Enhanced Sorption of Europium and Scandium Ions from Nitrate Solutions by Remotely Activated Ion Exchangers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the Interpolymer System
2.3. Polymers Swelling Coefficient Determination
2.4. Mutual Activation of the Interpolymer System
- Dissociation of Lewatit CNP LF in an aqueous solution occurs according to Figure 2.
- 2.
- Dissociation of AV-17-8 in an aqueous solution occurs according to Figure 3.
2.5. Polymer Chain Binding Degree Determination
2.6. Plotting a Calibration Curve
2.7. Determination of Residual Concentration of Europium and Scandium Ions
2.8. ICP-OES Analysis
2.9. FTIR Spectroscopy
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Massari, S.; Ruberti, M. Rare earth elements as critical raw materials: Focus on international markets and future strategies. Resour. Policy 2013, 38, 36–43. [Google Scholar] [CrossRef]
- Golev, A.; Scott, M.; Erskine, P.D.; Ali, S.H.; Ballantyne, G.R. Rare Earths Supply Chains: Current status, constraints and opportunities. Resour. Policy 2014, 41, 52–59. [Google Scholar] [CrossRef]
- Fan, J.H.; Omura, A.; Roca, E. Geopolitics and rare earth metals. Eur. J. Political Econ. 2022, 102356. [Google Scholar] [CrossRef]
- Campbell, G.A. Rare earth metals: A strategic concern. Miner. Econ. 2014, 27, 21–31. [Google Scholar] [CrossRef]
- Global network attached storage market by solutions, by deployment type, by design, by storage solution, by industry vertical, by region, industry analysis and forecast, 2020–2026. Research and Markets—Market Research Reports. Available online: https://www.researchandmarkets.com/reports/5241382/global-network-attached-storage-market-by (accessed on 16 February 2023).
- Darone, G.M.; Hmiel, B.; Zhang, J.; Saha, S.; Kirshenbaum, K.; Greene, R.; Paglione, J.; Bobev, S. Rare-earth metal gallium silicides via the gallium self-flux method. synthesis, crystal structures, and magnetic properties of re(ga1−xsix)2 (re=Y, La–Nd, SM, Gd–YB, Lu). J. Solid State Chem. 2013, 201, 191–203. [Google Scholar] [CrossRef]
- Pisch, A.; Gröbner, J.; Schmid-Fetzer, R. Application of computational thermochemistry to Al and Mg alloy processing with Sc additions. Mater. Sci. Eng. A 2000, 289, 123–129. [Google Scholar] [CrossRef]
- Iqbal, M.W.; Ateeq, H.; Manzoor, M.; Azam, S.; Aftab, S. First Principal Approach to substitutional effect of europium (Eu+2) on electronic and optical parameters of strontium pyroniobate for low temperature applications. J. Alloys Compd. 2021, 854, 157115. [Google Scholar] [CrossRef]
- Europium. Available online: https://www.rsc.org/periodic-table/element/63/europium (accessed on 28 December 2022).
- Komuro, N.; Mikami, M.; Shimomura, Y.; Bithell, E.G.; Cheetham, A.K. Synthesis, structure and optical properties of europium doped calcium barium phosphate—A novel phosphor for solid-state lighting. J. Mater. Chem. C 2014, 2, 6084. [Google Scholar] [CrossRef]
- Albarhoum, M. Calculation of the effects of Eu as impurity on the reactivity of the miniature neutron source reactors using the MCNP code. Ann. Nucl. Energy 2015, 79, 27–30. [Google Scholar] [CrossRef]
- Yang, C.; Xu, J.; Zhang, R.; Zhang, Y.; Li, Z.; Li, Y.; Liang, L.; Lu, M. An efficient Eu-based anion-selective chemosensor: Synthesis, sensing properties, and its use for the fabrication of Fluorescent Hydrogel Probe. Sens. Actuators B Chem. 2013, 177, 437–444. [Google Scholar] [CrossRef]
- Wang, D.; Sun, Y.; Dai, H.; Guo, W.; Zhao, Z.; Zhao, T.; Li, J.; Wang, C.; Huang, F.; Yu, Y.; et al. Characteristics and exploitation of rare earth, rare metal and rare-scattered element minerals in China. Chin. J. Eng. Sci. 2019, 21, 119. [Google Scholar] [CrossRef] [Green Version]
- Rare Earth—USGS. (n.d.). Available online: https://pubs.usgs.gov/periodicals/mcs2021/mcs2021-rare-earths.pdf (accessed on 16 February 2023).
