Independent Heating Performances in the Sub-Zero Environment of MWCNT/PDMS Composite with Low Electron-Tunneling Energy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Fabrication of MWCNT/PDMS Composite Film
2.2. Characterization and Performance Measurement
3. Results and Discussion
3.1. Microstructures of MWCNT/PDMS Composite Film
3.2. Electrical Conductivity of MWCNT/PDMS Film
3.3. Electric-Heating Performances and Characteristics
3.4. Resistance-and-Temperature Relationship of MWCNT/PDMS Film
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Gent, R.W.; Dart, N.P.; Cansdale, J.T. Aircraft icing. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2000, 358, 2873–2911. [Google Scholar] [CrossRef]
- Yang, Y.; Yoon, D.H.; Kim, B.S.; Seo, M.K. Preparation and Characterization of Pitch-based Carbon Paper for Low Energy and High Efficiency Surface Heating Elements. Compos. Res. 2018, 31, 412–420. [Google Scholar]
- Vertuccio, L.; Santis, F.D.; Pantani, R.; Lafdi, K.; Guadagno, L. Effective de-icing skin using graphene-based flexible heater. Compos. Part B Eng. 2019, 162, 600–610. [Google Scholar] [CrossRef]
- Moreira, I.P.; Sanivada, U.K.; Bessa, J.; Cunha, F.; Fangueiro, R. A Review of Multiple Scale Fibrous and Composite Systems for Heating Applications. Molecules 2021, 26, 3686. [Google Scholar] [CrossRef]
- Pan, P.; Wu, S.; Xiao, F.; Pang, L.; Xiao, Y. Conductive asphalt concrete: A review on structure design, performance, and practical applications. J. Intell. Mater. Syst. Struct. 2015, 26, 755–769. [Google Scholar] [CrossRef]
- Yan, J.; Jeong, Y.G. Multiwalled carbon nanotube/polydimethylsiloxane composite films as high performance flexible electric heating elements. Appl. Phys. Lett. 2014, 105, 051907. [Google Scholar] [CrossRef]
- Chu, K.; Kim, D.; Sohn, Y.; Lee, S.; Moon, C.; Park, S. Liquid sensing: Smart polymer/CNT composites. IEEE Electron Device Lett. 2013, 34, 668–670. [Google Scholar] [CrossRef]
- Hu, Z.; Zhou, J.; Fu, O. Design and Construction of Deformable Heaters: Materials, Structure, and Applications. Adv. Electron. Mater. 2021, 7, 2100459. [Google Scholar] [CrossRef]
- Hayashi, T.; Endo, M. Carbon nanotubes as structural material and their application in composites. Compos. Part B Eng. 2011, 42, 2151–2157. [Google Scholar] [CrossRef]
- Jung, Y.T.; Roh, H.D.; Lee, I.Y.; Park, Y.B. Strain sensing and progressive failure monitoring of glass-fiber-reinforced composites using percolated carbon nanotube networks. Funct. Compos. Struct. 2020, 2, 015006. [Google Scholar] [CrossRef]
- Shin, P.S.; Kim, J.H.; DeVries, K.L.; Park, J.M. Evaluation of dispersion of MWCNT/cellulose composites sheet using electrical resistance 3D mapping for strain sensing. Funct. Compos. Struct. 2020, 2, 025004. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, Y.; Huang, J.; Zhang, J.; Pan, D.; Zhou, J.; Ryu, J.E.; Umar, A.; Guo, Z. Advances in Responsively Conductive Polymer Composites and Sensing Applications. Polym. Rev. 2021, 61, 157–193. [Google Scholar] [CrossRef]
- Eom, T.; Lee, S.; Woo, K.; Heo, J.E.; Martin, D.C.; Wie, J.J.; Shim, B.S. Naturally Derived Melanin Nanoparticle Composites with High Electrical Conductivity and Biodegradability. Part. Part. Syst. Charact. 2019, 36, 1900166. [Google Scholar] [CrossRef]
- Zhang, H.L.; Li, J.F.; Zhang, B.P.; Yao, K.F.; Liu, W.S.; Wang, H. Electrical and thermal properties of carbon nanotube bulk materials: Experimental studies for the 328–958 K temperature range. Phys. Rev. B. 2007, 75, 205407. [Google Scholar] [CrossRef]
- Lee, S.E.; Sohn, Y.; Cho, K.; Kim, D.; Park, S.H.; Bae, M.; Kim, Y.; Han, I.; Kim, H.J. Suppression of negative temperature coefficient of resistance of multiwalled nanotube/silicone rubber composite through segregated conductive network and its application to laser-printing fusing element. Org. Electron. 2016, 37, 371–378. [Google Scholar] [CrossRef]
