Preparation of Immobilised 17β-Estradiol-Imprinted Nanoparticles onto Bacterial Cellulose Nanofibres to Use for the Removal of 17β-Estradiol from Wastewater
Abstract
:1. Introduction
2. Experimental
2.1. Chemicals
2.2. Preparation of BC-NFs
2.3. Preparation of E2-Imprinted Poly(HEMA-MATrp) Nanoparticles (E2-NP)
2.4. Preparation of E2-NP/BC-NFs
2.5. Swelling Tests of Composite Nanofibres
2.6. Characterisation Studies
2.7. Adsorption of E2
2.8. Selectivity
2.9. Reusability and Reproducibility Studies
3. Results and Discussion
3.1. Characterisation Analysis
3.2. Swelling Test Results
3.3. Adsorption Studies
3.3.1. Effect of pH
3.3.2. Effect of pH, Concentration, and Temperature
3.3.3. Effect of Ionic Strength (IS)
3.3.4. Effect of Time
3.3.5. Selectivity Experiments
3.4. Physicochemical Analysis of Adsorption
3.4.1. Adsorption Isotherms
3.4.2. Adsorption Kinetics
3.4.3. Thermodynamic Analysis
3.5. Reusability
3.6. Comparison with E2-Imprinted Adsorbents
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Chang, H.-S.; Choo, K.-H.; Lee, B.; Choi, S.-J. The methods of identification, analysis, and removal of endocrine disrupting compounds (EDCs) in water. J. Hazard. Mater. 2009, 172, 1–12. [Google Scholar] [CrossRef]
- Gonsioroski, A.; Mourikes, V.E.; Flaws, J.A. Endocrine Disruptors in Water and Their Effects on the Reproductive System. Int. J. Mol. Sci. 2020, 21, 1929. [Google Scholar] [CrossRef] [Green Version]
- Dichiarante, V.; Cavallo, G.; Metrangolo, P. Endocrine-disrupting pollutants properties affecting their bioactivity, remediation, and detection. Curr. Opin. Green Sustain. Chem. 2021, 30, 100485. [Google Scholar] [CrossRef]
- Caliman, F.A.; Gavrilescu, M. Pharmaceuticals, Personal Care Products and Endocrine Disrupting Agents in the Environment—A Review. CLEAN Soil Air Water 2009, 37, 277–303. [Google Scholar] [CrossRef]
- Braga, F.G.; Pinto, S.; Antunes, M.C.G. Comparative study of 17β-estradiol removal from aqueous solutions using pine bark and almond shell as adsorbents. Microchim. Acta 2011, 173, 111–117. [Google Scholar] [CrossRef]
- He, P.; Aga, D.S. Comparison of GC-MS/MS and LC-MS/MS for the analysis of hormones and pesticides in surface waters: Advantages and pitfalls. Anal. Methods 2019, 11, 1436–1448. [Google Scholar] [CrossRef]
- Khanal, S.K.; Xie, B.; Thompson, M.L.; Sung, S.; Ong, S.-K.; Van Leeuwen, J. Fate, Transport, and Biodegradation of Natural Estrogens in the Environment and Engineered Systems. Environ. Sci. Technol. 2006, 40, 6537–6546. [Google Scholar] [CrossRef] [PubMed]
- Maurício, R.; Jorge, J.; Dias, R.; Noronha, J.P.; Amaral, L.; Daam, M.A.; Mano, A.P.; Diniz, M.S. The use of peracetic acid for estrogen removal from urban wastewaters: E2 as a case study. Environ. Monit. Assess. 2020, 192, 114. [Google Scholar] [CrossRef]
- Tyler, C.R.; Spary, C.; Gibson, R.; Santos, E.M.; Shears, J.; Hill, E.M. Accounting for Differences in Estrogenic Responses in Rainbow Trout (Oncorhynchus mykiss: Salmonidae) and Roach (Rutilus rutilus: Cyprinidae) Exposed to Effluents from Wastewater Treatment Works. Environ. Sci. Technol. 2005, 39, 2599–2607. [Google Scholar] [CrossRef]
- Silva, C.P.; Otero, M.; Esteves, V. Processes for the elimination of estrogenic steroid hormones from water: A review. Environ. Pollut. 2012, 165, 38–58. [Google Scholar] [CrossRef] [PubMed]
