Effect of Flame Treatment on Bonding Performance of GF/EP Pultrusion Sheets Used for VARI Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Whole Process of the Experiment
2.2. Test and Characterization
3. Results
3.1. Bond Strength Data and Analysis
3.1.1. Tensile Shear Strength
3.1.2. DCB
3.1.3. ENF
3.2. Surface Topography Analysis
3.3. Contact Angle Test
3.4. FTIR and XPS Analysis
3.4.1. FTIR Analysis
3.4.2. XPS Analysis
4. Conclusions
- (1)
- The effect of flame treatment on the bonding properties of the GF/EP pultruded sheets was found to be nonlinear. Tensile shear strength initially increased as the number of flame treatments increased in the present study. However, after reaching a maximum value after the fifth treatment, the strength subsequently decreased. The maximum strength value represented an increase in bonding strength of 22.44%.
- (2)
- The GIC and GIIC of the bonding line between the GF/EP pultruded and infused sheets prepared using the optimal flame treatment process were found to increase by 21.84% and 78.36%, respectively. This can be attributed to the different modes of stress that the resin, responsible for adhesion, is subjected to during the DCB and ENF tests. The DCB test involves tensile stress, while the ENF test sustains shear stress.
- (3)
- Flame treatment enhances the bonding performance of the GF/EP pultruded plate by removing the weak boundary layer and release agent on the surface of the plate, increasing the roughness of the etched surface, and introducing polar groups containing oxygen.
- (4)
- The excessive flame treatment reduces the bonding performance of the GF/EP pultrusion plate because the excessive flame treatment destroyed the surface of the plate, and is unable to form a firm mechanical lock and carbonized part of the release agent and epoxy resin.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lin, B.; Chen, Y. Impacts of policies on innovation in wind power technologies in China. Appl. Energy 2019, 247, 682–691. [Google Scholar] [CrossRef]
- Colbertaldo, P.; Agustin, S.B.; Campanari, S.; Brouwer, J. Impact of hydrogen energy storage on California electric power system: Towards 100% renewable electricity. Int. J. Hydrogen Energy 2019, 44, 9558–9576. [Google Scholar] [CrossRef]
- Duan, H. Emissions and temperature benefits: The role of wind power in China. Environ. Res. 2017, 152, 342–350. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wei, J.; Chen, X.; Zhao, Y. China in global wind power development: Role, status and impact. Renew. Sustain. Energy Rev. 2020, 127, 109881. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, J.; Pan, J.; Tan, Y.; Cheng, X.; Li, Y. Implications of the development and evolution of global wind power industry for China—An empirical analysis is based on public policy. Energy Rep. 2022, 8, 205–219. [Google Scholar] [CrossRef]
- Owda, A.; Badger, M. Wind Speed Gradients and Wakes Mapped Using SAR for a Study Area in South-East China. In Proceedings of the IGARSS 2022—2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 4323–4326. [Google Scholar]
- Global Wind Energy Council. GWEC Global Wind Report 2022; Global Wind Energy Council: Brussels, Belgium, 2022. [Google Scholar]
- Wang, B.; Xing, Q. Evaluation of the Wind Power Industry Policy in China (2010–2021): A Quantitative Analysis Based on the PMC Index Model. Energies 2022, 15, 8176. [Google Scholar] [CrossRef]
