Longitudinal Study on the Antimicrobial Performance of a Polyhexamethylene Biguanide (PHMB)-Treated Textile Fabric in a Hospital Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Antimicrobial Textile Fabric
2.2. Antibacterial Property
2.3. Antiviral Property
2.4. Longitudinal Study Design
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kramer, A.; Schwebke, I.; Kampg, G. How Long Do Nosocomial Pathogens persist on Inanimate Surfaces? A Systematic Review. BMC Infect. Dis. 2006, 6, 130–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otter, J.A.; Yezli, S.; Salkeld, J.A.; French, G.L. Evidence that Contaminated Surfaces Contribute to the Transmission of Hospital Pathogens and an Overview of Strategies to Address Contaminated Surfaces in Hospital Settings. Am. J. Infect. Control 2013, 41, 6–11. [Google Scholar] [CrossRef] [PubMed]
- Hayden, M.K.; Blom, D.W.; Lyle, E.A.; Moore, C.G.; Weinstein, R.A. Risk of Hand or Glove Contamination After Contact with Patients Colonized with Vancomycin-Resistant Enterococcus or the Colonized Patients’ Environment. Infect. Control Hosp. Epidemiol. 2008, 29, 149–154. [Google Scholar] [CrossRef]
- Manian, F.A.; Griesenauer, S.; Senkel, D.; Setzer, J.M.; Doll, S.A.; Perry, A.M.; Wiechens, M. Isolation of Acinetobacter baumannii Complex and Methicillin-Resistant Staphylococcus aureus from Hospital Rooms Following Terminal Cleaning and Disinfection: Can We Do Better? Infect. Control Hosp. Epidemiol. 2011, 32, 667–672. [Google Scholar] [CrossRef] [Green Version]
- Samore, M.H.; Venkataraman, L.; Degirolami, P.C.; Arbeit, R.D.; Karchmer, A.W. Clinical and Molecular Epidemiology of Sporadic and Clustered Cases of Nosocomial Clostridium difficile Diarrhea. Am. J. Med. 1998, 100, 32–40. [Google Scholar] [CrossRef]
- Nseir, S.; Blazejewski, C.; Lubret, R.; Wallet, F.; Courcol, R.; Durocher, A. Risk of Acquiring Multidrug-resistant Gram-negative Bacilli from prior Room Occupants in the Intensive Care Unit. Clin. Microbiol. Infect. 2011, 17, 1201–1208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drees, M.; Snydman, D.R.; Schmid, C.H.; Barefoot, L.; Hansjosten, K.; Vue, P.M.; Cronin, M.; Nasraway, S.A.; Golan, Y. Prior Environmental Contamination Increases the Risk of Acquisition of Vancomycin-Resistant Enterococci. Clin. Infect. Dis. 2008, 46, 678–685. [Google Scholar] [CrossRef] [PubMed]
- Shaughnessy, M.K.; Micielli, R.L.; DePestel, D.D.; Arndt, J.; Strachan, C.L.; Welch, K.B.; Chenoweth, C.E. Evaluation of Hospital Room Assignment and Acquisition of Clostridium difficile Infection. Infect. Control Hosp. Epidemiol. 2011, 32, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Passaretti, C.L.; Otter, J.A.; Reich, N.G.; Myers, J.; Shepard, J.; Ross, T.; Carroll, K.C.; Lipsett, P.; Perl, T.M. An Evaluation of Environmental Decontamination with Hydrogen Peroxide Vapor for Reducing the Risk of Patient Acquisition of Multidrug-Resistant Organisms. Clin. Infect. Dis. 2013, 56, 27–35. [Google Scholar] [CrossRef]
- Boyce, J.M.; Havill, N.L.; Otter, J.A.; McDonald, L.C.; Adams, N.M.; Cooper, T.; Thompson, A.; Wiggs, L.; Killgore, G.; Tauman, A.; et al. Impact of Hydrogen Peroxide Vapor Room Decontamination on Clostridium difficile Environmental Contamination and Transmission in a Healthcare Setting. Infect. Control Hosp. Epidemiol. 2008, 28, 723–729. [Google Scholar] [CrossRef]
- Hayden, M.K.; Bonten, M.J.; Blom, D.W.; Lyle, E.A.; van de Vijver, D.A.; Weinstein, R.A. Reduction in Acquisition of Vancomycin-Resistant Enterococcus after Enforcement of Routine Environmental Cleaning Measures. Clin. Infect. Dis. 2006, 42, 1552–1560. [Google Scholar] [CrossRef] [Green Version]