- Bradley, P.M.; Writer, J.H. Effect of Light on Biodegradation of Estrone, 17β -Estradiol, and 17α -Ethinylestradiol in Stream Sediment. JAWRA J. Am. Water Resour. Assoc. 2014, 50, 334–342. [Google Scholar] [CrossRef]
- Qin, C.; Troya, D.; Shang, C.; Hildreth, S.; Helm, R.; Xia, K. Surface Catalyzed Oxidative Oligomerization of 17β-Estradiol by Fe3+-Saturated Montmorillonite. Environ. Sci. Technol. 2015, 49, 956–964. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Li, Y.; Wang, Q.; Wang, C.; Wang, P.; Mao, K. Performance evaluation and application of surface-molecular-imprinted polymer-modified TiO2 nanotubes for the removal of estrogenic chemicals from secondary effluents. Environ. Sci. Pollut. Res. 2013, 20, 1431–1440. [Google Scholar] [CrossRef] [PubMed]
- Muz, M.; Ak, M.; Komesli, O.; Gökçay, C. An ozone assisted process for treatment of EDC’s in biological sludge. Chem. Eng. J. 2013, 217, 273–280. [Google Scholar] [CrossRef]
- Gao, L.; Sun, L.; Wan, S.; Yu, Z.; Li, M. Degradation kinetics and mechanism of emerging contaminants in water by dielectric barrier discharge non-thermal plasma: The case of 17β-Estradiol. Chem. Eng. J. 2013, 228, 790–798. [Google Scholar] [CrossRef]
- Ben Fredj, S.; Nobbs, J.; Tizaoui, C.; Monser, L. Removal of estrone (E1), 17β-estradiol (E2), and 17α-ethinylestradiol (EE2) from wastewater by liquid–liquid extraction. Chem. Eng. J. 2015, 262, 417–426. [Google Scholar] [CrossRef] [Green Version]
- Machałowski, T.; Jankowska, K.; Bachosz, K.; Smułek, W.; Ehrlich, H.; Kaczorek, E.; Zdarta, J.; Jesionowski, T. Biocatalytic System Made of 3D Chitin, Silica Nanopowder and Horseradish Peroxidase for the Removal of 17α-Ethinylestradiol: Determination of Process Efficiency and Degradation Mechanism. Molecules 2022, 27, 1354. [Google Scholar] [CrossRef]
- Almeida, A.D.S.V.D.; Mastelaro, V.R.; da Silva, M.G.C.; Prediger, P.; Vieira, M.G.A. Adsorption of 17α-ethinylestradiol onto a novel nanocomposite based on graphene oxide, magnetic chitosan and organoclay (GO/mCS/OC): Kinetics, equilibrium, thermodynamics and selectivity studies. J. Water Process. Eng. 2022, 47, 102729. [Google Scholar] [CrossRef]
- Sun, W.; Zhou, K. Adsorption of 17β-estradiol by multi-walled carbon nanotubes in natural waters with or without aquatic colloids. Chem. Eng. J. 2014, 258, 185–193. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, J.L. Removal of estrone and 17β-estradiol from water by adsorption. Water Res. 2005, 39, 3991–4003. [Google Scholar] [CrossRef]
- Liu, Z.-H.; Kanjo, Y.; Mizutani, S. Removal mechanisms for endocrine disrupting compounds (EDCs) in wastewater treatment—Physical means, biodegradation, and chemical advanced oxidation: A review. Sci. Total Environ. 2009, 407, 731–748. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Mohan, S.V.; Sarma, P. Sorptive removal of endocrine-disruptive compound (estriol, E3) from aqueous phase by batch and column studies: Kinetic and mechanistic evaluation. J. Hazard. Mater. 2009, 164, 820–828. [Google Scholar] [CrossRef]
- Kim, S.D.; Cho, J.; Kim, I.S.; Vanderford, B.J.; Snyder, S.A. Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters. Water Res. 2007, 41, 1013–1021. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-H.; Kim, S.; Lee, C.-H.; Kwon, H.-H.; Lee, S. A novel nanofiltration hybrid system to control organic micro-pollutants: Application of dual functional adsorbent/catalyst. Desalination 2008, 231, 276–282. [Google Scholar] [CrossRef]