- Muflikhun, M.A.; Yokozeki, T.; Aoki, T. The strain performance of thin CFRP-SPCC hybrid laminates for automobile structures. Compos. Struct. 2019, 220, 11–18. [Google Scholar] [CrossRef]
- Muflikhun, M.A.; Yokozeki, T. Experimental and numerical analysis of CFRP-SPCC hybrid laminates for automotive and structural applications with cost analysis assessment. Compos. Struct. 2021, 263, 113707. [Google Scholar] [CrossRef]
- Tucci, F.; Vedernikov, A. Design Criteria for Pultruded Structural Elements. Encycl. Mater. Compos. 2021, 3, 51–68. [Google Scholar] [CrossRef]
- Vedernikov, A.; Safonov, A.; Tucci, F.; Carlone, P.; Akhatov, I. Analysis of Spring-in Deformation in L-shaped Profiles Pultruded at Different Pulling Speeds: Mathematical Simulation and Experimental Results. ESAFORM 2021 2021. [Google Scholar] [CrossRef]
- Nugraha, A.D.; Nuryanta, M.I.; Sean, L.; Budiman, K.; Kusni, M.; Muflikhun, M.A. Recent Progress on Natural Fibers Mixed with CFRP and GFRP: Properties, Characteristics, and Failure Behaviour. Polymers 2022, 14, 5138. [Google Scholar] [CrossRef]
- Muflikhun, M.A.; Fiedler, B. Failure Prediction and Surface Characterization of GFRP Laminates: A Study of Stepwise Loading. Polymers 2022, 14, 4322. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Li, C.; Bai, Y.; Dong, S.; Xian, G.; Vedernikov, A.; Akhatov, I.; Safonov, A.; Yue, Q. Durability study on the interlaminar shear behavior of glass-fibre reinforced polypropylene (GFRPP) bars for marine applications. Constr. Build. Mater. 2022, 349, 128694. [Google Scholar] [CrossRef]
- Bilgili, M.; Tumse, S.; Tontu, M.; Sahin, B. Effect of Growth in Turbine Size on Rotor Aerodynamic Performance of Modern Commercial Large-Scale Wind Turbines. Arab. J. Sci. Eng. 2021, 46, 7185–7195. [Google Scholar] [CrossRef]
- McKenna, R.; Leye, P.O.V.; Fichtner, W. Key challenges and prospects for large wind turbines. Renew. Sustain. Energy Rev. 2016, 53, 1212–1221. [Google Scholar] [CrossRef]
- Madenci, E.; Özkılıç, Y.O.; Aksoylu, C.; Safonov, A. The Effects of Eccentric Web Openings on the Compressive Performance of Pultruded GFRP Boxes Wrapped with GFRP and CFRP Sheets. Polymers 2022, 14, 4567. [Google Scholar] [CrossRef]
- Ozkilic, Y.O.; Gemi, L.; Madenci, E.; Aksoylu, C.; Kalkan, I. Effect of the GFRP wrapping on the shear and bending Behavior of RC beams with GFRP encasement. Steel Compos. Struct. 2022, 45, 193–204. [Google Scholar]
- Yuksel, O.; Baran, I.; Ersoy, N.; Akkerman, R. Investigation of transverse residual stresses in a thick pultruded composite using digital image correlation with hole drilling. Compos. Struct. 2019, 223, 110954. [Google Scholar] [CrossRef]
- Baran, I. Analysis of the local fiber volume fraction variation in pultrusion process. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2017; p. 030029. [Google Scholar]
- Baran, I. Pultrusion: State-of-the-Art Process Models; Smithers Rapra: Shrewsbury, UK, 2015. [Google Scholar]
- Minchenkov, K.; Vedernikov, A.; Kuzminova, Y.; Gusev, S.; Sulimov, A.; Gulyaev, A.; Kreslavskaya, A.; Prosyanoy, I.; Xian, G.; Akhatov, I.; et al. Effects of the quality of pre-consolidated materials on the mechanical properties and morphology of thermoplastic pultruded flat laminates. Compos. Commun. 2022, 35, 101281. [Google Scholar] [CrossRef]
- Pouchias, A.; Maistros, G.; Hartley, J.R.; Loukodimou, V.; Lewis, S.; Kazilas, M.C. High-Performance Pultrusion for Advanced Composites; HIPPAC Project: Runcorn, UK, 2020. [Google Scholar]
