Silver Decorated and Graphene Wrapped Polypyrrole@Ni(OH)2 Quaternary Nanocomposite for High Performance Energy Storage Devices
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Synthesis of Ag/GN@PPy–Ni(OH)2
2.3. Material Characterization
2.4. Development of the Electrodes and EC studies
3. Results and Discussion
3.1. Morphological Studies
3.2. Structural Studies
3.3. X-rays Photon Electrons Spectroscopic Studies
3.4. Electrochemical Studies
3.4.1. Electrochemical Studies of PPy, PPy–Ni(OH)2, GN@PPy–Ni(OH)2, Ag/GN@PPy–Ni(OH)2
3.4.2. Galvanostatic Charge–Discharge Studies
4. Fabrication and Electrochemical Studies of Assembled Energy Storage Device (Supercapattery)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Owusu, P.A.; Asumadu-Sarkodie, S. A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Eng. 2016, 3, 1167990. [Google Scholar] [CrossRef]
- Gokana, M.R.; Wu, C.-M.; Motora, K.G.; Qi, J.Y.; Yen, W.-T. Effects of patterned electrode on near infrared light-triggered cesium tungsten bronze/poly (vinylidene) fluoride nanocomposite-based pyroelectric nanogenerator for energy harvesting. J. Power Sources 2022, 536, 231524. [Google Scholar] [CrossRef]
- Xiao, J.; Li, H.; Zhang, H.; He, S.; Zhang, Q.; Liu, K.; Jiang, S.; Duan, G.; Zhang, K. Nanocellulose and its derived composite electrodes toward supercapacitors: Fabrication, properties, and challenges. J. Bioresour. Bioprod. 2022, 7, 245–269. [Google Scholar] [CrossRef]
- Hereher, M.; El Kenawy, A.M. Exploring the potential of solar, tidal, and wind energy resources in Oman using an integrated climatic-socioeconomic approach. Renew. Energy 2020, 161, 662–675. [Google Scholar] [CrossRef]
- Rani, G.M.; Wu, C.-M.; Motora, K.G.; Umapathi, R. Waste-to-energy: Utilization of recycled waste materials to fabricate triboelectric nanogenerator for mechanical energy harvesting. J. Clean. Prod. 2022, 363, 132532. [Google Scholar] [CrossRef]
- Iqbal, M.Z.; Aziz, U. Supercapattery: Merging of battery-supercapacitor electrodes for hybrid energy storage devices. J. Energy Storage 2022, 46, 103823. [Google Scholar] [CrossRef]
- Yu, L.; Chen, G.Z. Supercapatteries as High-Performance Electrochemical Energy Storage Devices. Electrochem. Energy Rev. 2020, 3, 271–285. [Google Scholar] [CrossRef] [Green Version]
- Rani, G.M.; Wu, C.-M.; Motora, K.G.; Umapathi, R.; Jose, C.R.M. Acoustic-electric conversion and triboelectric properties of nature-driven CF-CNT based triboelectric nanogenerator for mechanical and sound energy harvesting. Nano Energy 2023, 108, 108211. [Google Scholar] [CrossRef]
- Wei, L.; Deng, W.; Li, S.; Wu, Z.; Cai, J.; Luo, J. Sandwich-like chitosan porous carbon Spheres/MXene composite with high specific capacitance and rate performance for supercapacitors. J. Bioresour. Bioprod. 2022, 7, 63–72. [Google Scholar] [CrossRef]
- Yan, B.; Feng, L.; Zheng, J.; Zhang, Q.; Jiang, S.; Zhang, C.; Ding, Y.; Han, J.; Chen, W.; He, S. High performance supercapacitors based on wood-derived thick carbon electrodes synthesized via green activation process. Inorg. Chem. Front. 2022, 9, 6108–6123. [Google Scholar] [CrossRef]