- Natarajan, B.; Orloff, N.; Ashkar, R.; Doshi, S.; Twedt, K.; Krishnamurthy, A.; Davis, C.; Forster, A.; Thostenson, E.; Obrzut, J.; et al. Multiscale metrologies for process optimization of carbon nanotube polymer composites. Carbon 2016, 108, 381–393. [Google Scholar] [CrossRef] [Green Version]
- Bauhofer, W.; Kovacs, J.Z. A review and analysis of electrical percolation in carbon nanotube polymer composite. Compos. Sci. Technol. 2009, 69, 1486–1498. [Google Scholar] [CrossRef]
- Lee, S.E.; Cho, S.; Kim, H.; Han, I.; Sohn, Y. Advanced catalyst design induced enhancement of multi-walled nanotube debundling and electrical conductivity of multi-walled nanotube/silicone composite. RSC Adv. 2016, 6, 48120–48128. [Google Scholar] [CrossRef]
- Sohn, Y.; Kim, D.; Park, S.H.; Lee, S.E. Seamless Tube-Type Heater with Uniform Thickness and Temperature Distribution Based on Carbon Nanotubes Aligned by Circumferential Shearing. Materials 2019, 12, 3283. [Google Scholar] [CrossRef] [Green Version]
- Theilmann, P.; Yun, D.J.; Asbeck, P.; Park, S.H. Superior electromagnetic interference shielding and dielectric properties of carbon nanotube composites through the use of high aspect ratio CNTs and three-roll milling. Org. Electron. 2019, 14, 1531–1537. [Google Scholar] [CrossRef]
- Li, Z.W. Thermoelectric properties of carbon nanotube/silicone rubber composites. J. Exp. Nanosci. 2017, 12, 188–196. [Google Scholar] [CrossRef] [Green Version]
- Tsuchiya, K.; Sakai, A.; Nagaoka, T.; Uchida, K.; Furukawa, T.; Yajima, H. High electrical performance of carbon nanotubes/rubber composites with low percolation threshold prepared with a rotation–revolution mixing technique. Compos. Sci. Technol. 2011, 71, 1098–1104. [Google Scholar] [CrossRef]
- Bannych, A.; Katz, S.; Barkay, Z.; Lachman, N. Preserving Softness and Elastic Recovery in Silicone-Based Stretchable Electrodes Using Carbon Nanotubes. Polymers 2020, 12, 1345. [Google Scholar] [CrossRef]
- Meier, A. Electric Power Systems: A Conceptual Introduction; John Wiley & Sons: Manhattan, NY, USA, 2006. [Google Scholar]
- Donati, G.; De Nicola, A.; Munaò, G.; Byshkin, M.; Vertuccio, L.; Guadagno, L.; Goff, R.; Milano, G. Simulation of self-heating process on the nanoscale: A multiscale approach for molecular models of nanocomposite materials. Nanoscale Adv. 2020, 2, 3164–3180. [Google Scholar] [CrossRef]
- Park, J.; Jeong, Y.G. Investigation of microstructure and electric heating behavior of hybrid polymer composite films based on thermally stable polybenzimidazole and multiwalled carbon nanotube. Polymer 2015, 59, 102–109. [Google Scholar] [CrossRef]
- Santini, C.A.; Vereecken, P.M.; Volodin, A.; Groeseneken, G.; De Gendt, S.; Haesendonck, C.V. A study of Joule heating-induced breakdown of carbon nanotube interconnects. Nanotechnology 2011, 22, 395202. [Google Scholar] [CrossRef]
- Lee, T.W.; Lee, S.E.; Jeong, Y.G. Carbon nanotube/cellulose papers with high performance in electric heating and electromagnetic interference shielding. Compos. Sci. Technol. 2016, 131, 77–87. [Google Scholar] [CrossRef]
- Zhang, R.; Tang, P.; Shi, R.; Cheng, T.; Hu, S. Improved electrical heating properties for polymer nanocomposites by electron beam irradiation. Polym. Bull. 2018, 75, 2847–2863. [Google Scholar] [CrossRef]
- Balaji, S.; Debnath, R. Internal stress induced metallization of single-walled carbon nanotubes in a nanotube/glass conducting composite. Nanotechnology 2011, 22, 415706. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.E.; Moon, K.S.; Sohn, Y. Temperature dependence of contact resistance at metal/MWNT interface. Appl. Phys. Lett. 2016, 109, 021605. [Google Scholar] [CrossRef]
- Karbovnyk, I.; Klym, H.; Chalyy, D.; Zhydenko, I.; Lukashevych, D. Low temperature electrical behavior of PEDOT:PSS polymer composites reinforced with single/multiwalled carbon nanotubes. Mol. Cryst. Liquid Cryst. 2022. [Google Scholar] [CrossRef]
- Jackson, E.M.; Laibinis, P.E.; Collins, W.E.; Ueda, A.; Wingard, C.D.; Penn, B. Development and thermal properties of carbon nanotube-polymer composites. Compos. Part B Eng. 2016, 89, 362–373. [Google Scholar] [CrossRef] [Green Version]