- Althaf, S.; Babbitt, C.W. Disruption risks to material supply chains in the electronics sector. Resour. Conserv. Recycl. 2021, 167, 105248. [Google Scholar] [CrossRef]
- Salman, A.D.; Juzsakova, T.; Mohsen, S.; Abdullah, T.A.; Le, P.-C.; Sebestyen, V.; Sluser, B.; Cretescu, I. Scandium recovery methods from mining, metallurgical extractive industries, and Industrial Wastes. Materials 2022, 15, 2376. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Lin, X.; Tang, Y.; Kang, N.; Gao, X.; Shi, S.; Huang, W. Laser-based directed energy deposition of novel Sc/Zr-modified Al-Mg alloys: Columnar-to-equiaxed transition and aging hardening behavior. J. Mater. Sci. Technol. 2021, 69, 168–179. [Google Scholar] [CrossRef]
- Awd, M.; Tenkamp, J.; Hirtler, M.; Siddique, S.; Bambach, M.; Walther, F. Comparison of microstructure and mechanical properties of Scalmalloy® produced by selective laser melting and laser metal deposition. Mater. 2017, 11, 17. [Google Scholar] [CrossRef] [Green Version]
- De Luca, A.; Dunand, D.C.; Seidman, D.N. Mechanical properties and optimization of the aging of a dilute Al-Sc-Er-Zr-Si alloy with a high Zr/Sc ratio. Acta Mater. 2016, 119, 35–42. [Google Scholar] [CrossRef] [Green Version]
- ReportLinker. Scandium market—growth, trends, and forecast (2020–2025). GlobeNewswire News Room. Available online: https://www.globenewswire.com/news-release/2021/01/06/2153972/0/en/Scandium-Market-Growth-Trends-and-Forecast-2020-2025.html (accessed on 16 February 2023).
- Mondol, S.; Alam, T.; Banerjee, R.; Kumar, S.; Chattopadhyay, K. Development of a high temperature high strength Al alloy by addition of small amounts of Sc and Mg to 2219 alloy. Mater. Sci. Eng. A 2017, 687, 221–231. [Google Scholar] [CrossRef]
- Chavdarov, A.V. Application of MDO technology for internal combustion engines. Sel’skohozjajstvennaja Teh. Obsluz. I Remont (Agric. Mach. Serv. Repair) 2021, 10, 37–41. [Google Scholar] [CrossRef]
- Schimbäck, D.; Mair, P.; Bärtl, M.; Palm, F.; Leichtfried, G.; Mayer, S.; Uggowitzer, P.J.; Pogatscher, S. Alloy design strategy for microstructural-tailored scandium-modified aluminum alloys for additive manufacturing. Scr. Mater. 2022, 207, 114277. [Google Scholar] [CrossRef]
- Mohd Yusuf, S.; Cutler, S.; Gao, N. Review: The impact of metal additive manufacturing on the aerospace industry. Metals 2019, 9, 1286. [Google Scholar] [CrossRef] [Green Version]
- Najjar, H.; Batis, H.; Lamonier, J.-F.; Mentré, O.; Giraudon, J.-M. Effect of praseodymium and europium doping in La1−xLnxMnO3+g (ln: Pr or Eu, 0 ≤x≤ 1) perosvkite catalysts for total methane oxidation. Appl. Catal. A Gen. 2014, 469, 98–107. [Google Scholar] [CrossRef]
- Vorobyev, P.; Mikhailovskaya, T.; Yugay, O.; Serebryanskaya, A.; Chukhno, N.; Imangazy, A. Catalytic Oxidation of 4-Methylpyridine on Modified Vanadium Oxide Catalysts. Iran. J. Chem. Chem. Eng. 2018, 37, 81–89. [Google Scholar] [CrossRef]
