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Abstract: In the last few decades, several natural bioactive agents have been widely utilized in the
treatment and prevention of many diseases owing to their unique and versatile therapeutic effects,
including antioxidant, anti-inflammatory, anticancer, and neuroprotective action. However, their
poor aqueous solubility, poor bioavailability, low GIT stability, extensive metabolism as well as short
duration of action are the most shortfalls hampering their biomedical/pharmaceutical applications.
Different drug delivery platforms have developed in this regard, and a captivating tool of this has
been the fabrication of nanocarriers. In particular, polymeric nanoparticles were reported to offer
proficient delivery of various natural bioactive agents with good entrapment potential and stability,
an efficiently controlled release, improved bioavailability, and fascinating therapeutic efficacy. In
addition, surface decoration and polymer functionalization have opened the door to improving the
characteristics of polymeric nanoparticles and alleviating the reported toxicity. Herein, a review of
the state of knowledge on polymeric nanoparticles loaded with natural bioactive agents is presented.
The review focuses on frequently used polymeric materials and their corresponding methods of
fabrication, the needs of such systems for natural bioactive agents, polymeric nanoparticles loaded
with natural bioactive agents in the literature, and the potential role of polymer functionalization,
hybrid systems, and stimuli-responsive systems in overcoming most of the system drawbacks. This
exploration may offer a thorough idea of viewing the polymeric nanoparticles as a potential candidate
for the delivery of natural bioactive agents as well as the challenges and the combating tools used to
overcome any hurdles.

Keywords: polymeric nanoparticles; natural bioactive agents; nanocarriers; drug delivery

1. Introduction

Natural products, such as plants, have been considered one of the major treatments
for current diseases. Phytochemicals are substances obtained from herbal plants and are
commonly used for non-nutritive benefits to the plants, such as protection from external
dangers such as pollution, pressure, deficiency, UV, and microbial threats [1]. Out-of-
date familiarity and updated findings verify comparable protective effects in humans. In
particular, different phytochemicals have been well established for their antioxidants, anti-
inflammatories (such as polyphenols, flavonoids, carotenoids, and allyl sulfide-containing
compounds), hormones (such as isoflavones of soy), enzyme-regulating materials (protease
inhibitors and indole-containing compounds), anti-infective agents (proanthocyanidins),
and DNA replication modulators (saponins and capsaicin). Hence, attention has been paid
to phytochemicals, particularly in pharmaceutical technology, to fabricate such compounds
in easily administered and effective formulations.
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However, phytochemicals suffer from several drawbacks that limit their applications
in crude forms or at least lead to unambitious effects. These drawbacks include hydropho-
bicity, poor stability, reduced absorption and bioavailability, extensive metabolism, and fast
excretion, leading to issued therapeutic effects, which can probably be overwhelmed by
using nanotechnology [2].

With the alarming rise of illnesses, appropriate drug delivery has received much atten-
tion for treating and controlling diseases. Nanocarriers have been considered promising
platforms for drug delivery that can enhance their therapeutic effect and overcome hurdles.
They have offered an improved solubility and bioavailability of sparingly soluble drugs,
enhanced preventive and pharmacological effects, and reduced adverse effects. They in-
clude nanospheres, nanocapsules, nanoemulsions, nanoliposomes, and nanoniosomes [3].
Polymeric nanocarriers (Figure 1) are manifested by their distinctive physicochemical
structures, including solid polymeric nanoparticles, polymeric micelle, polymer conju-
gates, dendrimers, polymersomes, polyplexes, and lipomers [4]. In the last few decades,
polymeric nanoparticles have received much attention and held much importance in the
horizon of drug delivery. They were recognized as colloidal systems with particle sizes
ranging from 1–1000 nm [5].
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They are fabricated by natural, synthetic, or semisynthetic polymers. Polymeric
nanocarriers synthesized from biodegradable and biocompatible polymers offer motivating
preferences for controlled and targeted drug delivery [5–7]. Natural polymers are a concern
due to their lower toxicity when compared to synthetic polymers [8], as natural polymers
are biocompatible, biodegradable, safe, greatly stable, economical, and easily handled. In
general, polymeric nanoparticles possess several merits (Figure 2), such as encapsulation of
differently characterized actives, protection of the encapsulated drugs, and the possibility
of targeting.

In this work, we have attempted to present a comprehensive review of utilizing
polymeric nanoparticulate systems as promising carriers for natural bioactive agents with
modern advances and persistent challenges for their effective delivery. So, this paper
reviewed the formulation of polymeric nanoparticles loaded with natural bioactive agents
used to treat and control different diseases. This review does not include the details of
the fabrication techniques. However, it offers the principal approach to delivering natural
bioactive agents via polymeric nanoparticles. To the best of our knowledge, this review
addresses this essential topic, and therefore, it will assist the researchers in appreciating
and formulating promising polymeric-based nanoparticles for loading natural bioactive
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agents by realizing the merits and challenges of the system, which could eventually be
utilized in industrial development. Hence, the following aspects were considered: (a) an
overview of various components of polymeric nanoparticles and methods for fabrication,
(b) polymeric nanoparticles loaded with natural bioactive agents in the literature, and
(c) the potential role of surface decoration and polymer functionalization in overcoming
most of the drawbacks of these systems.
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2. Components and Formulation Attributes

Principally, polymeric nanoparticles are simply composed of polymer(s), surface active
agent(s), and aqueous phase. Polymers are the backbone of polymeric nanoparticles. Gener-
ally, they are made up of large repeating units designated as monomers. Currently, utilizing
nanosystems for drug delivery has been fortified by the improvement/modification of
actives’ properties, such as solubility, targetability, release pattern t0.5, pharmacokinetics,
and pharmacodynamics. Accordingly, polymers are considered the cornerstone when
formulating polymeric nanoparticles. Hence, it is critical for the researcher to be aware of
the polymer properties, such as biocompatibility, biodegradability, stability, drug–polymer
interaction, transition temperature, permeability, and safety, before starting formulation. In
order to modulate the characteristics (such as release behavior, targetability, and biocom-
patibility) of the generated system, the functionalization of the polymer is the point of view.
Changes in the polymer can be achieved by chemical modification, surface addition of
targeting moiety, and incorporation of lipids to achieve the objectives of the researchers [9].

However, polymers are basically categorized into two classes according to their origin
source; natural polymers and synthetic polymers. According to the process of development
and components, the structural organization varies (Figure 3). In the case of nanocapsules,
active agents might be encapsulated in the core or adsorbed at the polymeric surface,
while in the case of nanospheres, active agents might be encapsulated in the matrix of the
nanosphere or the surface may be adsorbed at the polymeric surface [10].
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2.1. Natural Polymers

In the literature, there are many natural polymers frequently utilized for the develop-
ment of polymeric nanoparticles, such as chitosan, alginate, gelatin, and albumin (Table 2).

Table 1. Examples of recent studies utilizing natural polymer-based polymeric nanoparticles for
loading natural bioactive agents.

Polymeric
Composition

Loaded Natural
Bioactive Agent Research Outcomes Reference

N
at

ur
al

po
ly

m
er

s

Chitosan/chitosan
derivatives

Quercetin

• Efficient uptake by HaCaT cells.
• Improvement of percutaneous absorption and skin retention.
• Enhancement of anti-UVB effect.

[11]

Effective antimicrobial and antiadhesion effects in multidrug-resistant
isolates (E. coli and S. aureus). [12]

Significant cytotoxic effect against human breast tumor (MCF-7) and
human lung tumor (A549). [13]

Improvement of wound healing by modulation of cytokines and
growth factors involved in inflammatory and proliferative phases of
wound healing.

[14]

Curcumin

Improved antimicrobial activities against C. glabrata and A. niger. [15]

Improved anticancer activity against Vero cell line. [16]

Improved neuroprotective effect of curcumin and curcumin-loaded
chitosan nanoparticles against stress-induced neurobehavioral and
neurochemical deficits and protection against stress-associated
gastric ulcer.

[17]

• Improved mucoadhesion, cellular uptake, and cytotoxicity
against Caco-2 cells.

• Improved antioxidant and anti-inflammatory effects in activated
RAW264.7 cells.

[18]

Higher suppression of hepatocellular carcinoma growth in murine
xenograft models and inhibited tumor angiogenesis when compared
to free curcumin.

[19]
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Table 1. Cont.

Polymeric
Composition

Loaded Natural
Bioactive Agent Research Outcomes Reference

N
at

ur
al

po
ly

m
er

s

Chitosan/chitosan
derivatives

Resveratrol

Larger AUC0-6 (6.44-fold) and higher mean residence time in plasma
(2.458-fold) of the optimized formulation when compared to of
resveratrol solution.