- Dancer, S.J.; White, L.F.; Lamb, J.; Girvan, E.K.; Robertson, C. Measuring the Effect of Enhanced Cleaning in a UK Hospital; A Prospective Cross-Over Study. BMC Med. 2009, 7, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayfield, J.L.; Leet, T.; Miller, J.; Mundy, L.M. Environmental Control to Reduce Transmission of Clostridium difficile. Clin. Infect. Dis. 2000, 31, 995–1000. [Google Scholar] [CrossRef] [Green Version]
- Owen, L.; Laird, K. The Role of Textiles as Fomites in the Healthcare Environment: A Review of the Infection Control Risk. PeerJ 2020, 8, e9790. [Google Scholar] [CrossRef]
- Morais, D.S.; Guedes, R.M.; Lopes, M.A. Antimicrobial Approaches for Textiles: From Research to Market. Materials 2016, 9, 498. [Google Scholar] [CrossRef] [PubMed]
- Abdelfattah, H.N.; Sahnoun, M.; Cheikhrouhou, M. The Effect of Washing Treatments on the Sensory Properties of Denim Fabric. Text. Res. J. 2015, 85, 150–159. [Google Scholar] [CrossRef]
- Su, T.-L.; Chen, T.-P.; Liang, J. Green in-situ synthesis of silver coated textiles for wide hygiene and healthcare applications. Colloids Surfaces A Physicochem. Eng. Asp. 2023, 657, 13056–13063. [Google Scholar] [CrossRef]
- Qian, J.; Dong, Q.; Chun, K.; Zhu, D.; Zhang, X.; Mao, Y.; Culver, J.N.; Tai, S.; German, J.R.; Dean, D.P.; et al. Highly stable, antiviral, antibacterial cotton textiles via molecular engineering. Nat. Nanotechnol. 2022. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Ma, L.; Li, Z.; Liu, X.; Zheng, Y.; Liang, Y.; Liang, C.; Cui, Z.; Zhu, S.; Wu, S. Oxygen Vacancies-Rich Heterojunction of Ti3C2/BiOBr for Photo-Excited Antibacterial Textiles. Small 2022, 18, 2104448–2104461. [Google Scholar] [CrossRef]
- Scientific Committee on Consumer Safety; Bernauer, U. Opinion of the Scientific Committee on Consumer Safety (SCCS)—2nd Revision of the Safety of the Use of Poly(hexamethylene) Biguanide Hydrochloride or Polyaminopropyl Biguanide (PHMB) in Cosmetic Products. Regul. Toxicol. Pharmacol. 2015, 73, 885–886. [Google Scholar] [CrossRef]
- Mori, K.; Hayashi, Y.; Akiba, T.; Noguchi, Y.; Yoshida, Y.; Kai, A.; Yamada, S.; Sakai, S.; Hara, M. Effects of Hand Hygiene on Feline Calicivirus Inactivation and Removal as Norovirus Surrogate Treated with Antiseptic Hand Rubbing, Wet Wipes, and Functional Water. Kansenshogaku Zasshi 2007, 81, 249–255. [Google Scholar] [CrossRef] [Green Version]
- Lucas, A.D.; Gordon, E.A.; Stratmeyer, M.E. Analysis of Polyhexamethylene Biguanide in Multipurpose Contact Lens Solution. Talanta 2009, 80, 1016–1019. [Google Scholar] [CrossRef]
- Hübner, N.O.; Kramer, A. Review on the Efficacy, Safety and Clinical Applications of Polihexanide, A Modern Wound Antiseptic. Skin Pharmacol. Physiol. 2010, 23, 17–27. [Google Scholar] [CrossRef]
- Alves, P.J.; Barreto, R.T.; Barrois, B.M.; Gryson, L.G.; Meaume, S.; Monstrey, S.J. Update on the Role of Antiseptics in the Management of Chronic Wounds with Critical Colonisation and/or Biofilm. Int. Wound J. 2021, 18, 342–358. [Google Scholar] [CrossRef]
- Asiedu-Gyekye, I.J.; Mahmood, A.S.; Awortwe, C.; Nyarko, A.K. Toxicological Assessment of Polyhexamethylene Biguanide for Water Treatment. Interdiscip. Toxicol. 2015, 8, 193–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, I.A.; Joshi, L.T. Biocide Use in the Antimicrobial Era: A Review. Molecules 2021, 8, 2276. [Google Scholar] [CrossRef] [PubMed]
- Sowlati-Hashjin, S.; Carbone, P.; Karttunen, M. Insights into the Polyhexamethylene Biguanide (PHMB) Mechanism of Action on Bacterial Membrane and DNA: A Molecular Dynamics Study. J. Phys. Chem. B 2020, 124, 4487–4497. [Google Scholar] [CrossRef] [PubMed]