- Palsaniya, S.; Nemade, H.B.; Dasmahapatra, A.K. Synthesis of polyaniline/graphene/MoS2 nanocomposite for high performance supercapacitor electrode. Polymer 2018, 150, 150–158. [Google Scholar] [CrossRef]
- Gupta, A.; Sardana, S.; Dalal, J.; Lather, S.; Maan, A.S.; Tripathi, R.; Punia, R.; Singh, K.; Ohlan, A. Nanostructured Polyaniline/Graphene/Fe2O3 Composites Hydrogel as a High-Performance Flexible Supercapacitor Electrode Material. ACS Appl. Energy Mater. 2020, 3, 6434–6446. [Google Scholar] [CrossRef]
- Asen, P.; Shahrokhian, S. A High Performance Supercapacitor Based on Graphene/Polypyrrole/Cu2O–Cu(OH)2 Ternary Nanocomposite Coated on Nickel Foam. J. Phys. Chem. C 2017, 121, 6508–6519. [Google Scholar] [CrossRef]
- Iqbal, J.; Numan, A.; Ansari, M.O.; Jagadish, P.R.; Jafer, R.; Bashir, S.; Mohamad, S.; Ramesh, K.; Ramesh, S. Facile synthesis of ternary nanocomposite of polypyrrole incorporated with cobalt oxide and silver nanoparticles for high performance supercapattery. Electrochim. Acta 2020, 348, 136313. [Google Scholar] [CrossRef]
- Alshahrie, A.; Ansari, M.O. High Performance Supercapacitor Applications and DC Electrical Conductivity Retention on Surfactant Immobilized Macroporous Ternary Polypyrrole/Graphitic-C3N4@Graphene Nanocomposite. Electron. Mater. Lett. 2019, 15, 238–246. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, R.; Yan, X. Synergistic Effect between Ultra-Small Nickel Hydroxide Nanoparticles and Reduced Graphene Oxide sheets for the Application in High-Performance Asymmetric Supercapacitor. Sci. Rep. 2015, 5, 11095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shendkar, J.H.; Jadhav, V.V.; Shinde, P.V.; Mane, R.S.; O’Dwyer, C. Hybrid composite polyaniline-nickel hydroxide electrode materials for supercapacitor applications. Heliyon 2018, 4, e00801. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Liu, S. Preparation and Characterization of Ni(OH)2 and NiO Mesoporous Nanosheets. J. Nanomater. 2012, 2012, 648012. [Google Scholar] [CrossRef] [Green Version]
- Jilani, A.; Othman, M.H.D.; Ansari, M.O.; Kumar, R.; Alshahrie, A.; Ismail, A.F.; Khan, I.U.; Sajith, V.K.; Barakat, M.A. Facile spectroscopic approach to obtain the optoelectronic properties of few-layered graphene oxide thin films and their role in photocatalysis. New J. Chem. 2017, 41, 14217–14227. [Google Scholar] [CrossRef]
- Waghuley, S.A.; Yenorkar, S.M.; Yawale, S.S.; Yawale, S.P. Application of chemically synthesized conducting polymer-polypyrrole as a carbon dioxide gas sensor. Sens. Actuators B Chem. 2008, 128, 366–373. [Google Scholar] [CrossRef]
- Li, J.; Zhao, W.; Huang, F.; Manivannan, A.; Wu, N. Single-crystalline Ni(OH)2 and NiO nanoplatelet arrays as supercapacitor electrodes. Nanoscale 2011, 3, 5103–5109. [Google Scholar] [CrossRef]
- Sawant, S.Y.; Cho, M.H. Facile electrochemical assisted synthesis of ZnO/graphene nanosheets with enhanced photocatalytic activity. RSC Adv. 2015, 5, 97788–97797. [Google Scholar] [CrossRef]
- Vanaja, M.; Annadurai, G. Coleus aromaticus leaf extract mediated synthesis of silver nanoparticles and its bactericidal activity. Appl. Nanosci. 2013, 3, 217–223. [Google Scholar] [CrossRef] [Green Version]