[20]

Higher solubility and stability of resveratrol-loaded nanoparticles. [21]

• Negligible in vitro release of resveratrol in simulated gastric.
• Sustained release in simulated intestinal conditions.
• Higher relative bioavailability of resveratrol.

[22]

Improved anticancer activity against HepG2 cells. [23]

• Significant improvement in the in vivo permeation of resveratrol.
• Improvement in the human stratum corneum penetration of

resveratrol after topical application.
[24]

Silymarin

• Significantly improved depressive-like behaviors.
• Significantly reduced levels of malondialdehyde (MDA) and

expression of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α).
• Significant increase in the activities of superoxide dismutase

(SOD), catalase (CAT), glutathione peroxidase, glutathione
reductase, and glutathione (GSH) levels in I/R brain.

[25]

Saponin Nanosaponin showed higher uptake and specific toxicity on PC3 and
KB cell lines. [26]

Paclitaxel Safe and High loading efficiency and encapsulation efficiency. [27]

Essential oils

Improved antifungal activity against Aspergillus versicolor, A. niger,
and Fusarium oxysporum. [28]

• Improved antioxidant activity
• Improved antibacterial activity against L. monocytogenes and S. aureus. [29]

Alginate

Quercetin
Effective down-regulating the inflammation-related gene expression
of tumor necrosis factor-α, interleukin-6, inducible nitric oxide
synthase, and monocyte chemotactic protein-1.

[30]

Curcumin

• Prolonged release of curcumin.
• Enhanced collagenesis and increased number of fibroblasts.
• Improved wound healing efficacy.

[31]

• Amelioration of colonic inflammation and tissue damage by
inhibiting the TLR4 expression in colonic epithelial cells.

• Reducing the transcription and expression of the
pro-inflammation cytokines downstream.

[32]

Gelatin Resveratrol
• Greater ROS generation, DNA damage, and apoptotic incidence.
• Higher bioavailability and a longer half-life than free resveratrol. [33]

High loading efficiency and superior efficacy in NCI-H460 cells. [34]

Albumin

Silymarin

• Enhancement in the viability of hepatocytes in vitro against both
APAP and LPS/D-GalN-induced hepatocyte damage.

• Improvement of antioxidant effects against intracellular
oxidative stress.

[35]

Curcumin Enhanced cytotoxicity on triple-negative human breast cancer cells
(MDA-MB-231) compared to free curcumin. [36]

Resveratrol Potent activity against oxidative stress-based diseases. [37]

Paclitaxel/
tresveratrol

• High encapsulation efficiency.
• Sustained drug release profiles. [38]
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2.1.1. Chitosan

Chitosan (Figure 4) is a natural polymer obtained by the deacetylation of chitin. It is
obtained from different natural sources such as marines, insects, fungi, or animals. In the
last few decades, it has gained attention as a drug delivery platform due to its excellent
biocompatibility and biodegradability [39]. Chitosan is not soluble in neutral aqueous
solutions, but it can be inherently dissolved in diluted acidic solutions due to the protona-
tion of free amine groups. Consequently, it is soluble in diluted acetic, formic, citric, and
other acids [40]. On the other hand, amine groups also affect chitosan applications in the
pharmaceutical field as they particularly influence mucoadhesion, permeation enhance-
ment, transfection, and in situ gelation of chitosan [39,41]. In general, chitosan has different
promising biomedical properties, for instance, as a penetration enhancer in both paracel-
lular (by opening the tight junctions) and transcellular transport and as a mucoadhesive,
with additional wound-healing activities. Several methods are utilized to prepare chitosan
nanoparticles, such as ionic gelation, microemulsion, and emulsification solvent diffusion.
The main advantage of the reported methods is that they use much smaller amounts of
organic solvent. The most popular techniques are mentioned below:
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Ionic Gelation

Ionic gelation is a simple and widespread technique used for nanoparticle preparation.
In this method, chitosan solution (polycationic) is prepared by dissolving in a diluted
acidic solution, such as acetic acid, and thoroughly mixing (under mechanical stirring)
with a polyanionic agent, such as tripolyphosphate, as a cross-linking agent leading to
complexation between positive and negative charged ions and the formation of rounded
shape particles. This technique is favored due to the lack of organic solvent and minimal
opportunity to change the chemistry of the entrapped drug. However, this method is
characterized by its poor stability in acidic environments and uneasiness in encapsulating
high molecular weight actives [42,43].

Microemulsion

Herein, chitosan solution and glutaraldehyde are first mixed. Then, the mixture is
added to a surfactant in an organic solvent. The resultant mixture is incessantly stirred
until cross-linking is accomplished. After that, the removal of organic solvent can be



Polymers 2023, 15, 1123 7 of 34

carried out by evaporation. If desirable, the removal of extra surfactant can be carried
out by centrifugation after adding calcium chloride to precipitate the excess surfactant.
The preparation of nanoparticles by this method leads to the production of small particle
sizes [44]. On the other hand, the incorporation of glutaraldehyde and organic solvent, as
well as a longer period of processing, are the main drawbacks of this method [42].

Emulsification Solvent Diffusion

In this method, the preparation of oil in water emulsion is accomplished by mixing
the drug (dissolved in organic solvent) solution stabilizer containing chitosan solution with
continuous stirring. The resultant dispersion is further homogenized by high-pressure
homogenization [45,46]. This method is favored for hydrophobic drugs as it results in high
encapsulation efficiency. On the other hand, the incorporation of organic solvents and high
shear forces are the main drawbacks of this method.

Coprecipitation

In this method, acidic chitosan solution is added to a high pH 8.5–9.0 solution
(NH4OH), leading to the coprecipitation of nanoparticles. This method results in the
production of highly homogenous small-sized nanoparticles with high entrapment effi-
ciency [47,48].

2.1.2. Alginate

Alginate is an anionic water-soluble natural polymer. Chemically (Figure 4), it is
1–4 linked α-L-guluronic acid (G) and β-D-mannuronic acid (M). Owing to its biodegrad-
ability, biocompatibility, and mucoadhesion properties, it has gained attention as a drug
delivery platform in the pharmaceutical field [49,50]. Mucoadhesive properties are prin-
cipally attributed to the formation of strong hydrogen bonds with mucin glycoproteins
via carboxyl hydroxyl interactions [51]. Generally, alginate nanoparticles are prepared by
several techniques, such as ionic gelation, emulsion, covalent cross-linking, emulsification
solvent displacement, and emulsion-solvent evaporation. The ionic gelation method is a
broadly used technique to prepare alginate nanoparticles [52]. Ionic gelation of alginate
was carried out due to its affinity towards multivalent cations such as Ca2+. This affinity
leads to the formation of ionically or physically cross-linked alginate [50,53].

2.1.3. Gelatin

Gelatin is a protein obtained from collagen by conversion into an unoriented protein by
the method of partial hydrolysis [54]. According to the pH used during collage hydrolysis,
gelation is classified into two types: gelatin A (isoelectric point of 9), where collagen is
hydrolyzed at acidic pH, and gelatin B (isoelectric point of 5), where collagen is hydrolyzed
at alkaline pH. Because of its water solubility, it may be necessary to cross-link gelatin
during the development of nanoparticles [55,56]. They are characterized by controlling the
release of loaded drugs [57].

2.1.4. Albumin

Albumin is the most popular plasma protein. Its molecular weight is about 66,000 Da [51].
It is a biodegradable, nontoxic, and non-immunogenic protein. Therefore, it presents a
potential carrier for drug delivery [49]. More precisely, it is considered a promising platform
for cancer drug delivery as it can be preferentially entered into cancer cells (by endocytosis)
to provide them with nitrogen and energy, allowing the loaded active to be delivered into
cancers [58,59]. Nanoparticles prepared from albumin are generally stimuli-sensitive and
highly bioactive substances [60].

2.2. Synthetic Polymers

In the literature, there are many synthetic polymers frequently utilized for the devel-
opment of polymeric nanoparticles, such as polylactic acid, poly (lactide co-glycolides),
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polycaprolactone, and poly(amido amine) (Table 2). Different methods were used to prepare
such types of nanoparticles (Figure 5).

Table 2. Examples of recent studies utilizing synthetic polymer-based polymeric nanoparticles for
loading natural bioactive agents.

Polymeric
Composition

Loaded Natural
Bioactive Agent Research Outcomes Reference

Sy
nt

he
ti

c
po

ly
m

er
s

PLA

Paclitaxel

• Suppression of the tumor growth in mice.
• Better tumor suppression trend with conjugated resveratrol

nanoparticles with no side effects.
[61]

Significant therapeutic improvement in arthritis proved by measuring
rats’ knee diameter as well as the tumor necrosis factor-alpha (TNF-α). [62]

Effective targeting of folate-decorated paclitaxel-loaded copolymer
nanoparticles on cancer cells both in vitro and in vivo. [63]

Improved anti-tumoral activity of paclitaxel when compared to the
commercial paclitaxel formulation Taxol®. [64]

• Enhanced cellular uptake in both human umbilical vein
endothelial cells and rat C6 glioma cells.