- Minchenkov, K.; Vedernikov, A.; Safonov, A.; Akhatov, I. Thermoplastic Pultrusion: A Review. Polymers 2021, 13, 180. [Google Scholar] [CrossRef]
- Paulsen, U.S.; Madsen, H.A.; Kragh, K.A.; Nielsen, P.H.; Baran, I.; Ritchie, E.; Leban, K.; Svendsen, H.G.; Berthelsen, P.A.; van Bussel, G.; et al. The 5 MW DeepWind floating offshore vertical wind turbine concept design-status and perspective. In Proceedings of the European wind energy association conference and exhibition (EWEA 2014), Barcelona, Spain, 10–13 March 2014. [Google Scholar]
- Robert, C.; Pecur, T.; Maguire, J.M.; Lafferty, A.D.; McCarthy, E.D.; Brádaigh, C.M. A novel powder-epoxy towpregging line for wind and tidal turbine blades. Compos. Part B Eng. 2020, 203, 108443. [Google Scholar] [CrossRef]
- Cairns, D.; Bundy, B. The application of pre-cured carbon fiber/epoxy pultrusions as reinforcement in composite wind turbine blades. In Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 8–11 January 2007; p. 821. [Google Scholar]
- Venkataramana, S. Effects of Surface Treatment on Co-Bonded Wind Turbine Blade Spar Caps; University of Twente: Enschede, The Netherlands, 2021. [Google Scholar]
- Murray, J.; Pappa, E.; Mamalis, D.; Breathnach, G.; Doyle, A.; Flanagan, T.; Di Noi, S.; Brádaigh, C.M.O. Characterisation of carbon fibre reinforced powder epoxy composites for wind energy blades. In Proceedings of the 18th European Conference on Composite Materials, Athens, Greece, 24–28 June 2018. [Google Scholar]
- Preis, F.; Méndez, Y. Model-based Risk Assessment on Wind Turbine Blade’s Failure Caused by Composite Material’s Dielectric Strength Breakdown During Lightning. In Proceedings of the 2021 35th International Conference on Lightning Protection (ICLP) and XVI International Symposium on Lightning Protection (SIPDA), Colombo, Sri Lanka, 20–26 September 2021; pp. 1–8. [Google Scholar]
- Gillet, C.; Hassoune-Rhabbour, B.; Poncin-Epaillard, F.; Tchalla, T.; Nassiet, V. Contributions of atmospheric plasma treatment on a hygrothermal aged carbon/epoxy 3D woven composite material. Polym. Degrad. Stab. 2022, 202, 110023. [Google Scholar] [CrossRef]
- Yuan, J.-M.; Fan, Z.-F.; Yang, Q.-C.; Li, W.; Wu, Z.-J. Surface modification of carbon fibers by microwave etching for epoxy resin composite. Compos. Sci. Technol. 2018, 164, 222–228. [Google Scholar] [CrossRef]
- Ma, F.; Zhu, X.L.; Kang, R.K.; Dong, Z.G.; Zou, S.Q. Study on the subsurface damages of glass fiber reinforced composites. Adv. Mater. Res. 2013, 797, 691–695. [Google Scholar] [CrossRef]
- Marques, A.C.; Mocanu, A.; Tomić, N.Z.; Balos, S.; Stammen, E.; Lundevall, A.; Abrahami, S.T.; Günther, R.; de Kok, J.M.M.; Teixeira de Freitas, S. Review on Adhesives and Surface Treatments for Structural Applications: Recent Developments on Sustainability and Implementation for Metal and Composite Substrates. Materials 2020, 13, 5590. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, R.L.; Lopes, J.C.; Mancini, S.D.; de Ângelo Sanchez, L.E.; de Almeida Varasquim, F.M.F.; Volpato, R.S.; de Mello, H.J.; de Aguiar, P.R. Contribution for minimization the usage of cutting fluids in CFRP grinding. Int. J. Adv. Manuf. Technol. 2019, 103, 487–497. [Google Scholar] [CrossRef]
- Yang, G.; Yang, T.; Yuan, W.; Du, Y. The influence of surface treatment on the tensile properties of carbon fiber-reinforced epoxy composites-bonded joints. Compos. Part B Eng. 2019, 160, 446–456. [Google Scholar] [CrossRef]
