homogenous,
indicating a highly amorphous structure without swollen starch granules. Observation
showed also relatively uniformly distributed particles; however, agglomerates, especially in
the case of inorganic filler, were observed. Moreover, C and M particles significantly differed
in size and shape. It can be noticed, especially for C, that the filler is well embedded in the
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matrix. In turn, a lack of pore at the interface between fillers and polysaccharide matrix,
indicating good adhesion. This may be related to the improvement in the mechanical
properties of composite materials.
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Figure 2. SEM micrographs for: (A)—TPS/10M and (B)—TPS/10C), filler particles are marked in
red circles.

3.5. X-ray Diffractometry Results

Figure 3 shows diffractograms of native granular starch, The TPS film without filler,
the pristine clay and the composite TPS films. The diffractogram of native potato starch
granules reveals peaks at 5.4, 17.1, 19.5, 22.5, 24.0, and 26.0◦ that are characteristic of B-type
semi-crystallinity of the polysaccharide. After extrusion with UGS, starch underwent
plasticization effectively, which is confirmed with a flat diffractogram indicating the highly
amorphous structure of TPS. For pristine M peak with high intensity at 7.0◦ is assigned to
the interlayer spacing of clay platelets (d001 1.26 nm). It can be seen that for the composite
materials, there is a shift towards a lower contact value at 4.9◦ (1.80 nm) which indicates the
intercalation of clay platelets in the polymeric matrix. This can result from better mechanical
properties for TPS with M than with C (Table 1). The increase of the clay platelets’ distance
can be caused by shearing forces during extrusion, facilitating the intercalation of processing
starch with the presence of plasticizing agent causing swelling and partial untangling of
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polysaccharide chains between the filler platelets. For composite TPS, peaks appeared at
9.8, 14.9, 19.7, 24.8, and 30.1◦, assigned to V-type crystallinity. The filler presence can induce
the formation of post-processing crystallinity in small helical regions of starch.
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composite TPS films with 5 pph (TPS/5M) and 10 pph of M (TPS/10M).

3.6. Cone Calorimetry Results

Cone calorimetry is widely employed to assess the fire hazards of polymeric materials
due to its capability to simulate real fire hazards [41]. According to the literature alumi-
nosilicates are known as fillers with good fire retardant properties; therefore, the sample
with montmorillonite addition (TPS/10M) was chosen for the investigation. Thermoplastic
starch modified with a conventional plasticizer (TPS-G) was included in the test for com-
parison. The present study continues our work on the investigation of the fire retardant of
thermoplastic starch with novel plasticizers based on DESs and its composites [30]. Figure 4
shows the heat release rate (HRR) and total smoke release (TSR) curves of TPS plasticized
with ternary DES: UGS with 10 pph of sodium montmorillonite and TPS-G, while the
detailed data are listed in Table 3.

Table 3. The cone calorimeter results of TPS/10M and TPS-G.

Sample TTI
[s]

PHRR
[kW/m2]

MARHE
[kW/m2]

PHRR/
t PHRR,

[kW/m2s1]

THR
[MJ/m2] EHC [MJ/kg] MLR

[g/(s·m2)]

TPS/10M 79 132 71 1.6 44 12 5.3
TPS-G 54 317 167 4.9 60 15 9.2
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Figure 4. Representative curves of: (A)—heat release rate, (B)—total smoke release of investigated
TPS materials.

During the cone calorimeter test, by oxygen consumption, the heat release rate (HRR)
is specified as a crucial parameter to evaluate the intensity of fires [42]. As shown in
Figure 4A, TPS-G exhibited a time to ignition (TTI) of 54 s, and a peak heat release rate
(PHRR) of 317 kW/m2. The HRR curve presents a peak at the beginning of the burning
and then gradually drops, which is characteristic of thick and able-to-char samples. The
char-forming ability of thermoplastic starch, as one of the flame retardant mechanisms,
was described in our previous work [30]. In turn, the curve of TPS/10M consists of
two peaks at the beginning and end of burning, from which the first one yielded the PHRR.
This curve course is typical for thick charring samples with additional peaks at the end of
burning, and the second peak may be induced by cracking char or a growth in the effective
pyrolysis [42]. Importantly, the PHRR of TPS/10M is much smaller compared to TPS-G
and equal to 132 kW/m2, while TTI is as much as 79 s. Since the maximum average rate
of heat emission (MARHE) is extrapolated from the maximum HRR, the value obtained
for TPS/10M was also lower (reduction by 57%). The MARHE parameter is one of the
essential indicators enabling flame spread evaluation. Another parameter used to assess
the influence of modification on the fire growth rate is PHRR/t PHRR [43], and the value
obtained for the TPS/10M was three times lower compared to TPS-G. The delayed TTI, as
well as reduced PHRR, MARHE and PHRR/t PHRR, demonstrate the improvement in the
flame retardancy performance of TPS/10M.