- Šolić, I.; Seankongsuk, P.; Loh, J.K.; Vilaivan, T.; Bates, R.W. Scandium as a pre-catalyst for the deoxygenative allylation of benzylic alcohols. Org. Biomol. Chem. 2018, 16, 119–123. [Google Scholar] [CrossRef] [PubMed]
- Powell-Turner, J.; Antill, P.D. Will future resource demand cause significant and unpredictable dislocations for the UK Ministry of Defence? Resour. Policy 2015, 45, 217–226. [Google Scholar] [CrossRef]
- Rath, M.K.; Kossenko, A.; Kalashnikov, A.; Zinigrad, M. Novel anode current collector for hydrocarbon fuel solid oxide fuel cells. Electrochim. Acta 2020, 331, 135271. [Google Scholar] [CrossRef]
- Christmann, P. A Forward Look into Rare Earth Supply and Demand: A Role for Sedimentary Phosphate Deposits? Procedia Eng. 2014, 83, 19–26. [Google Scholar] [CrossRef] [Green Version]
- Binnemans, K.; Jones, P.T.; Blanpain, B.; Van Gerven, T.; Yang, Y.; Walton, A.; Buchert, M. Recycling of rare earths: A critical review. J. Clean. Prod. 2013, 51, 1–22. [Google Scholar] [CrossRef]
- Jumadilov, T.; Utesheva, A.; Grazulevicius, J.; Imangazy, A. Selective Sorption of Cerium Ions from Uranium-Containing Solutions by Remotely Activated Ion Exchangers. Polymers 2023, 15, 816. [Google Scholar] [CrossRef]
- Dzhevaga, N.V.; Lobacheva, O.L. Solvent extraction of europium (III) from technogenic solutions with the use of surfactants. Fine Chem. Tech. 2020, 15, 51–58. [Google Scholar] [CrossRef]
- Buonomenna, M.G. Mining critical metals from seawater by subnanostructured membranes: Is it viable? Symmetry 2022, 14, 681. [Google Scholar] [CrossRef]
- Buonomenna, M.G.; Mousavi, S.M.; Hashemi, S.A.; Lai, C.W. Water cleaning adsorptive membranes for efficient removal of heavy metals and metalloids. Water 2022, 14, 2718. [Google Scholar] [CrossRef]
- Kim, J.-Y.; Kim, U.-S.; Byeon, M.-S.; Kang, W.-K.; Hwang, K.-T.; Cho, W.-S. Recovery of cerium from glass polishing slurry. J. Rare Earths 2011, 29, 1075–1078. [Google Scholar] [CrossRef]
- Fan, B.; Li, F.; Cheng, Y.; Wang, Z.; Zhang, N.; Wu, Q.; Bai, L.; Zhang, X. Rare-earth separations enhanced by Magnetic Field. Sep. Purif. Technol. 2022, 301, 122025. [Google Scholar] [CrossRef]
- Hermassi, M.; Granados, M.; Valderrama, C.; Skoglund, N.; Ayora, C.; Cortina, J.L. Impact of functional group types in ion exchange resins on rare earth element recovery from treated acid mine waters. J. Clean. Prod. 2022, 379, 134742. [Google Scholar] [CrossRef]
- Zhang, W.; Feng, D.; Xie, X.; Tong, X.; Du, Y.; Cao, Y. Solvent extraction and separation of light rare earths from Chloride Media using HDEHP-P350 system. J. Rare Earths 2022, 40, 328–337. [Google Scholar] [CrossRef]
- Kumari, A.; Dipali; Randhawa, N.S.; Sahu, S.K. Electrochemical treatment of spent NdFeB magnet in organic acid for recovery of rare earths and other metal values. J. Clean. Prod. 2021, 309, 127393. [Google Scholar] [CrossRef]
- Allahkarami, E.; Rezai, B. Removal of cerium from different aqueous solutions using different adsorbents: A Review. Process Saf. Environ. Prot. 2019, 124, 345–362. [Google Scholar] [CrossRef]