• Increased cytotoxicity and improved penetration and growth
inhibition in avascular C6 glioma spheroids.

[65]

Quercetin

Enhanced anticancer efficacy in terms of its sustained release kinetics
revealing novel vehicle for the treatment of cancer. [66]

• Initial burst release followed by slow and sustained release.
• High antioxidant activity. [67]

Good antibacterial effects against Staphylococcus aureus (S. aureus),
Escherichia coli (E. coli), and Klebsiella pneumoniae (K. pneumoniae). [68]

Curcumin
Amelioration of the negative changes in diabetes with a more
pronounced treated effect than free curcumin. [69]

Cytocompatibility and suppressed production of TNF-α. [70]

Carvacrol Enhanced in vitro antimicrobial activity against Escherichia coli,
Listeria monocytogenes, Salmonella enterica, and Staphylococcus aureus. [71]

PLGA

Grape extracts Sustained release with good stability in GIT fluids. [72]

Curcumin and
docetaxel

• Significant increase in cytotoxic activity.
• Significantly improved brain penetration. [73]

Curcumin

Higher percentage of curcumin internalization in cells, leading to
enhanced cancer cell killing with targeted nanoparticles. [74]

• Increased curcumin means half-life and high Cmax.
• Improved oral bioavailability. [75]

Quercetin

Production of thermosensitive gel as cost-effective option for burn
wound therapy. [76]

Improved anti-oxidant activity. [77]

Significant blockage of UVB irradiation-induced COX-2 up-expression
and NF-kB activation in Hacat cell line. [78]

Inhibition of the neurotoxicity of Zn2+-Aβ42 system and
enhancement of the viability of neuron cells.

[79]

Plant extract

• Decreased level in the inflammation-related gene expression and
DNA fragmentation level.

• High survival rate of post-damaged corneal epithelial cells.
• Enhanced corneal wound healing and decreased inflammation.

[80]
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Table 2. Cont.

Polymeric
Composition

Loaded Natural
Bioactive Agent Research Outcomes Reference

Sy
nt

he
ti

c
po

ly
m

er
s

PCL

Essential oil

Powerful antibacterial and antifungal activities that may be utilized as
dermal patches for acne treatment. [81]

• Prompt antioxidant activity.
• Inhibition of Staphylococcus aureus and Escherichia coli growth. [82]

Curcumin

• Increase in the cell population of Sub G1 and apoptosis.
• Decreased tumor cell proliferation and angiogenesis. [83]

• Enhanced antibacterial efficacy against both Gram-positive and
Gram-negative strains.

• Proficient scar-less wound healing activity within 21 days with
marked re-epithelization of tissue, collagen deposition, and
formation of granulation tissue.

[84]

PAMAM Paclitaxel and
curcumin

• High encapsulation efficiency.
• Improved bioavailability and bioactivity against skin cancer. [85]

Methacrylate

Epigallocatechin
gallate

Enhanced antimicrobial activity of EGCG-attached polymer that can
be used as an alternative strategy to preclude microbial colonization. [86]

Curcumin

• Enhanced tumor cell regression activity when compared to
free curcumin.

• Significant reduction in G0/G1 cells.
• High biocompatibility.

[87]

Silymarin

• High capability to reverse the induced liver fibrosis and decrease
serum TNF-α, serum TGF-β1, and hepatic hydroxyproline.

• Down-regulation in the expression of different
hepatic biomarkers.

• Very little collagen of livers in extracellular matrix and restored
hepatic architecture.

[88]

2.2.1. Polylactic Acid (PLA)

PLA is an aliphatic polyester characterized by its good biodegradability and biocom-
patibility because it can degrade in situ through hydrolysis. During the hydrolysis process,
water molecules break the ester bonds in the PLA backbone, leading to the formation of
lactic acid and its short oligomers (Figure 4). These degradation byproducts are easily
metabolized by the body, offering an inherent biocompatibility that diminishes the ac-
complishment of immune reactions. Additionally, it can simply be processed with typical
development methodologies, such as injection and extrusion [89]. Furthermore, it displays
a high mechanical strength that can be effectively used to develop a controlled-release drug
delivery system [90]. Nanoparticle-based PLA can be prepared by different methods such
as emulsion-based, nanoprecipitation, spray drying, and supercritical fluid methods.

2.2.2. Poly(lactic-co-glycolic Acid) (PLGA)

PLGA is considered one of the most effectively used biodegradable nanocarriers for
the production of nanoparticles as it degrades inside the body by hydrolysis to yield lactic
acid and glycolic acid, which are biodegradable metabolic products (Figure 4). As these
two byproducts are endogenous and easily undergo biotransformation through the Krebs
cycle, the toxicity accompanied by using PLGA for drug delivery is negligible [9,10]. It has
recently been tested for use in cancer imaging and therapy [10]. However, the reassembly
of PLGA into polymeric devices is still under consideration [91]. PLGA nanoparticles have
generally been developed by solvent emulsion–evaporation [92], interfacial deposition [93],
emulsification–diffusion [94], and the nanoprecipitation method [95].
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Figure 5. Schematic representation of frequently used techniques used to fabricate synthetic-based
polymeric nanoparticles.

2.2.3. Poly-ε-caprolactone (PCL)

PCL is a semi-crystalline aliphatic polyester (Figure 4) that is widely used as a biocom-
patible and biocompatible platform for the development of nanoparticles. Owing to its
hydrophobic nature, the encapsulation of hydrophobic actives is quite easy. Compared with
other polymeric materials, the biodegradation of PCL is slower, giving a greater chance for
developing controlled release delivery systems [96–98]. It can be used alone or as a blend
with other biocompatible polymers to obtain new desired properties, such as degradation
kinetics, hydrophilicity, and mucoadhesion [99,100]. For example, copolymerization with
PLA and PLGA enhanced the biodegradation property [101]. PCL nanoparticles have
been generally developed by several techniques, such as the emulsion solvent evaporation
technique and the nanoprecipitation and dialysis methods.

2.2.4. Poly(amidoamine) (PAMAM)

This type can develop dendritic polymers possessing good biocompatibility, water
solubility, and non-immunogenicity [102]. It can be loaded with different types of drug
molecules owing to its distinctive architecture (amide and amide functionality containing
polymer). Unfortunately, PAMAM dendrimers were reported to have certain toxicity at cel-
lular levels [103], especially uncoated ones [104]. Thus, surface modification becomes very
important to improve their safety profile. The PEGylation of PAMAM has been considered
one of the most efficient methods of drug delivery for the treatment of cancer [105]. For
example, the PEGylation of PAMAM dendrimers enhanced efficacy and mitigated the toxi-
city of anticancer and gene delivery [103]. Unlike other polymers, PAMAM dendrimers are
synthesized by stepwise synthesis procedures (such as using divergent or convergent meth-
ods or a combination of both methods [106–108]), which donate well-arranged structures
and narrow polydispersity.
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3. Why Do We Need Polymeric Nanoparticles for Delivery of Natural
Bioactive Agents?

Natural bioactive agents generally face problems such as poor aqueous solubility,
poor stability in alimentary canal conditions, extensive metabolism, short half-life, and low
bioavailability [109]. The chemical structure of the natural bioactive agents regulates their
absorption after oral administration and plasma concentrations. However, the determina-
tion of plasma concentration is a key indicator for establishing the bioavailability of natural
bioactive agents and their metabolites. For example, nearly 10% of orally administered
polyphenols, or their metabolites, are detected in urine and plasma [110]. Other problems
associated with oral delivery are insufficient gastric transit period, poor intestinal perme-
ability, and sensitivity to alimentary canal conditions (pH, enzymes, etc.), all of which
obstruct the efficacy and therapeutic effectiveness of these natural bioactive agents [111]. If
the natural bioactive agent is suffering from extensive metabolism, oral administration will
result in a faint therapeutic effect due to the poor availability of active form in the plasma
or the availability of pharmacologically inactive fractions.