- Fiore, V.; Di Franco, F.; Miranda, R.; Santamaria, M.; Badagliacco, D.; Valenza, A. Effects of anodizing surface treatment on the mechanical strength of aluminum alloy 5083 to fibre reinforced composites adhesive joints. Int. J. Adhes. Adhes. 2021, 108, 102868. [Google Scholar] [CrossRef]
- Khalid, M.; Al Rashid, A.; Sheikh, M. Effect of Anodizing Process on Inter Laminar Shear Strength of GLARE Composite through T-Peel Test: Experimental and Numerical Approach. Exp. Tech. 2021, 45, 227–235. [Google Scholar] [CrossRef]
- Sun, X.; Bao, J.; Li, K.; Argyle, M.D.; Tan, G.; Adidharma, H.; Zhang, K.; Fan, M.; Ning, P. Advance in using plasma technology for modification or fabrication of carbon-based materials and their applications in environmental, material, and energy fields. Adv. Funct. Mater. 2021, 31, 2006287. [Google Scholar] [CrossRef]
- Yan, R.; Zhou, Y.; Huo, H.; Jia, L. Damage evolution behavior of cold plasma treated glass fiber/vinyl ester resin composites under bending load by acoustic emission. Compos. Commun. 2022, 30, 101075. [Google Scholar] [CrossRef]
- Yudhanto, A.; Alfano, M.; Lubineau, G. Surface preparation strategies in secondary bonded thermoset-based composite materials: A review. Compos. Part A Appl. Sci. Manuf. 2021, 147, 106443. [Google Scholar] [CrossRef]
- Kim, J.G.; Choi, I.; Seo, I.S. Flame and silane treatments for improving the adhesive bonding characteristics of aramid/epoxy composites. Compos. Struct. 2011, 93, 2696–2705. [Google Scholar] [CrossRef]
- Takeda, T.; Yasuoka, T.; Hoshi, H.; Sugimoto, S.; Iwahori, Y. Effectiveness of flame-based surface treatment for adhesive bonding of carbon fiber reinforced epoxy matrix composites. Compos. Part A Appl. Sci. Manuf. 2019, 119, 30–37. [Google Scholar] [CrossRef]
- Muflikhun, M.A.; Yokozeki, T. Steel plate cold commercial-carbon fiber reinforced plastics hybrid laminates for automotive applications: Curing perspective with thermal residual effect. J. Mater. Res. Technol. 2021, 14, 2700–2714. [Google Scholar] [CrossRef]
- Muflikhun, M.A.; Higuchi, R.; Yokozeki, T.; Aoki, T. Delamination behavior and energy release rate evaluation of CFRP/SPCC hybrid laminates under ENF test: Corrected with residual thermal stresses. Compos. Struct. 2020, 236, 111890. [Google Scholar] [CrossRef]
- American Society for Testing and Materials; Committee D14 on Adhesives. Standard Test Method for Apparent Shear Strength of Single-Lap-Joint Adhesively Bonded Metal Specimens by Tension Loading (Metal-to-Metal); ASTM International: West Conshohocken, PA, USA, 2005. [Google Scholar]
- Li, W.; Liu, Y.; Jiang, P.; Guo, F.; Cheng, J. Study on Delamination Damage of CFRP Laminates Based on Acoustic Emission and Micro Visualization. Materials 2022, 15, 1483. [Google Scholar] [CrossRef]
- ASTM A. d5528–13; Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites. ASTM International: West Conshohocken, PA, USA, 2013.
- ASTM D7905/D7905M-19; Standard Test Method for Determination of the Mode II Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites. ASTM International: West Conshohocken, PA, USA, 2019.
- ASTM D7905 D7905M; Standard Test Method for Mode II Interlaminar Fracture Toughness of Undirectional Fiber-Reinforced Polymer Matrix Composites: ASTM D7905 D7905M Janvier 2014. ASTM International: West Conshohocken, PA, USA, 2014.