- Jumadilov, T.; Malimbayeva, Z.; Khimersen, K.; Saparbekova, I.; Imangazy, A.; Suberlyak, O. Specific features of praseodymium extraction by intergel system based on polyacrylic acid and poly-4-vinylpyridine hydrogels. Bull. Karaganda Univ. Chem. Ser. 2021, 103, 53–59. [Google Scholar] [CrossRef]
- Kerimkulova, A.R.; Azat, S.; Velasco, L.; Mansurov, Z.A.; Lodewyckx, P.; Tulepov, M.I.; Kerimkulova, M.R.; Berezovskaya, I.; Imangazy, A. Granular rice husk-based sorbents for sorption of vapors of organic and inorganic matters. J. Chem. Technol. Metall. 2019, 54, 578–584. [Google Scholar]
- Atamanov, M.; Yelemessova, Z.; Imangazy, A.; Kamunur, K.; Lesbayev, B.; Mansurov, Z.; Yue, T.; Shen, R.; Yan, Q.-L. The Catalytic Effect of CuO-Doped Activated Carbon on Thermal Decomposition and Combustion of AN/Mg/NC Composite. J. Phys. Chem. C 2019, 123, 22941–22948. [Google Scholar] [CrossRef]
- Yelemessova, Z.; Imangazy, A.; Tulepov, M.; Mansurov, Z. Energetic Metal–Organic Frameworks: Thermal Behaviors and Combustion of Nickel Oxide (II) Based on Activated Carbon Compositions. J. Eng. Phys. Thermophys. 2021, 94, 804–811. [Google Scholar] [CrossRef]
- Cardoso, C.E.; Almeida, J.C.; Lopes, C.B.; Trindade, T.; Vale, C.; Pereira, E. Recovery of rare earth elements by carbon-based nanomaterials—A review. Nanomaterials 2019, 9, 814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imangazy, A.; Smagulova, G.; Kaidar, B.; Mansurov, Z.; Kerimkulova, A.; Umbetkaliev, K.; Zakhidov, A.; Vorobyev, P.; Jumadilov, T. Compositional Fibers Based on Coal Tar Mesophase Pitch Obtained by Electrospinning Method. Chem. Chem. Technol. 2021, 15, 403–407. [Google Scholar] [CrossRef]
- LEWATIT CNP LF. Available online: https://lanxess.com/en/Products-and-Brands/Products/l/LEWATIT--CNP-LF (accessed on 16 November 2022).
- Ion exchanger AV-17-8. Available online: http://smoly.com.ua/silnoosnovnyiy-anionit-av-17-8 (accessed on 16 November 2022).
- Jumadilov, T.; Yskak, L.; Imangazy, A.; Suberlyak, O. Ion Exchange Dynamics in Cerium Nitrate Solution Regulated by Remotely Activated Industrial Ion Exchangers. Materials 2021, 14, 3491. [Google Scholar] [CrossRef]
- Bekturov, E.; Tolendina, A.; Shaikhutdinov, Y.; Dzhumadilov, T. Complexation of poly(ethylene glycol) with some salts of alkali-earth metals. Polym. Adv. Technol. 1993, 4, 564–566. [Google Scholar] [CrossRef]
- Bekturganova, G.; Dzhumadilov, T.; Bekturov, E. Electroconductivity and viscosity of complexes of poly(vinylpyridines) with alkali metal salts in organic solvents. Macromol. Chem. Phys. 1996, 197, 105–111. [Google Scholar] [CrossRef]
- Jumadilov, T.K.; Yermukhambetova, B.; Panchenko, S.; Suleimenov, I. Long-distance electrochemical interactions and anomalous ion exchange phenomenon. AASRI Procedia 2012, 3, 553–558. [Google Scholar] [CrossRef]
- Haddad, P.R. Ion Exchange|Overview. Encyclopedia of Analytical Science, 2nd ed.; Elsevier Academic: San Diego, CA, USA, 2005; pp. 440–446. [Google Scholar] [CrossRef]