Establishing a suitable drug delivery system is a major challenge for loading natural
bioactive agents. Generally, compounding in nanocarriers is a promising strategy for the
delivery of such compounds because the purpose of the nanosized delivery systems of
natural bioactive agents is to improve their efficacy and overwhelm the drawbacks associ-
ated with their administration. In particular, polymeric nanoparticles are characterized by
several properties that enable them to defeat most of the challenges facing the delivery of
natural bioactive agents by different routes. For instance, for oral delivery, they can protect
actives from degradation and convey them to the optimal regions within the GIT [112]. In
addition, their small particle size results in possessing a large effective surface area, leading
to an improvement in the dissolution rate of loaded drugs and the effective interaction
with epithelial surfaces [9,113]. Furthermore, adjusting self-assembly conditions during
preparing polymeric nanoparticles and selecting particular polymer categories can lead
to an appropriate design by controlling their characteristics (such as particle diameter,
zeta potential, and hydrophobicity) and drug release parameters (fast, controlled, sus-
tained) [114]. In the case of parenteral use, surface modification of polymeric nanoparticles
is feasible and not complicated, which leads to overcoming some obstacles associated with
parenteral administration. In particular, surface decoration with targeting moieties and
PEGylation can effectively lead to targeting behavior and longer residence time in general
circulation, respectively. This can be achieved by using diverse polymers tailored with
desired groups or coupling specific polymers to the designed polymeric nanoparticles [115].
Specifically, polymeric nanoparticles were reported to effectively deliver actives to the
brain through susceptibility to adsorptive-facilitated transcytosis and receptor-mediated
transcytosis across the blood–brain barrier, which can be achieved by targeting peptides
and/or cell-penetrating moieties anchored to surfaces of polymeric nanoparticles [116].
Different mechanisms were also reported by Kreuter [117,118], such as endothelial cell
transcytosis, endothelial cell endocytosis, high-concentration gradients created by poly-
meric nanoparticles, and membrane fluidization by included surfactants. In the case of
topical delivery, polymeric nanoparticles improve skin permeation as their assembly on
the surface of the skin or hair follicle can offer a reservoir to release the drug incessantly,
creating a concentration gradient [119,120].

4. Natural Bioactive Agents Loaded Polymeric Nanoparticles

Various natural bioactive agents have been loaded into polymeric nanoparticles in-
tended for different uses, as mentioned below.

Bioflavonoids are one of the most popular classes of natural bioactive agents that
gained attention due to their promising therapeutic activities and health-promoting ef-
fects [121]. The health-improving effect enhances well-being and decreases the opportunity
of emerging risk, which includes the immune-stimulant effect, cytotoxic effect, valuable
cardiovascular influence, improved eyesight [122], and reduction in amyloidogenic-related
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cell death [123]. In addition, they can provide efficient anticancer activity by different mech-
anisms (Figure 6). Their actions were utilized to treat different diseases such as oxidative
stress, inflammation, skin disorders, cardiovascular, respiratory, and diabetes.
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4.1. Quercetin

Quercetin (3,3′,4′,5,7-penthydroxyflavone) is semi-lipophilic flavonol plentifully present
in leafy vegetables, citrus fruits, tomatoes, berries, etc. It possesses several therapeutic
effects such as antioxidant, anti-inflammatory, wound healing, antithrombotic, antitumor,
antiprotozoal [124–128], and cytoprotective effects [129]. Among the different nanocarriers,
polymeric nanoparticles may provide an effective way to encapsulate quercetin as they can
improve bioavailability, therapeutic effectiveness, and in vivo stability. However, encapsu-
lation of quercetin in polymeric nanoparticles was reported not to influence their efficacy.
Kumari and coworkers developed quercetin-loaded PLA nanoparticles and reported a
similar antioxidant activity to free quercetin [67]. Sunoqrot and Abujamous developed
the pH-sensitive polymer Eudragit S100 loaded with quercetin by a nanoprecipitation
technique to achieve potential colon-specific drug delivery [130]. The prepared formula
was 66.8 nm in particle size, −5.2 mV zeta potential, and 41.8% encapsulation efficiency.
It showed minimal in vitro quercetin release at an acidic pH and complete release at pH
7.2. In vitro cytotoxicity assay showed promising activity against CT26 murine colon car-
cinoma cells and significantly lower IC50 when compared to free quercetin. Zhou and
coworkers quercetin loaded PLGA-TPGS nanoparticles to improve anticancer activity [131].
The prepared formula was 198.4 ± 7.8 nm particle size, −22.5 ± 2.5 mV zeta potential,
and 82.3 ± 5.7% encapsulation efficiency. In vitro cytotoxicity assay exhibited a potential
activity against triple-negative breast cancer cells. Interestingly, after oral administra-
tion, significant anticancer activity was found in 4T1-bearing mice with few metastatic
lung colonies. Additionally, the inhibitory activity on the migration of urokinase-type
plasminogen activator (breast cancer tumor marker) knockdown MDA-MB231 cells was sig-
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nificantly decreased. Elmowafy and coworkers prepared and optimized quercetin-loaded
mesoporous silica nanoparticles in order to improve the physiochemical characteristics,
particularly the dissolution rate and hence the bioavailability [132]. The optimized for-
mulation (using 32 full factorial design) exhibited good physiochemical properties and
enhanced the saturation solubility and dissolution rate. Pandey and coworkers developed
quercetin-loaded PLA nanoparticles to improve anticancer activity against breast can-
cer [66]. The particle sizes of the prepared formulations varied from 32 ± 8 to 152 ± 9 nm
with 62 ± 3% (w/w) encapsulation efficiency. In vitro cytotoxicity experiment showed
that 5 days were sufficient to kill about 40% of breast cancer cells, verifying a sustained
release manner. Zhang and coworkers developed quercetin-loaded chitosan nanoparticles
to improve antioxidant activity and bioavailability [133]. They found that quercetin existed
in nanoparticles in an amorphous state, which showed good antioxidant activity evaluated
by scavenging DPPH radical and reducing the power of some plant extracts.

4.2. Curcumin

Curcumin is a natural hydrophobic yellow polyphenol derived from the turmeric
rhizome. Accumulating studies have revealed that curcumin possesses a wide range of ther-
apeutic activities. In the previous century, studies proved different pharmacological actions,
including antihypercholesterolemia [134], antidiabetic [135], anti-inflammatory [136], and
anti-oxidant [137] actions. Recently, different beneficial actions have been reported, such as
metabolic disorders [138], inflammatory bowel diseases [139], anti-hepatotoxic [140], anti-
proliferative [141,142], anti-carcinogenic [142], antimicrobial [143], and neuroprotective
properties [144]. While it looks to have numerous therapeutic activities, its practical appli-
cations have been limited owing to limited aqueous solubility, poor bioavailability, rapid
biotransformation, low penetrative and targeting power, and instability in alkaline condi-
tions and in the presence of metal ions, heat, and light [145]. In order to improve the oral
bioavailability of curcumin, Umerska and coworkers compared three polymeric nanoparti-
cles, Eudragit® RLPO, PLGA, and PCL, loaded with curcumin [146]. The authors found that
Eudragit® RLPO nanoparticles had smaller particle sizes, lower encapsulation efficiency,
and faster release within 1 h. All developed formulations exhibited good compatibility
with intestinal Caco-2 cells. They also concluded that PLGA and PCL-based nanoparticles
are more suitable for parenteral administration. Jahagirdar and coworkers developed
PLGA nanoparticles loaded with curcumin by facile in situ nanoprecipitation method to
target macrophages and treat associated diseases such as intracellular infections [147]. The
optimized formulation was 208.25 ± 7.55 nm in particle size, −26 ± 2.55 mV zeta potential,
and 90.16 ± 1.17% encapsulation efficiency. Structural analyses (by DSC and FTIR) showed
that curcumin was embedded in polymeric matrix in amorphous state. Flow cytometry and
HPLC analyses verified fast and efficient uptake (three-fold enhancement in uptake when
compared to free curcumin) by RAW 264.7 macrophages. Confocal microscopy confirmed
localization of nanprticles in phago-lysosomal compartment. Udompornmongkol and
Chiang developed curcumin loaded chitosan/gum arabic polymeric nanoparticles by an
emulsification solvent diffusion technique to improve anti-colorectal cancer activity [148].
The developed formulation was 136.3 ± 3.9 nm in particle size, +48 mV zeta potential,
3.57± 0.69 loading efficiency, and 950.2± 0.03% encapsulation efficiency. Significant cell vi-
ability reduction against two models of human colorectal carcinoma cells (HCT116 (Duke’s
type A)) and HT29 (Duke’s type B)) and cellular uptake (by fluorescence microscopy and
flow cytometry). In addition, curcumin polymeric nanoparticles were more proficient in
inducing apoptosis when compared to free curcumin. Nair and coworkers developed
curcumin-loaded chitosan polymeric nanoparticles by ionic gelation (using tripolyphos-
phate as a cross-linker) technique to improve transdermal delivery [149]. The authors
studied different factors (such as the chitosan/tripolyphosphate ratio and stirring rate)
on the physicochemical characteristics of the developed batches. They found that a high
chitosan/tripolyphosphate ratio produces larger particles as tripolyphosphate aided in
the attraction of chitosan molecules by sturdier intramolecular interactions, leading to
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the formation of reduced particle sizes. A high stirring rate (1000 rpm) resulted in larger
particle sizes due to the decrease in the repulsive forces between the particles and the
improved aggregation. Additionally, curcumin polymeric nanoparticles showed enhanced
permeation through Strat-M® membrane and percentage cell viability towards human
keratinocyte (HaCat) when compared to free curcumin solution [149]. Recently, Walbi and
coworkers developed and optimized (using a 3-factorial Box–Behnken statistical design)
curcumin-loaded lecithin/chitosan polymeric nanoparticles to improve drug loading and
controlled release behavior [150]. The optimized formulation was of 138.4 ± 2.10 nm
particle size, +18.98 ± 0.72 mV zeta potential, and 77.40 ± 1.70% encapsulation efficiency.
It also showed diffusion-controlled release behavior and good stability.