- Le Noir, M.; Lepeuple, A.-S.; Guieysse, B.; Mattiasson, B. Selective removal of 17β-estradiol at trace concentration using a molecularly imprinted polymer. Water Res. 2007, 41, 2825–2831. [Google Scholar] [CrossRef] [PubMed]
- Le Noir, M.; Plieva, F.; Hey, T.; Guieysse, B.; Mattiasson, B. Macroporous molecularly imprinted polymer/cryogel composite systems for the removal of endocrine disrupting trace contaminants. J. Chromatogr. A 2007, 1154, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Bakhshpour, M.; Tamahkar, E.; Andaç, M.; Denizli, A. Affinity binding of proteins to the modified bacterial cellulose nanofibers. J. Chromatogr. B 2017, 1052, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Tamahkar, E.; Kutsal, T.; Denizli, A. Surface imprinted bacterial cellulose nanofibers for cytochrome c purification. Process. Biochem. 2015, 50, 2289–2297. [Google Scholar] [CrossRef]
- Bayazidi, P.; Almasi, H.; Asl, A.K. Immobilization of lysozyme on bacterial cellulose nanofibers: Characteristics, antimicrobial activity and morphological properties. Int. J. Biol. Macromol. 2018, 107, 2544–2551. [Google Scholar] [CrossRef]
- Sheikhzadeh, E.; Naji-Tabasi, S.; Verdian, A.; Kolahi-Ahari, S. Equipment-free and visual detection of Pb2+ ion based on curcumin-modified bacterial cellulose nanofiber. J. Iran. Chem. Soc. 2022, 19, 283–290. [Google Scholar] [CrossRef]
- Göktürk, I.; Tamahkar, E.; Yılmaz, F.; Denizli, A. Protein depletion with bacterial cellulose nanofibers. J. Chromatogr. B 2018, 1099, 1–9. [Google Scholar] [CrossRef]
- Chen, L.; Wang, X.; Lu, W.; Wu, X.; Li, J. Molecular imprinting: Perspectives and applications. Chem. Soc. Rev. 2016, 45, 2137–2211. [Google Scholar] [CrossRef] [PubMed]
- Şarkaya, K.; Bakhshpour, M.; Denizli, A. Ag+ ions imprinted cryogels for selective removal of silver ions from aqueous solutions. Sep. Sci. Technol. 2018, 54, 2993–3004. [Google Scholar] [CrossRef]
- Şarkaya, K.; Aşir, S.; Göktürk, I.; Yilmaz, F.; Yavuz, H.; Denizli, A. Electrochromatographic separation of hydrophobic amino acid enantiomers by molecularly imprinted capillary columns. Process. Biochem. 2020, 92, 69–77. [Google Scholar] [CrossRef]
- Xu, X.; Chen, X.; Yang, L.; Zhao, Y.; Zhang, X.; Shen, R.; Sun, D.; Qian, J. Film-like bacterial cellulose based molecularly imprinted materials for highly efficient recognition and adsorption of cresol isomers. Chem. Eng. J. 2020, 382, 123007. [Google Scholar] [CrossRef]
- Xiaorui, K.; Cong, Z.; Pin, X.; Zhanwen, D.; Zhijiang, C. Copper ion-imprinted bacterial cellulose for selectively removing heavy metal ions from aqueous solution. Cellulose 2022, 29, 4001–4019. [Google Scholar] [CrossRef]
- Tamahkar, E.; Bakhshpour, M.; Denizli, A. Molecularly imprinted composite bacterial cellulose nanofibers for antibiotic release. J. Biomater. Sci. Polym. Ed. 2019, 30, 450–461. [Google Scholar] [CrossRef]
- Jantarat, C.; Attakitmongkol, K.; Nichasapa, S.; Sirathanarun, P.; Srivaro, S. Molecularly imprinted bacterial cellulose for sustained-release delivery of quercetin. J. Biomater. Sci. Polym. Ed. 2020, 31, 1961–1976. [Google Scholar] [CrossRef]