Total heat release (THR) corresponds to the total heat output up to the defined point,
which in this case, suits about 120 s after flaming burning has been completed. THR
demonstrated a similar trend to PHRR, reaching 44 MJ/m2 and 60 MJ/m2 for TPS/10M and
TPS-G, respectively. The lower THR observed for TPS/10M may follow from incomplete
combustion caused by the formation of more char or reduced combustion efficiency [44].
Since the mass loss rate (MLR) and the effective heat of combustion (EHC) were also
lower, both activities are assumable. Some charring polymers, which consist of carbon
and heteroatoms, may reduce the EHC via accompanying fuel dilution [45]. The polymer
containing a significant amount of carbon was a resource for the formation of char, while the
sugar units degraded to non-flammable volatiles (H2O, CO2), favoring the development of
its cellular structure. This effect was also supported by the presence of nitrogen from urea.
The nitrogen compounds can promote the generation of a layer of gaseous products, which
protects the material from the heat of the flaming zone, and volatile products can also act as
radical interceptors [46]. Furthermore, nitrogen compounds form acids, which can catalyze
the dehydration reaction of organic material, leading to char formation. The beneficial
effect of montmorillonite on developing a durable and effective barrier preventing the
exchange of mass and energy has been described in the literature [47,48]. Moreover, the
influence of the lowered polymer share, as one of the main combustible components, in
favor of an inorganic filler with higher thermal stability could not be excluded. Both
carbonaceous char forming during the burning and inert residue from inorganic fillers
reduce fuel release and, consequently, THR [42]. Compared to calcium montmorillonite,
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sodium montmorillonite used in the study is characterized by a greater ability to absorb
water, which may be released during burning [49].

Excluding above mentioned key parameters, materials are assessed by the smoke
generated, which can dramatically reduce the visibility during a fire, thus making it
more difficult to escape. Smoke mainly consists of unstable carbon particles and cyclic
compounds [41].

Total smoke release (TSR) is a crucial parameter to evaluate the smoke emission
during the cone calorimetry test. Figure 4B demonstrates that the replacement of part of
the glycerol by urea and sorbitol caused a decrease in TSR. In the case of ternary plasticizer
UGS, the maximum value of 46 m2/m2 was reached after several dozen seconds from the
start of the test and remained at this level until the end of the measurement, while for G, the
TSR was increasing, reaching a maximum of 261 m2/m2 in 470 s. Such reduction is mainly
attributed to the capability of bonding unstable carbon particles in residue, as evidenced
by the increased char yield, preventing them from escaping to the flame zone, as well as
diluting by non-combustible gases. The photographic report made for TPS/10M during
the cone calorimetry test, presented in Figure 5, demonstrates the creation of char on the
surface of the polymer. A horizontally oriented sample subjected to the stream of heat
flux underwent thermal decomposition and ignition. The employed modification resulted
in forming a char layer, which was swelled and congealed, while growth char caused a
reduction in the burning process intensity. At the end of the test, an increase in intensity,
caused by a growth in the pyrolysis products emission due to a slight displacement of the
sample, was observed. The photographs of the residue present a few centimetres high
swollen structure and are consistent with the conducted analysis.
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4. Conclusions

In the presented work mutual interactions between starch matrix, ternary deep eutectic
solvent made with urea, glycerol and sorbitol (at molar ratio 2:1:1) used as plasticizer and
two types of fillers: microcrystalline cellulose (as organic filler) and sodium montmoril-
lonite (as inorganic filler) were investigated. DES effectively plasticized the polysaccharide
leading to its highly amorphous structure. The introduction of the fillers improved mechan-
ical properties, and decreased sorption degrees as well as WVTR values. As DMTA results
indicated, the addition of the fillers did not affect the processability of the composites.
XRD analysis revealed that the d-spacing of MMT-Na platelets was slightly enlarged in the
polymer matrix after extrusion. SEM analysis confirmed that fillers were well embedded in
TPS matrix. The cone calorimetry analysis of the TPS materials revealed that composite
material plasticized with DES with the clay presence showed better fire retardant properties
than TPS plasticized with a conventional plasticizer (glycerol).
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