- Ansari, M.O.; Kumar, R.; Alshahrie, A.; Abdel-wahab, M.S.; Sajith, V.K.; Ansari, M.S.; Jilani, A.; Barakat, M.A.; Darwesh, R. CuO sputtered flexible polyaniline@graphene thin films:A recyclable photocatalyst with enhanced electrical properties. Compos. Part B Eng. 2019, 175, 107092. [Google Scholar] [CrossRef]
- Su, Y.-Z.; Xiao, K.; Li, N.; Liu, Z.-Q.; Qiao, S.-Z. Amorphous Ni(OH)2 @ three-dimensional Ni core–shell nanostructures for high capacitance pseudocapacitors and asymmetric supercapacitors. J. Mater. Chem. A 2014, 2, 13845–13853. [Google Scholar] [CrossRef]
- Casanova-Chafer, J.; Umek, P.; Acosta, S.; Bittencourt, C.; Llobet, E. Graphene Loading with Polypyrrole Nanoparticles for Trace-Level Detection of Ammonia at Room Temperature. ACS Appl. Mater. Interfaces 2021, 13, 40909–40921. [Google Scholar] [CrossRef]
- Ansari, S.A.; Khan, M.M.; Ansari, M.O.; Lee, J.; Cho, M.H. Visible light-driven photocatalytic and photoelectrochemical studies of Ag–SnO2 nanocomposites synthesized using an electrochemically active biofilm. RSC Adv. 2014, 4, 26013–26021. [Google Scholar] [CrossRef]
- Shakir, I.; Shahid, M.; Rana, U.A.; Al Nashef, I.M.; Hussain, R. Nickel–Cobalt layered double hydroxide anchored zinc oxide nanowires grown on carbon fiber cloth for high-performance flexible pseudocapacitive energy storage devices. Electrochim. Acta 2014, 129, 28–32. [Google Scholar] [CrossRef]
- Brzózka, A.; Fic, K.; Bogusz, J.; Brudzisz, A.M.; Marzec, M.M.; Gajewska, M.; Sulka, G.D. Polypyrrole–Nickel Hydroxide Hybrid Nanowires as Future Materials for Energy Storage. Nanomaterials 2019, 9, 307. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Huang, X.; Lin, Z.; Zhong, X.; Huang, Y.; Duan, X. One-step strategy to graphene/Ni(OH)2 composite hydrogels as advanced three-dimensional supercapacitor electrode materials. Nano Res. 2013, 6, 65–76. [Google Scholar] [CrossRef]
- Chen, K.; Xue, D. Searching for electrode materials with high electrochemical reactivity. J. Mater. 2015, 1, 170–187. [Google Scholar] [CrossRef]
- Dhibar, S.; Das, C.K. Silver Nanoparticles Decorated Polyaniline/Multiwalled Carbon Nanotubes Nanocomposite for High-Performance Supercapacitor Electrode. Ind. Eng. Chem. Res. 2014, 53, 3495–3508. [Google Scholar] [CrossRef]
- Alzaid, M.; Iqbal, M.Z.; Alam, S.; Almoisheer, N.; Afzal, A.M.; Aftab, S. Binary composites of nickel-manganese phosphates for supercapattery devices. J. Energy Storage 2021, 33, 102020. [Google Scholar] [CrossRef]
- Ramasubbu, V.; Omar, F.S.; Ramesh, K.; Ramesh, S.; Shajan, X.S. Three-dimensional hierarchical nanostructured porous TiO2 aerogel/Cobalt based metal-organic framework (MOF) composite as an electrode material for supercapattery. J. Energy Storage 2020, 32, 101750. [Google Scholar] [CrossRef]
- Kang, C.Z.; Omar, F.S.; Gunalan, S.; Ramesh, K.; Ramesh, S. Coral-like structured nickel sulfide-cobalt sulfide binder-free electrode for supercapattery. Ionics 2020, 26, 3621–3630. [Google Scholar] [CrossRef]