- Nesterov, Y.V. Ion exchangers and ion exchange. In Sorption Technology for the Extraction of Uranium and Other Metals by In-Situ Leaching; Yunikor-Izdat: Moscow, Russia, 2007; 480p. [Google Scholar]
- Amid, P.K.; Shulman, A.G.; Lichtenstein, I.L.; Sostrin, S.; Young, J.; Hakakha, M. Experimental evaluation of a new composite mesh with the selective property of incorporation to the abdominal wall without adhering to the intestines. J. Biomed. Mater. Res. 1994, 28, 373–375. [Google Scholar] [CrossRef]
- Pearson, R.G. Hard and soft acids and bases. J. Am. Chem. Soc. 1963, 85, 3533–3539. [Google Scholar] [CrossRef]
- Alfarra, A.; Frackowiak, E.; Béguin, F. The HSAB concept as a means to interpret the adsorption of metal ions onto activated carbons. Appl. Surf. Sci. 2004, 228, 84–92. [Google Scholar] [CrossRef]
- Matharu, K.; Mittal, S.K.; Kumar, S.A.; Sahoo, S.K. Selectivity enhancement of Arsenazo(III) reagent towards heavier lanthanides using polyaminocarboxylic acids: A spectrophotometric study. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 145, 165–175. [Google Scholar] [CrossRef] [PubMed]
Time, h Ratio | 0.08 | 1 | 2 | 6 | 24 | 48 |
---|---|---|---|---|---|---|
6:0 | 0.11 | 1.11 | 1.17 | 2.65 | 3.69 | 4.41 |
5:1 | 0.45 | 1.26 | 1.17 | 2.60 | 3.59 | 5.49 |
4:2 | 0.32 | 0.84 | 1.20 | 1.92 | 3.17 | 4.53 |
3:3 | 0.15 | 0.76 | 1.17 | 2.59 | 3.57 | 4.36 |
2:4 | 0.41 | 0.74 | 1.15 | 2.87 | 4.71 | 5.04 |
1:5 | 0.50 | 1.00 | 1.04 | 2.25 | 2.79 | 3.77 |
0:6 | 0.42 | 0.82 | 1.23 | 2.69 | 3.20 | 3.54 |
Time, h Ratio | 0.08 | 1 | 2 | 6 | 24 | 48 |
---|---|---|---|---|---|---|
6:0 | 0.49 | 0.99 | 1.49 | 1.49 | 3.00 | 6.13 |
5:1 | 0.75 | 1.39 | 3.18 | 4.20 | 11.61 | 15.18 |
4:2 | 0.71 | 1.55 | 2.85 | 4.02 | 11.97 | 16.40 |
3:3 | 0.38 | 2.77 | 3.97 | 5.69 | 11.27 | 17.37 |
2:4 | 0.93 | 2.29 | 2.69 | 6.07 | 14.19 | 19.33 |
1:5 | 0.95 | 1.64 | 2.61 | 3.71 | 9.79 | 11.58 |
0:6 | 0.13 | 0.97 | 1.25 | 0.97 | 5.06 | 8.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imangazy, A.; Jumadilov, T.; Khimersen, K.; Bayshibekov, A. Enhanced Sorption of Europium and Scandium Ions from Nitrate Solutions by Remotely Activated Ion Exchangers. Polymers 2023, 15, 1194. https://doi.org/10.3390/polym15051194
Imangazy A, Jumadilov T, Khimersen K, Bayshibekov A. Enhanced Sorption of Europium and Scandium Ions from Nitrate Solutions by Remotely Activated Ion Exchangers. Polymers. 2023; 15(5):1194. https://doi.org/10.3390/polym15051194
Chicago/Turabian StyleImangazy, Aldan, Talkybek Jumadilov, Khuangul Khimersen, and Arman Bayshibekov. 2023. "Enhanced Sorption of Europium and Scandium Ions from Nitrate Solutions by Remotely Activated Ion Exchangers" Polymers 15, no. 5: 1194. https://doi.org/10.3390/polym15051194
APA StyleImangazy, A., Jumadilov, T., Khimersen, K., & Bayshibekov, A. (2023). Enhanced Sorption of Europium and Scandium Ions from Nitrate Solutions by Remotely Activated Ion Exchangers. Polymers, 15(5), 1194. https://doi.org/10.3390/polym15051194