On the other hand, researchers paid attention to the functionalization of polymeric
nanoparticles’ surfaces in order to improve efficacy and biocompatibility. Grabovac and
Bernkop [151] synthesized thiolated chitosan tailoring curcumin PLGA nanoparticles.
Thamake and coworkers [152] synthesized homobifunctional spacer, bis(sulfosuccinimidyl)
suberate (BS3) tailoring curcumin PLGA nanoparticles and reported an enhancement
linkage of Annexin A2 leading to proficient specific delivery to Annexin-A2-positive MDA-
MB-231 cancer cells. Joseph and coworkers developed PEG-modified PLGA nanoparticles
loaded with curcumin by nanoprecipitation technique to target the brain and control
hypoxic–ischemic brain injury in neonatal rats using the Vannucci model [153]. Results
showed that nanoparticles could overcome the impaired blood–brain barrier and improve
the extravasation of nanoparticles into the brain parenchyma, leading to an efficient de-
crease in global injury by the neuroprotective effect, which was more marked in the penum-
bral region. Anitha and coworkers developed curcumin-loaded water-soluble chitosan
derivatives (O-carboxymethyl chitosan and N,O-carboxymethyl chitosan) and showed
good biocompatibility and induced apoptotic cancer cell death [154,155]. The develop-
ment of multiple polymeric materials nanocomposites was also a point of interest. Das
and coworkers prepared curcumin-loaded alginate/chitosan/Pluronic nanocomposite by
ionotropic pre-gelation followed by polycationic crosslinking, showing cellular internal-
ization inside the Hela cells (verified by fluorescent microscopy) [156]. A combination of
natural and synthetic polymers in a single polymeric matrix was also studied by Liu and
coworkers. They developed chitosan/PCL polymeric nanoparticles by the nanoprecipita-
tion method, showed positively charged nanoparticles, and enhanced cellular uptake by
Hela cells and human choroidal melanoma. The authors proposed that the combination
of PCL with chitosan (bioadhesive polymer) led to efficient curcumin loading and release
profiles, cellular interaction, and remarkable in vitro anticancer activity [157].

4.3. Kaempferol

Kaempferol (3,5,7-trihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one) is fre-
quently present in different plats such as onions, green tea, and grapes. Kaempferol has
promising pharmacological actions such as antitumor, antioxidant, anti-inflammatory, and
anti-allergic effects [158–160]. Like other flavonoids, its therapeutic applications are limited
because of its limited aqueous solubility, poor oral bioavailability, extensive first-pass
metabolism, and instability in water alkaline medium [161].

Luo and coworkers developed Kaempferol-loaded nonionic poly(ethylene oxide)-
poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) and PLGA nanoparticles as
chemopreventive of ovarian cancer [162]. The authors concluded the selectivity of PLGA
nanoparticles to cancer cells was not offered by PEO-PPO-PEO nanoparticles (both cancer-
ous and normal cells were affected). Kazmi and coworkers developed Kaempferol-loaded
hydroxypropyl methylcellulose acetate succinate and Kollicoat MAE 30 DP nanoparticles
to control induced hepatocellular carcinoma [163]. The authors prepared several batches
and obtained a nanometric range of particle size, monodisperse particles, and negatively
charged nanoparticles. They also found a significant decrease in serum levels of differ-
ent liver biomarkers and an increase in antioxidant enzymes and proteins. Additionally,
significant decreases in an mRNA expression of interleukin-1β, interleukin-6, and tumor
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necrosis factor-alpha verify a potential application against oxidative stress induced-liver
injury. Ilk and coworkers developed Kaempferol loaded chitosan nanoparticles to mod-
ulate quorum sensing mediated by auto-inducers in model bioassay test systems to be
used as new emerging strategy in antimicrobial chemotherapy [164]. Nanoparticles were
developed by ionic gelation and were 192.27 ± 13.6 nm and +35 mV in value for particle
size and zeta potential, respectively. Nanoparticles significantly prohibited the production
of violacein pigment in Chromobacterium violaceum CV026 within the 30 storage days. In
another work, Ilk and coworkers developed Kaempferol-loaded lecithin/chitosan nanopar-
ticles by electrostatic self-assembly technique to attain sustained antifungal activity [165].
Nanoparticles significantly prohibited 67% of the growth of Fusarium oxysporium within the
60 storage days.

4.4. Resveratrol

Resveratrol (3,5,4′-trihydroxystilbene) is a natural non-flavonoid polyphenolic sub-
stance found in different plants, such as grapes, peanuts, and legumes [166]. It exists in
two isomers: cis-(Z) and trans-(E) isomers, where the trans-isomer is considered a more
stable form and biologically active than the cis-isomer because of its non-planar conforma-
tion [167,168]. However, the trans-isomer can be converted to the cis-isomer form upon
exposure to UV-light [169,170]. Resveratrol exhibits several biological actions, such as car-
dioprotection, cancer prevention, platelet de-aggregation, antioxidant, anti-inflammatory,
and vasorelaxant properties [171]. It can also improve the antiviral activity of zidovudine,
zalcitabine, and didanosine [172].

Hung and coworkers developed PEG-modified PLA nanoparticles loaded with resver-
atrol to enhance drug stability, controlled delivery, and anticancer activity [173]. Cellular
apoptosis and uptake were enhanced in nanoparticles when compared to free resveratrol
(verified by flow cytometry and western blots). In vivo, retardation of tumor growth was
observed during a long treatment period. Yee and coworkers developed methoxyPEG-
modified PLA nanoparticles loaded with resveratrol to improve its plasmatic stability and
reduce the metabolic rate [61].

The developed nanoparticles displayed good stability in plasma and decreased hepatic
metabolic rate. The authors reported a correlation between enhanced plasma stability, re-
duced liver metabolic rate, and suppression of tumor growth in mice. Chen and coworkers
developed PLGA nanoparticles loaded with both resveratrol and puerarin by the O/W
emulsion method to improve their chemotherapeutic efficacy in spinal cord injury [174].
Nanoparticles were homogeneously dispersed with mean diameters varying from 238 nm
to 274 nm and a zeta potential of −12.6 ± 2.1 mV. Optimized formulation showed 72−79%
of drug release through 36 h and decreased free radicals production and oxidative stress. Zu
and coworkers developed carboxymethyl chitosan nanoparticles loaded with resveratrol by
emulsion cross-linking to improve its physicochemical properties, antioxidant activity, and
pharmacokinetic profile [175]. Optimized formulation was of 155.3± 15.2 nm,−10.28± 6.4,
and 44.5 ± 2.2% values for particle size, zeta potential, and encapsulation efficiency, re-
spectively. It also showed improved solubility and antioxidant activity. In addition, it
showed enhanced in vivo absorption, prolonged duration of action, and increased relative
bioavailability by 3.5-fold when compared to free drugs. Sarma and coworkers developed
chitosan–pectin core–shell nanoparticles loaded with resveratrol to improve its antioxidant
activity and obtain prolonged release [176]. Liu and coworkers developed α-lactalbumin
and chitosan core–shell nanoparticles loaded with resveratrol [177]. Nanoparticles were
more stable against UV-light and heat and bioaccessible with prompt antioxidant activity.

4.5. Epigallocatechin-3-Gallate

Epigallocatechin-3-Gallate (a major constituent of green tea polyphenols) has been
shown to be chemopreventive for various kinds of cancers, such as liver, prostate, stomach,
and breast cancers [178–181].
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Sanna and coworkers developed PLGA and PLGA–PEG nanoparticles loaded with (-)-
epigallocatechin-3-Gallate for targeting prostatic cancer by nanoprecipitation method [182].
All prepared batches were homogeneously dispersed with mean diameters varying from
130 nm to 250 nm and negatively charged surface charges (ranging from −32.1 ± 8.80 to
−21.3 ± 8.35 mV). In vitro, nanoparticles showed an enhanced anti-proliferative activity
against PCa cell lines and apoptosis modulation when compared to the free drug. In vivo,
functionalization of PLGA nanoparticles with low molecular weight molecules led to
specific targeting of prostate-specific membrane antigen and improved anticancer activity
in the mouse xenograft model of the prostatic tumor.