- Cobanoglu, N.; Genc, A.M.; Korkut, S.O.; Karadeniz, Z.H. Volume-independent contact angle predictions. High Temp.-High Press. 2021, 50, 437–450. [Google Scholar] [CrossRef]
- Young, T., III. An essay on the cohesion of fluids. Philos. Trans. R. Soc. Lond. 1805, 95, 65–87. [Google Scholar]
- Wenzel, R.N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 1936, 28, 988–994. [Google Scholar] [CrossRef]
- Li, S.; Huang, J.; Chen, Z.; Chen, G.; Lai, Y. A review on special wettability textiles: Theoretical models, fabrication technologies and multifunctional applications. J. Mater. Chem. A 2016, 5, 31–55. [Google Scholar] [CrossRef] [Green Version]
- Cassie, A. Contact angles. Discuss. Faraday Soc. 1948, 3, 11–16. [Google Scholar] [CrossRef]
- Woo, Y.J.; Kim, D.S. Cure and thermal decomposition kinetics of a DGEBA/amine system modified with epoxidized soybean oil. J. Therm. Anal. Calorim. 2020, 144, 119–126. [Google Scholar] [CrossRef]
- Karger-Kocsis, J.; Grishchuk, S.; Sorochynska, L.; Rong, M.Z. Curing, gelling, thermomechanical, and thermal decomposition behaviors of anhydride-cured epoxy (DGEBA)/epoxidized soybean oil compositions. Polym. Eng. Sci. 2014, 54, 747–755. [Google Scholar] [CrossRef] [Green Version]
- Dwyer, D.B.; Isbill, S.B.; Niedziela, J.L.; Kapsimalis, R.J.; Duckworth, D.C. Influence of temperature on accessible pyrolysis pathways of homopolymerized bisphenol A/F epoxies and copolymers. J. Anal. Appl. Pyrolysis 2021, 153, 104978. [Google Scholar] [CrossRef]
- Luda, M.; Balabanovich, A.; Zanetti, M.; Guaratto, D. Thermal decomposition of fire retardant brominated epoxy resins cured with different nitrogen containing hardeners. Polym. Degrad. Stab. 2007, 92, 1088–1100. [Google Scholar] [CrossRef]
- Levchik, S.V.; Weil, E.D. Thermal decomposition, combustion and flame-retardancy of epoxy resins—A review of the recent literature. Polym. Int. 2004, 53, 1901–1929. [Google Scholar] [CrossRef]
- Ding, Y.; Ezekoye, O.A.; Lu, S.; Wang, C. Thermal degradation of beech wood with thermogravimetry/Fourier transform infrared analysis. Energy Convers. Manag. 2016, 120, 370–377. [Google Scholar] [CrossRef]
- Stevens, G.C. Cure kinetics of a low epoxide/hydroxyl group-ratio bisphenol a epoxy resin–anhydride system by infrared absorption spectroscopy. J. Appl. Polym. Sci. 1981, 26, 4259–4278. [Google Scholar] [CrossRef]
- Yamasaki, H.; Morita, S. Epoxy curing reaction studied by using two-dimensional correlation infrared and near-infrared spectroscopy. J. Appl. Polym. Sci. 2010, 119, 871–881. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, W.; Liu, H.; Zhang, M.; Liu, J.; Qi, J. Blending Modification of Alicyclic Resin and Bisphenol A Epoxy Resin to Enhance Salt Aging Resistance for Composite Core Rods. Polymers 2022, 14, 2394. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Ji, Y.; Cao, D.; Zhang, H.; Chen, H.; Hu, H. Effect of Flame Treatment on Bonding Performance of GF/EP Pultrusion Sheets Used for VARI Process. Polymers 2023, 15, 1266. https://doi.org/10.3390/polym15051266
Zhang Y, Ji Y, Cao D, Zhang H, Chen H, Hu H. Effect of Flame Treatment on Bonding Performance of GF/EP Pultrusion Sheets Used for VARI Process. Polymers. 2023; 15(5):1266. https://doi.org/10.3390/polym15051266
Chicago/Turabian StyleZhang, Yu, Yundong Ji, Dongfeng Cao, Hongyuan Zhang, Hongda Chen, and Haixiao Hu. 2023. "Effect of Flame Treatment on Bonding Performance of GF/EP Pultrusion Sheets Used for VARI Process" Polymers 15, no. 5: 1266. https://doi.org/10.3390/polym15051266
APA StyleZhang, Y., Ji, Y., Cao, D., Zhang, H., Chen, H., & Hu, H. (2023). Effect of Flame Treatment on Bonding Performance of GF/EP Pultrusion Sheets Used for VARI Process. Polymers, 15(5), 1266. https://doi.org/10.3390/polym15051266