- Türkmen, D.; Denizli, A. PHEMA based composite cryogels with loaded hydrophobic beads for lysozyme purification. Colloids Surf. B Biointerfaces 2014, 123, 859–865. [Google Scholar] [CrossRef]
- Derazshamshir, A.; Göktürk, I.; Tamahkar, E.; Yılmaz, F.; Sağlam, N.; Denizli, A. Phenol removal from wastewater by surface imprinted bacterial cellulose nanofibres. Environ. Technol. 2020, 41, 3134–3145. [Google Scholar] [CrossRef]
- Bakhshpour, M.; Tamahkar, E.; Andaç, M.; Denizli, A. Surface imprinted bacterial cellulose nanofibers for hemoglobin purification. Colloids Surf. B Biointerfaces 2017, 158, 453–459. [Google Scholar] [CrossRef] [PubMed]
- Zhai, X.; Lin, D.; Li, W.; Yang, X. Improved characterization of nanofibers from bacterial cellulose and its potential application in fresh-cut apples. Int. J. Biol. Macromol. 2020, 149, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Ang, Q.Y.; Zolkeflay, M.H.; Low, S.C. Configuration control on the shape memory stiffness of molecularly imprinted polymer for specific uptake of creatinine. Appl. Surf. Sci. 2016, 369, 326–333. [Google Scholar] [CrossRef]
- Farber, S.; Green, B.S.; Domb, A.J. Selective 17-β-estradiol molecular imprinting. J. Polym. Sci. Part A Polym. Chem. 2009, 47, 5534–5542. [Google Scholar] [CrossRef]
- Koç, I.; Baydemir, G.; Bayram, E.; Yavuz, H.; Denizli, A. Selective removal of 17β-estradiol with molecularly imprinted particle-embedded cryogel systems. J. Hazard. Mater. 2011, 192, 1819–1826. [Google Scholar] [CrossRef] [PubMed]
- Meng, Z.; Chen, W.; Mulchandani, A. Removal of Estrogenic Pollutants from Contaminated Water Using Molecularly Imprinted Polymers. Environ. Sci. Technol. 2005, 39, 8958–8962. [Google Scholar] [CrossRef] [PubMed]
- Lai, E.P.C.; De Maleki, Z.; Wu, S. Characterization of molecularly imprinted and nonimprinted polymer submicron particles specifically tailored for removal of trace 17β-estradiol in water treatment. J. Appl. Polym. Sci. 2010, 116, 1499–1508. [Google Scholar] [CrossRef]
- Xiong, H.; Wu, X.; Lu, W.; Fu, J.; Peng, H.; Li, J.; Wang, X.; Xiong, H.; Chen, L. Switchable zipper-like thermoresponsive molecularly imprinted polymers for selective recognition and extraction of estradiol. Talanta 2018, 176, 187–194. [Google Scholar] [CrossRef]
- Gao, R.; Cui, X.; Hao, Y.; Zhang, L.; Liu, D.; Tang, Y. A highly-efficient imprinted magnetic nanoparticle for selective separation and detection of 17β-estradiol in milk. Food Chem. 2016, 194, 1040–1047. [Google Scholar] [CrossRef]
- He, X.; Lian, Z.; Wang, J. Selective separation and purification of β-estradiol from marine sediment using an optimized core-shell molecularly imprinted polymer. J. Sep. Sci. 2018, 41, 3848–3854. [Google Scholar] [CrossRef]
- Xia, X.; Lai, E.P.; Ormeci, B. Ultrasonication-assisted synthesis of molecularly imprinted polymer-encapsulated magnetic nanoparticles for rapid and selective removal of 17β-estradiol from aqueous environment. Polym. Eng. Sci. 2012, 52, 1775–1783. [Google Scholar] [CrossRef]
- Peng, H.; Luo, M.; Xiong, H.; Yu, N.; Ning, F.; Fan, J.; Zeng, Z.; Li, J.; Chen, L. Preparation of photonic-magnetic responsive molecularly imprinted microspheres and their application to fast and selective extraction of 17β-estradiol. J. Chromatogr. A 2016, 1442, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ning, F.; Peng, H.; Li, J.; Chen, L.; Xiong, H. Molecularly Imprinted Polymer on Magnetic Graphene Oxide for Fast and Selective Extraction of 17β-Estradiol. J. Agric. Food Chem. 2014, 62, 7436–7443. [Google Scholar] [CrossRef] [PubMed]