Alserihi and coworkers developed folic acid anchored PLGA–PEG nanoparticles
loaded with (-)-epigallocatechin-3-Gallate by nanoprecipitation for prostatic cancer treat-
ment [183]. The prepared nanoparticles were 128.42 ± 3.57 nm and 0.114 ± 0.03 and
49.82 ± 3.74% in particle size, polydispersity index, and encapsulation efficiency, respec-
tively. Results also exhibited a significant enhancement in the antiproliferative activity
against prostate cancer cell lines, particularly toward the prostate-specific membrane anti-
gen, and an increase in the number of dead apoptotic cells in 22Rv1 spheroids. Shao and
coworkers developed nanofiber meshes by electrospinning the PCL loaded with green
tea polyphenol to increase the efficacy against different cancerous lines [184]. The pre-
pared nanoparticles showed a controlled release pattern and longer stability of green tea
polyphenol. It also showed significant inhibitory effects against HepG2 and A549.

Young-Jin and coworkers developed PCL nanofibers loaded with (-)-epigallocatechin-
3-gallate and caffeic acid to increase the efficacy against gastric cancer cell lines (MKN-28).
The prepared nanoparticles showed apoptosis via activated caspase-3 due to the H2O2
generation, which offered a suitable system for long-term cancer therapy [185]. Safer and
coworkers fabricated chitosan nanoparticles loaded with (-)-epigallocatechin-3-Gallate
by ionic gelation method in order to develop a nano-therapeutic delivery system against
hepatic fibrosis [186]. The prepared nanoparticles were stable, positively charged, in the
nanorange, and had isoelectric pH of 7.61. Moreno-Vásquez and coworkers fabricated
(-)-epigallocatechin-3-gallate grafted-chitosan nanoparticles by nanoprecipitation method
in order to maximize antibacterial and antioxidant potential [187]. FTIR finding verified
the modification of the chitosan with (-)-epigallocatechin-3-gallate where nanoparticles
fabricated offered lower minimal inhibitory concentration when compared to chitosan
and (-)-epigallocatechin-3-gallate against Pseudomonas fluorescens. In addition, nanopar-
ticles produced a significant enhancement of reactive oxygen species (p < 0.05) in two
bacterial species and an increase in antioxidant activity. Hong and coworkers developed
(-)-epigallocatechin-3-gallate-loaded self-assembled nanoparticles of chitosan and aspartic
acid in order to improve its action against atherosclerosis [188], which was found to be
comparable with simvastatin administration in the percentage of lipid deposition. Liang
and coworkers developed (-)-epigallocatechin-3-gallate-loaded chitosan/β-Lactoglobulin
nanoparticles of chitosan and aspartic acid in order to achieve a prolonged release of
epigallocatechin-3-gallate in the gastrointestinal tract [189].

4.6. Silymarin

Silymarin is an active extract from milk thistle seeds that consist of 65–80% silymarin
flavonolignans. It has been used as a natural medication to protect the liver and treat
several liver diseases, such as hepatitis and cirrhosis. Pharmacologically, it has antioxidant,
antilipid peroxidative, antifibrotic, and anti-inflammatory actions. Additionally, it has been
widely studied as a chemopreventive agent against different cancers [190–192]. Snima and
coworkers fabricated PLGA nanoparticles loaded with silymarin by single-step emulsion
technique to improve the anticancer application in vitro. Nearly 60% of silymarin was
entrapped into PLGA nanoparticles, which produced time- and dose-dependent cytotoxic
effects against prostate cancer cells (PC-3) [193]. Azadpour and coworkers fabricated PLGA
nanoparticles loaded with silymarin by the emulsification/solvent evaporation method to
improve the anti-inflammatory effect against sepsis and septic shock [194]. Results showed
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that nanoparticles decreased pro-inflammatory cytokines and increased anti-inflammatory
cytokine and M2-associated markers and proteins. Elsherbiny and coworkers fabricated
pH-responsive alginate–PLGA nano/micro hydrogel nanoparticles loaded with silymarin
to develop a biodegradable and controlled-release oral drug delivery system for sily-
marin [195]. Results showed that the developed alginate-based hydrogel microparticles
encapsulating silymarin-loaded PLGA nanoparticles can improve the dissolution and oral
bioavailability of silymarin.

4.7. Saponins

Saponins are a group of naturally derived plant glycosides that demonstrated con-
siderable cytotoxic activity [196–198]. According to their origins, there are different types,
such as Astragalus saponin, Ginseng saponin, and saponin extracts from the Quillaja saponaria
Molina. Sanoj and coworkers developed saponin-loaded chitosan nanoparticles by ionic
gelation as a biocompatible and biodegradable system to control and sustain delivery to
prostate cancer cell lines. The cellular internalization studies showed a promising uptake
by L929 and PC3 cell lines with potential selective cytotoxic activity against cancerous [26].
Van de Ven and coworkers developed saponin-loaded chitosan nanoparticles in order to
improve its release and anticancer activity [26]. Results showed that nanoparticles have a
particle size of 65 ± 7 nm with improved cytotoxicity on PC3 and KB cell lines and cellular
uptake by L929 and PC3. Saharan and coworkers developed saponin β-aescin loaded PLGA
nanoparticles in order to improve drug delivery in Leishmania-infected macrophages [199].
Nanoparticles were prepared by combined emulsification solvent evaporation/salting-out
technique. Results showed that nanoparticles have a particle size of less than 300 nm
with negative zeta potential. Additionally, they were up-taken by the macrophages and
trafficked towards the lysosomes.

4.8. Oridonin

Oridonin is a natural diterpenoid that was reported to have several potential ther-
apeutic actions against cancerous cells, including induction of apoptosis in lymphoid
malignancies, inhibition of Nuclear factor-KB (NF-kB ), and down-regulation of the Bcl-2
family proteins [200]. Unfortunately, the clinical applications of oridonin are really limited
owing to its poor aqueous solubility and narrow therapeutic index. Xing and coworkers
developed oridonin-loaded PLA nanoparticles by an emulsion solvent diffusion method
in order to improve its plasma residence period and drug delivery [201]. The prepared
nanoparticles showed a good pharmacokinetic profile; particularly in the long period, the
drug stayed in circulation. It also showed significant deposition of oridonin in spleen, liver
and lung, while its renal and cardiac concentrations were noticeably dropped.

4.9. Paclitaxel

Paclitaxel is a natural product isolated from the bark of Pacific Yew (Taxus brevifolia). It
is widely used as a chemotherapeutic agent in the treatment of different types of cancers,
such as advanced ovarian, lung, and breast cancers [202,203]. The mechanism by which
paclitaxel acts is the stabilization of microtubules, blocking the cancer cell cycle in the G2/M
phase, and finally, the induction of apoptosis [204]. The major obstacle to paclitaxel delivery
is its poor aqueous water solubility (~0.4 µg/mL). However, this drawback was overcome
in the commercial product (Taxol®) by dissolving paclitaxel in Cremophor EL/ethanol (1/1,
v/v). Nevertheless, Cremophor EL was reported to have various severe adverse reactions,
including hypersensitivity, cardiotoxicity, and peripheral neuropathy [205].

Danhier and coworkers developed paclitaxel-loaded PEGylated PLGA nanoparticles
by nanoprecipitation in order to develop Cremophor EL-free i.v. formulation to enhance
the safety and therapeutic index of paclitaxel [206]. The prepared nanoparticles showed
biphasic release pattern, significant in vitro anticancer efficacy against human cervix carci-
noma cells (HeLa), and lower IC50 (5.5 µg/mL) when compared to commercial product
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(15.5 µg/mL), concentration-dependent cellular uptake and comparable apoptosis. In vivo,
nanoparticles presented superior tumor growth inhibition outcomes on TLT tumors.

Fonseca and coworkers [207] developed paclitaxel-loaded PLGA nanoparticles by the
interfacial deposition method in order to achieve the same target as the previous study.
Results showed that the prepared nanoparticles were less than 200 nm in particle size,
mono-dispersed, and carried a negative charge. The prepared nanoparticles showed a
biphasic release pattern and significant in vitro anticancer efficacy against small cell lung
cancer cell line (NCI-H69 SCLC). Su and coworkers [208] developed paclitaxel-loaded cholic
acid-functionalized star-shaped PLGA-d-α-tocopheryl polyethylene glycol 1000 succinate
nanoparticles by modified nanoprecipitation method in order to treat malignant melanoma.
Authors reported that nanoparticle formulation overweighed commercial products in
treating malignant melanoma in terms of in vitro cell toxicity and xenograft tumor model
in vivo. Cui and coworkers [209] developed magnetic PLGA nanoparticles co-loaded
with paclitaxel and curcumin by modified nanoprecipitation method in order to cross the
blood–brain barrier effectively and treat glioma. A dual-targeting approach was utilized
by a combination of magnetic guidance and active targeting transferrin receptor-binding
peptide T7-mediated nanoparticles. The resultant nanoparticles resulted in a more than
10-time increase in cellular uptake studies, a more than 5-time enhancement in brain
delivery compared to the non-targeting nanoparticles and high survival rate in mice
bearing orthotopic glioma.