- Tonpheng, B.; Yu, J.; Andersson, O. Thermal Conductivity, Heat Capacity, and Cross-Linking of Polyisoprene/Single-Wall Carbon Nanotube Composites under High Pressure. Macromolecules 2009, 42, 9295–9301. [Google Scholar] [CrossRef]
- Delouei, A.A.; Emamian, A.; Karimnejad, S.; Sajjadi, H. A closed-form solution for axisymmetric conduction in a finite functionally graded cylinder. Int. Commun. Heat Mass Transf. 2019, 108, 104280. [Google Scholar] [CrossRef]
- Delouei, A.A.; Emamian, A.; Karimnejad, S.; Sajjadi, H.; Jing, D. Two-dimensional temperature distribution in FGM sectors with the power-law variation in radial and circumferential directions. J. Therm. Anal. Calorim. 2021, 144, 611–621. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, Y.; Zhu, P.; Han, F.; Zhu, Y.; Sun, R.; Wong, C.P. Flexible and Highly Sensitive Pressure Sensor Based on Microdome-Patterned PDMS Forming with Assistance of Colloid Self-Assembly and Replica Technique for Wearable Electronics. ACS Appl. Mater. Interfaces 2017, 9, 35968–35976. [Google Scholar] [CrossRef] [PubMed]
- Chu, K.; Lee, S.C.; Lee, S.E.; Kim, D.; Moon, C.; Park, S.H. Smart conducting polymer composites having zero temperature coefficient of resistance. Nanoscale 2015, 7, 471–478. [Google Scholar] [CrossRef]
- Kang, S.W.; Kim, S.; Cho, C.; Choi, K. Experimental investigation of the dependence of the thermoelectric performance of carbon nanotubes/polymer nanocomposites on the synthesis protocol. Funct. Compos. Struct. 2020, 2, 035001. [Google Scholar] [CrossRef]
- Lim, G.H.; Woo, S.; Lee, H.; Moon, K.S.; Sohn, H.; Lee, S.E.; Lim, B. Mechanically Robust Magnetic Carbon Nanotube Papers Prepared with CoFe2O4 Nanoparticles for Electromagnetic Interference Shielding and Magnetomechanical Actuation. ACS Appl. Mater. Interfaces 2017, 9, 40628–40637. [Google Scholar] [CrossRef]
- Yeswanth, I.V.S.; Jha, K.; Bhowmik, S.; Kumar, R.; Sharma, S.; Ilyas, R.A. Recent developments in RAM based MWCNT composite materials: A short review. Funct. Compos. Struct. 2022, 4, 024001. [Google Scholar] [CrossRef]
- Murakami, D.; Jinnai, H.; Takahara, A. Wetting Transition from the Cassie−Baxter State to the Wenzel State on Textured Polymer Surfaces. Langmuir 2014, 30, 2061–2067. [Google Scholar] [CrossRef] [PubMed]
- Sohn, Y.; Kim, D.; Lee, S.E.; Yin, M.; Song, J.Y.; Hwang, W.; Park, S.; Kim, H.; Ko, Y.; Han, I. Anti-frost coatings containing carbon nanotube composite with reliable thermal cyclic property. J. Mater. Chem. A 2014, 2, 11465–11471. [Google Scholar] [CrossRef]
Environmental Temperature [°C] | Applied Voltage [V] | τg [min] | hr+c [W/°C] |
---|---|---|---|
20 | 5 | 2.162 | 0.319 |
9 | 1.490 | 0.280 | |
12 | 1.204 | 0.299 | |
0 | 5 | 2.002 | 0.292 |
9 | 1.386 | 0.287 | |
12 | 1.264 | 0.285 | |
−10 | 5 | 1.142 | 0.315 |
9 | 1.287 | 0.304 | |
12 | 1.345 | 0.295 | |
−20 | 5 | 1.015 | 0.290 |
9 | 1.112 | 0.316 | |
12 | 1.111 | 0.314 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Min, Y.K.; Eom, T.; Kim, H.; Kang, D.; Lee, S.-E. Independent Heating Performances in the Sub-Zero Environment of MWCNT/PDMS Composite with Low Electron-Tunneling Energy. Polymers 2023, 15, 1171. https://doi.org/10.3390/polym15051171
Min YK, Eom T, Kim H, Kang D, Lee S-E. Independent Heating Performances in the Sub-Zero Environment of MWCNT/PDMS Composite with Low Electron-Tunneling Energy. Polymers. 2023; 15(5):1171. https://doi.org/10.3390/polym15051171
Chicago/Turabian StyleMin, Yun Kyung, Taesik Eom, Heonyoung Kim, Donghoon Kang, and Sang-Eui Lee. 2023. "Independent Heating Performances in the Sub-Zero Environment of MWCNT/PDMS Composite with Low Electron-Tunneling Energy" Polymers 15, no. 5: 1171. https://doi.org/10.3390/polym15051171
APA StyleMin, Y. K., Eom, T., Kim, H., Kang, D., & Lee, S. -E. (2023). Independent Heating Performances in the Sub-Zero Environment of MWCNT/PDMS Composite with Low Electron-Tunneling Energy. Polymers, 15(5), 1171. https://doi.org/10.3390/polym15051171