Compound | NIP/BC-NFs | E2-NP/BC-NFs | |||
---|---|---|---|---|---|
k | k | k′ | |||
E2 | 87.1 | 846.0 | |||
Cholesterol | 39.7 | 2.19 | 46.0 | 18.36 | 8.38 |
Stigmasterol | 188.4 | 0.465 | 21.0 | 40.28 | 86.6 |
Langmuir Isotherm Model | Freundlich Isotherm Model |
---|---|
Qmax: 277.80 µg/g | KF: 184.88 |
KL: 2.25 mL/µg | n: 2.82 |
R2: 0.96 | R2: 0.84 |
Kinetic Parameters | ||
---|---|---|
Pseudo-first-order | k1 (×102 min−1) | 0.086 |
Qe, cal (µg/g) | 150.21 | |
R2 | 0.982 | |
Pseudo-second-order | k2 (×103 g µg−1 min−1) | 0.00071 |
Qe, cal (µg/g) | 222.22 | |
R2 | 0.998 |
Temperature, °C | ΔG° (kJ/mol) | ΔH° (kJ/mol) | ΔS° (kJ/mol) |
---|---|---|---|
4 | −12.55 | ||
25 | −14.33 | ||
35 | −15.18 | ||
45 | −16.03 | −10.93 | 0.084 |
Method/Functional Monomer/Polymer | % Removal | Sample | Ref. |
---|---|---|---|
Covalent MIP/4-vinyl benzene-methacrylic acid/polymer | 10.73 μg/mg | Aqueous media | [44] |
MIP particle-embedded poly(HEMA) cryogel | 5.32 mg/g | Aqueous media | [45] |
Noncovalent MIP/Acrylamide-trimethylpropanol trimethacrylate/microsphere | 380 nmol/mg | Aqueous media | [46] |
MIP/methacrylic acid-ethylene glycol dimethcarylate/submicron particles | 15 mg/g | Aqueous media | [47] |
stimuli-responsive MIP/Acrylamide-2-2-acrylamide-2-methyl propane sulfonic acid/polymer | 8.78 mg/g | Acetonitrile solutions | [48] |
Surface MIP/ Fe3O4@Acrylamide/nanoparticle | 12.62 mg/g | Milk | [49] |
Core-shell MIP/ 3-aminopropyltrimetyoxysilane-methacrylic acid/polymer | 468.3 µg/g | Marine sediment | [50] |
Core-shell MIP/methacrylic acid-ethylene glycol dimethcarylate/magnetic nanoparticle | >95 | Aqueous media | [51] |
Photonic-magnetic responsive MIP/ Fe3O4@SiO2-KH570-4-[(4-methacryloyloxy) phenylazo]benzoic acid/nanoparticle | 315.6 ± 10.1 μg/g | Milk | [52] |
Nanosized substrate MIP-GO-Fe3O4 /nanoparticle | 4.378 µmol/g | Acetonitrile solutions | [53] |
Nanoparticle MIP/HEMA-MATrp/bacterial cellulose nanofibre | 254 µg/g | Aqueous media | Our study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koç, İ.; Şarkaya, K.; Türkmen, D.; Aşır, S.; Denizli, A. Preparation of Immobilised 17β-Estradiol-Imprinted Nanoparticles onto Bacterial Cellulose Nanofibres to Use for the Removal of 17β-Estradiol from Wastewater. Polymers 2023, 15, 1201. https://doi.org/10.3390/polym15051201
Koç İ, Şarkaya K, Türkmen D, Aşır S, Denizli A. Preparation of Immobilised 17β-Estradiol-Imprinted Nanoparticles onto Bacterial Cellulose Nanofibres to Use for the Removal of 17β-Estradiol from Wastewater. Polymers. 2023; 15(5):1201. https://doi.org/10.3390/polym15051201
Chicago/Turabian StyleKoç, İlker, Koray Şarkaya, Deniz Türkmen, Süleyman Aşır, and Adil Denizli. 2023. "Preparation of Immobilised 17β-Estradiol-Imprinted Nanoparticles onto Bacterial Cellulose Nanofibres to Use for the Removal of 17β-Estradiol from Wastewater" Polymers 15, no. 5: 1201. https://doi.org/10.3390/polym15051201
APA StyleKoç, İ., Şarkaya, K., Türkmen, D., Aşır, S., & Denizli, A. (2023). Preparation of Immobilised 17β-Estradiol-Imprinted Nanoparticles onto Bacterial Cellulose Nanofibres to Use for the Removal of 17β-Estradiol from Wastewater. Polymers, 15(5), 1201. https://doi.org/10.3390/polym15051201