Abriata and coworkers [210] developed PCL nanoparticles loaded with paclitaxel by
nanoprecipitation method for evaluation of the activity against ovarian cancer in vitro.
The results showed that nanoparticles had a mono-modal particle distribution with a size
of around 140 nm, negatively charged particles, and high entrapment efficiency. They
also presented a high efficiency in reducing the cell viability of SKOV-3 cells. Bernabeu
and coworkers [211] developed PCL-alpha tocopheryl polyethylene glycol 1000 succinate
(TPGS) nanoparticles loaded with paclitaxel to fabricate long-circulating safe nanopar-
ticles and evaluate the activity against breast cancer in vitro. The authors prepared
nanoparticles by three different methods (nanoprecipitation, emulsion–solvent evapo-
ration/homogenization, and emulsion–solvent evaporation/homogenization). The former
method yielded smaller particles and higher encapsulation of paclitaxel when compared to
other methods. The results presented a better efficiency in reducing cell viability of two
human breast cancer cell lines (MCF-7 and MDA-MB-231) when compared to free paclitaxel
solution and the commercial product Abraxane®). Gupta and coworkers [212] developed
chitosan nanoparticles loaded with paclitaxel to achieve safe and effective delivery. The au-
thors prepared nanoparticles by w/o nanoemulsion method, and the yielded formulation
was of 226.7 ± 0.70 nm particle size, 0.345 ± 0.039 polydispersity index, 37.4 ± 0.77 mV
surface charge, 79.24 ± 2.95% encapsulation efficiency, and 11.57 ± 0.81% loading capacity.
The results showed promising efficiency in reducing cell viability of human breast cancer
cell line MDA-MB-231, a reduced IC50, and extreme biocompatibility.

5. Polymer Functionalization and Surface Decoration

The functionalization of polymeric nanoparticles has garnered much attention in pre-
vious years through different methods of polymeric modification. The surface decoration,
chemical synthesis, and the selection of the nanoparticles are completely dependent on the
nature of the actives, the required duration of action, stability, permeability, the release of
the actives, etc. [213]. However, the aims of polymeric functionalization and surface decora-
tion depend on the objective of the work. It was reported that the functionalized polymeric
nanoparticles are mostly classified into four generations; long circulating “stealth” nanopar-
ticles, lectin-based polymeric nanoparticles, polysaccharide-based polymeric nanoparticles,
and, lately, ligand-based polymeric nanoparticles [214]. Generally, they aim to prolong the
release and plasma residence time, specifically deliver the actives by active targeting, enable
nanoparticles to withstand harsh environments, and improve physicochemical properties
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and biocompatibility. On the other hand, researchers should take the following criteria into
consideration during working on the functionalization of polymeric nanoparticles [215]:

• Determination of the number of conjugate sites to calculate the bio-molecule ratio
appropriately.

• Avoidance of non-specific conjugation.
• Adjustment of polymer/conjugate affinity.
• Keeping the proper effectiveness of the physiochemical properties of the yielded

polymer/conjugate.
• High reproducibility of the method.

There are two main techniques used for the functionalization of the polymers: direct
functionalization and post-functionalization. In the first technique, a reactive group is
attached to the nanoparticle surface from one side and to the required active group from
the other side. Frequently, polymers have been functionalized with different groups, such
as thiols, disulfides, and amines [216–218].

Coester and coworkers fabricated biofunctionalized gelatin nanoparticles with sulfhydryl
groups to improve the entrapment of biotinylated substances because the sulfhydryl group
was covalently linked with proteins such as avidin [219]. Lectins are essential to and easily
recognized by several cells. Therefore, they display selective non-covalent interaction
with carbohydrates. However, they can be incorporated into polymeric nanoparticles by
adsorption or covalent linkage. Rodrigues and coworkers fabricated biofunctionalized
PCL-based nanoparticles as lectin-decorated or protein-loaded nanoparticles with PCL as a
hydrophobic core and dextran as a hydrophilic corona [220].

Lectins were bovine serum albumin, and those obtained from Bauhinia monandra,
Lens culinaris leaves, and the prepared nanoparticles were of nearly 200 nm particle size.
They also conserved lectins’ hemagglutinating activity and enhanced Caco-2-cellular via-
bility, proposing the likely use of this modified nanoparticle type for targeted oral delivery.
In the second method, a similar strategy is followed, and the nature of the functionalizing
moiety may not be compatible with good control over the size and dispersion in the vehicle
used during the preparation [215]. As most biodegradable polymers are hydrophobic in
nature, they are easily recognized by the mononuclear phagocytic system to remove them
from the blood stream before reaching the target. However, the fabrication of nanoparticles
of particle size less than 100 nm was reported to escape from mononuclear phagocytic
system recognition [221]. This strategy is not usually guaranteed for most polymeric
nanoparticles. Thus, surface coating with a hydrophilic polymer (such as polyethylene
glycol) will offer the chance for nanoparticles to escape from mononuclear phagocytic
system recognition by forming a hydrophilic shielding layer surrounding the nanoparticles,
which enables deterring the attraction of opsonin proteins by steric repulsive forces, thus
closing and suspending the first stage in the opsonization process [222]. In addition, and
depending on the anchored polymer, surface modification can improve the targeting of
tumors and resistance to GIT-harsh conditions. Hydrophilic polymers such as polyethylene
glycol, Pluronics, Tween 80, TPGS, and Tween 20, and polysaccharides such as dextran are
frequently used to modify the surface of conventional nanoparticles [223].

Surface coverage by hydrophilic polymers can be achieved by surface adsorption or
by the use of block or branched copolymers [224,225]. Polyethylene glycol is a hydrophilic
polymer and is commonly used for coating the surface of different polymeric nanopar-
ticles [226] due to its good biocompatibility. It can also prolong the residence time of
nanoparticles in plasma efficiently due to escaping from mononuclear phagocytic system
recognition. Kim and coworkers fabricated methoxy polyethylene glycol surface decorated
PCL nanoparticles [227]. Calvo and coworkers fabricated polyethylene glycol surface
decorated polyhexadecyl cyanoacrylate nanoparticles to minimize the opsonization and
recognition by macrophages and, thus, prolong the plasma half-life. PEGylated nanopar-
ticles presented reasonably higher deposition in the spleen and brain than conventional
non-PEGylated nanoparticles [228]. Tobio and coworkers fabricated a polyethylene glycol
surface decorated PLA nanoparticles for oral administration to improve the stability and
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decrease the influence of GIT on the digestive enzymes [226]. However, the selection of the
more relevant PEG chain is not an easy process as various brands of PEG chains possess
dissimilar physicochemical properties (such as molecular weight, chain length, and several
branch arms), which could influence the efficiency of the PEG chain. It was reported that
PEG with a molecular weight of less than 2000 Da was not efficient enough to prevent pro-
tein adsorption and immuno-recognition [222,229,230]. On the other hand, no extra benefit
was achieved upon using a PEG chain with a molecular weight higher than 5000 Da [231].
Pluronics (Poloxamers) were reported to improve plasma residence time and deposition
in tumors of polyethylene oxide–PCL nanoparticles [232]. Tweens-coated nanoparticles
were reported to adsorb certain compounds from the blood by endothelial cells facilitating
the transport through the blood–brain barrier [233–235]. Dextran was also reported to
prohibit protein adsorption of PCL nanoparticles [236]. TPGS was reported to provide
milder environments to proteins when compared to uncoated PLA nanoparticles [237].

6. Clinical Trials

As polymeric nanoparticles have garnered much attention as an efficient drug de-
livery system, clinical trials using polymeric nanoparticles loaded with natural bioac-
tive agents have been conducted. In addition, some formulations have been approved
by Food and Drug administration (FDA). Paclitaxel albumin-stabilized nanoparticle has
completed Phase II clinical trials for the treatment of ovarian cancer (NCT00499252 at
https://clinicaltrials.gov/ and updated on 11 January 2018). On the other hand, two com-
mercial products are now available in the market. Genexol PM® are paclitaxel-loaded
PEG-poly(D,L-lactide) nanoparticles at a dose of 30 mg and have been approved in South
Korea (2007) for the treatment of breast cancer, though it is still under phase II clinical trials
in the USA [238]. Paclical® are paclitaxel-loaded poly (glutamic acid) nanoparticles for the
treatment of ovarian cancer [239].