- Wessels, S.; Ingmer, H. Modes of Action of Three Disinfectant Active Substances: A Review. Regul. Toxicol. Pharmacol. 2013, 67, 456–467. [Google Scholar] [CrossRef]
- Blackburn, R.S.; Harvey, A.; Kettle, L.L.; Payne, J.D.; Russell, S.J. Sorption of Poly(hexamethylenebiguanide) on Cellulose Mechanism of Binding and Molecular Recognition. Langmuir 2006, 22, 5636–5644. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.-Y.; Chiou, J.-C.; Yip, J.; Yung, K.-F.; Kan, C.-W. Development of Durable Antibacterial Textile Fabrics for Potential Application in Healthcare Environment. Coatings 2020, 10, 520. [Google Scholar] [CrossRef]
- Wang, W.-Y.; Yim, S.-L.; Wong, C.-H.; Kan, C.-W. Development of Antiviral CVC (Chief Value Cotton) Fabric. Polymers 2021, 13, 2601. [Google Scholar] [CrossRef] [PubMed]
- IHME COVID-19 Forecasting Team. Modeling COVID-19 Scenarios for the United States. Nat. Med. 2021, 27, 94–105. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.-Y.; Yim, S.-L.; Wong, C.-H.; Kan, C.-W. Study on the Development of Antiviral Spandex Fabric Coated with Poly(hexamethylene biguanide) Hydrochloride (PHMB). Polymers 2021, 13, 2122. [Google Scholar] [CrossRef] [PubMed]
Sample | Test Organisms | % Reduction |
---|---|---|
Control textile fabric | S. aureus | N.A. |
PHMB-treated textile fabric | >99.99% | |
Control textile fabric | K. pneumoniae | N.A. |
PHMB-treated textile fabric | >99.99% |
Sample | Test Virus | Antiviral Activity Value/ Antiviral Activity Rate (%) |
---|---|---|
Control textile fabric | H1N1 | N.A. |
PHMB-treated textile fabric | 5.11/>99.99% | |
Control textile fabric | Human coronavirus 229E | N.A. |
PHMB-treated textile fabric | 2.21/>99% |
Conditions | Antibacterial Rate | Antiviral Activity Rate against Human Coronavirus 229E | |
---|---|---|---|
S. aureus | K. pneumoniae | ||
Untreated uniforms | N.A. | N.A. | N.A. |
Unused uniforms | >99% | >99% | >99% |
30 days of use | >99% | >99% | >95% |
60 days of use | >99% | >99% | >95% |
90 days of use | >99% | >99% | >95% |
120 days of use | >99% | >99% | >95% |
150 days of use | >99% | >99% | >95% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yim, S.-L.; Cheung, J.W.-Y.; Cheng, I.Y.-C.; Ho, L.W.-H.; Szeto, S.-Y.S.; Chan, P.; Lam, Y.-L.; Kan, C.-W. Longitudinal Study on the Antimicrobial Performance of a Polyhexamethylene Biguanide (PHMB)-Treated Textile Fabric in a Hospital Environment. Polymers 2023, 15, 1203. https://doi.org/10.3390/polym15051203
Yim S-L, Cheung JW-Y, Cheng IY-C, Ho LW-H, Szeto S-YS, Chan P, Lam Y-L, Kan C-W. Longitudinal Study on the Antimicrobial Performance of a Polyhexamethylene Biguanide (PHMB)-Treated Textile Fabric in a Hospital Environment. Polymers. 2023; 15(5):1203. https://doi.org/10.3390/polym15051203
Chicago/Turabian StyleYim, Sui-Lung, Jessie Wing-Yi Cheung, Iris Yuk-Ching Cheng, Lewis Wai-Hong Ho, Suet-Yee Sandy Szeto, Pinky Chan, Yin-Ling Lam, and Chi-Wai Kan. 2023. "Longitudinal Study on the Antimicrobial Performance of a Polyhexamethylene Biguanide (PHMB)-Treated Textile Fabric in a Hospital Environment" Polymers 15, no. 5: 1203. https://doi.org/10.3390/polym15051203
APA StyleYim, S. -L., Cheung, J. W. -Y., Cheng, I. Y. -C., Ho, L. W. -H., Szeto, S. -Y. S., Chan, P., Lam, Y. -L., & Kan, C. -W. (2023). Longitudinal Study on the Antimicrobial Performance of a Polyhexamethylene Biguanide (PHMB)-Treated Textile Fabric in a Hospital Environment. Polymers, 15(5), 1203. https://doi.org/10.3390/polym15051203