7. Challenges

Generally, using nanoparticles for drug delivery might be considered a risk as the par-
ticle size reduction is correlated to improved reactivity and toxicity [240]. However, other
different factors can participate in such behavior, including morphology, chemical com-
position, hydrophobicity/hydrophilicity, and the surface charge of nanoparticles. Gatoo
and coworkers studied the link between the physicochemical characteristics of nanopar-
ticles and their induced toxicity. They found that the smaller the size of the particles, the
higher the risk of potential toxicity, owing to their potential capability to traverse biological
membranes and attain various tissues without being recognized by the reticuloendothelial
system [241]. In particular, the safety/toxicity of polymeric nanoparticles is considered one
of the major challenges. The toxicity of polymeric nanoparticles is attributable to the toxic
monomer aggregation, homocompatibility, residual material attached to them, and toxic
degradation products [242].

However, the toxicity of polymeric nanoparticles is particularly influenced by the
quantum size, which is associated with oxidative stress, cytotoxicity, and genotoxicity [243].
In addition, the polymeric material using physicochemical properties of nanoparticle
biodegradability and biocompatibility are also causal factors. Generally, the toxicological
effects associated with natural polymer-based nanoparticles were established to be less
than that associated with the administration of synthetic polymer-based nanoparticles [244].
In addition, using natural polymer blends or coating synthetic polymeric nanoparticles
with natural polymer was reported to alleviate the toxicity [245–249]. The particle size of
nanoparticles can also influence the manner of endocytosis, uptake, and efficacy of treat-
ment in the endocytic pathway [250,251]. Commonly, as the size decreases, the opportunity
for interaction with the biological membranes increases [252,253]. It was established that
when particle size is bigger than 100 nm, particles can enter the cells via phagocytosis,
whereas when the particle size is less than 100 nm, endocytosis is the main route of entry,
leading to significant higher toxicity risk [254,255]. On the other hand, the incorporation

https://clinicaltrials.gov/
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of stabilizers (such as polyvinyl alcohol and Pluronic) was documented to exaggerate the
toxicity of PLGA-based nanoparticles especially when used in high concentrations [256].
The surface charge might also have an impact in that regard. Regardless of their composi-
tions, polymeric nanoparticles carrying positive charges are subjected to higher phagocytic
uptake than negatively charged ones resulting in higher toxicological aspects [257]. Das
and coworkers studied the differential pulmonary toxicity of positively and negatively
charged PEG–PLA nanoparticles in vivo. Positively charged nanoparticles were reported
to induce higher local and systemic toxicities [258]. Bancos and coworkers studied the
effect of silica nanoparticles on macrophages and found that phagocytosis decreased and
cytokine production increased [259]. Gonzalez and coworkers found that silica nanopar-
ticles had cytotoxic effects on lung carcinoma cells [260]. Genotoxic effects on lung cells
were associated with silica nanoparticle administration, which was reported by Maser and
coworkers in a dose-dependent manner [261]. The production of reactive oxygen species
was also one of the toxicological features of polymeric nanoparticles. Production of reactive
oxygen species was reported in a dose-dependent manner upon administration of PLGA
nanoparticles [256,262]. On the contrary, Patel and coworkers found no production of reac-
tive oxygen species upon administration of PLGA nanoparticles [263]. Xifei and coworkers
studied the effect of silica nanoparticles on oxidative stress and found the overproduction
of reactive oxygen species with the exhaustion of glutathione at intracellular levels [264].
Immune reactions and the overproduction of inflammatory mediators are considered one
of the most common toxicological aspects associated with polymeric nanoparticle adminis-
tration. PLGA-polyethylene oxide nanoparticles were reported to increase GM–CSF levels
(pro-inflammatory mediator) [265].

In addition, using PEG as a hydrophilic coating polymer has recently shown some
demerits. It was reported that the PEG chain stimulated hypersensitivity reactions. It was
also found that it was not biodegradable, which hurdles renal excretion and leads to the
deposition of hepatic and lysosomes of healthy tissues [266]. Another drawback was an
immune response by detecting anti-PEG antibodies (reaching 25% of the population) [267].
Additionally, repeated intravenous administration of PEGylated formulations was reported
to induce splenic anti-PEG IgM, which deprived the formulation of its advantageous long
circulation by “accelerated blood clearance” phenomenon [268].

Furthermore, scale-up production and continuous manufacturing are other challenges
facing polymeric nanoparticles [269].

8. Recent Advances

Lipid–polymer hybrid nanocarriers have been recently used as alternatives to poly-
meric nanoparticles. They are hybrid systems containing both lipid and polymeric com-
ponents. So, the system collects the benefits of the lipid-based nanoparticles, particularly
biomimetic and biocompatibility natures, along with the merits of polymeric nanoparticles,
particularly controlled release behavior and targeting [270]. The outer shell is represented
by the lipid, while the inner core is represented by the polymer. The system offers a
high payload [271], controlled release pattern, non-immunogenicity [272], and capability
of surface decoration by desired ligands [273]. Quirós-Fallas and coworkers developed
curcumin-loaded hybrid lipid polymeric nanoparticles and demonstrated efficient antiox-
idant activity, immune–stimulant response, and cytotoxic effect against both gastric and
colon cancer cell lines [274]. Naziris and coworkers developed curcumin-loaded mixed
lipid–polymer nanoparticles and found higher interaction of the system with bacterial mem-
brane proteins leading to an efficient antibacterial effect [275]. Abosabaa and coworkers
developed green tea extract-loaded hybrid chitosan–lipid nanoparticles. Results showed
higher skin permeability and deposition of the system when compared to the solution. In
addition, the formula showed promising anti-cellulite activity and reduction of adipocyte
perimeter and fat layer thickness of the skin [276]. Patel and coworkers developed hybrid
chitosan–lipid nanoparticles co-loaded with mycophenolic acid and quercetin. In vivo
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results showed higher half-life (2.17-fold when compared to free mycophenolic acid) and
promising anti-breast cancer activity [277].

Stimuli-responsive polymeric nanosystem is another system that has garnered much
attention [278]. The system has been efficiently utilized in controlled drug delivery, particu-
larly in cancer therapy [279]. However, the stimuli may be internal (patho-physiological/
patho-chemical condition), such as pH [280], reduced glutathione [281], and protease [282],
or external (physical), such as light [283], temperature [284], and ultrasound [285]. Re-
garding internal stimuli, tumor tissues are manifested by a slightly low pH [286], a high
amount of reduced glutathione [287], and the overexpression of protease enzyme [288].
On the other hand, near-infrared light [289], ultrasound [290], and temperature [291] were
reported to control the release from some polymeric materials. Chen and coworkers devel-
oped dual hydrogen peroxide (as an extracellular trigger)/glutathione (as an intracellular
trigger)-responsive thioketal polymeric nanoparticles for programmable paclitaxel release
at the tumor site [292]. Among stimuli-responsive polymeric nanosystems, nanogel-based
polymeric nanoparticles have established a high capability to uptake water in 3D nano-
polymeric networks. Modern findings have revealed that the disruption of nanogels can be
performed by using cross-linking agents sensible to temperature, light, and change in pH.
Consequently, the loaded material can reach intracellular targets after the endocytosis of
nanogel [293,294]. Howaili and coworkers developed curcumin-loaded dual thermo/pH-
responsive plasmonic nanogel by grafting poly (N-isopropyl acrylamide) to chitosan with
further incorporation into gold nanoparticles to provide simultaneous delivery and pho-
tothermal therapy of cancer. The results showed an enhanced chemotherapy efficacy when
irradiated with near-infrared laser in vitro [295].

9. Perspectives and Conclusions

Throughout the whole world, attention has become increasingly directed toward the
use of natural bioactive agents owing to their excellent therapeutic and preventive benefits.
They possess several actions, such as antioxidant, anti-inflammatory, antimicrobial, and
chemopreventive actions, which are not solely sufficient to provide to a patient. Thus,
finding relevant formulation/technology to deliver them through different routes is the
biggest challenge due to their drawbacks, such as poor solubility, poor bioavailability, and
instability. At present, a wide range of polymeric nanoparticles (naturally or syntheti-
cally based) has been found to be relevant for the encapsulation or loading of different
natural bioactive agents in order to enhance their bioavailability and therapeutic efficacy.
Though polymeric nanoparticles were recognized by some researchers for their toxicity
(particularly in high concentrations), surface functionalization is considered a key factor
that can overcome such problems. In addition, using a lipid–polymer hybrid system and
stimuli-responsive nanocarrier has opened a new horizon for more safe and site-specific
drug release. So, the future of such new polymeric nanoparticles will enable scientists to
provide safe and smart delivery of natural bioactive agents. Overall, the use of natural
bioactive agent-loaded polymeric nanoparticles is a promising strategy, provided that the
platform used fulfills the therapeutic and safety aspects.
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