- Iqbal, M.Z.; Ali, S.R.; Faisal, M.M.; Siddique, S.; Aftab, S.; Alzaid, M. Hydrothermally assisted zinc phosphate doped with polyaniline for high-performance supercapattery devices. Mater. Chem. Phys. 2022, 291, 126638. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, D.; Zhang, D. Electrospun porous CuCo 2 O 4 nanowire network electrode for asymmetric supercapacitors. RSC Adv. 2015, 5, 96448–96454. [Google Scholar] [CrossRef]
- Shahabuddin, S.; Numan, A.; Shahid, M.M.; Khanam, R.; Saidur, R.; Pandey, A.; Ramesh, S. Polyaniline-SrTiO3 nanocube based binary nanocomposite as highly stable electrode material for high performance supercapaterry. Ceram. Int. 2019, 45, 11428–11437. [Google Scholar] [CrossRef]
- Omar, F.S.; Numan, A.; Bashir, S.; Duraisamy, N.; Vikneswaran, R.; Loo, Y.-L.; Ramesh, K.; Ramesh, S. Enhancing rate capability of amorphous nickel phosphate supercapattery electrode via composition with crystalline silver phosphate. Electrochim. Acta 2018, 273, 216–228. [Google Scholar] [CrossRef]
- Iqbal, J.; Numan, A.; Jafer, R.; Bashir, S.; Jilani, A.; Mohammad, S.; Khalid, M.; Ramesh, K.; Ramesh, S. Ternary nanocomposite of cobalt oxide nanograins and silver nanoparticles grown on reduced graphene oxide conducting platform for high-performance supercapattery electrode material. J. Allohys Compd. 2020, 821, 153452. [Google Scholar] [CrossRef]
- Omar, F.S.; Numan, A.; Duraisamy, N.; Bashir, S.; Ramesh, K.; Ramesh, S. A promising binary nanocomposite of zinc cobaltite intercalated with polyaniline for supercapacitor and hydrazine sensor. J. Allohys Compd. 2017, 716, 96–105. [Google Scholar] [CrossRef]
- Omar, F.S.; Numan, A.; Bashir, S.; Vikneswaran, R.; Ramesh, K.; Ramesh, S. Effect of physical interaction between polyaniline and metal phosphate nanocomposite as positive electrode for supercapattery. J. Energy Storage 2020, 32, 101850. [Google Scholar] [CrossRef]
- Surender, G.; Omar, F.S.; Bashir, S.; Pershaanaa, M.; Ramesh, S.; Ramesh, K. Growth of nanostructured cobalt sulfide-based nanocomposite as faradaic binder-free electrode for supercapattery. J. Energy Storage 2021, 39, 102599. [Google Scholar] [CrossRef]
- Iqbal, J.; Numan, A.; Rafique, S.; Jafer, R.; Mohamad, S.; Ramesh, K.; Ramesh, S. High performance supercapattery incorporating ternary nanocomposite of multiwalled carbon nanotubes decorated with Co3O4 nanograins and silver nanoparticles as electrode material. Electrochim. Acta 2018, 278, 72–82. [Google Scholar] [CrossRef]
- Iqbal, J.; Numan, A.; Omaish Ansari, M.; Jafer, R.; Jagadish, P.R.; Bashir, S.; Hasan, P.; Bilgrami, A.L.; Mohamad, S.; Ramesh, K. Cobalt oxide nanograins and silver nanoparticles decorated fibrous polyaniline nanocomposite as battery-type electrode for high performance supercapattery. Polymers 2020, 12, 2816. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Miao, L.; Yang, Q.; Yu, X.; Song, L.; Zheng, Y.; Wang, C.; Li, L.; Zhu, L.; Cao, X. Self-assembly of CNTs on Ni foam for enhanced performance of NiCoO2@ CNT@ NF supercapacitor electrode. Chem. Eng. J. 2021, 410, 128317. [Google Scholar] [CrossRef]
- Huang, C.-L.; Chiang, L.-M.; Su, C.-A.; Li, Y.-Y. MnO2/carbon nanotube-embedded carbon nanofibers as core–shell cables for high performing asymmetric flexible supercapacitors. J. Ind. Eng. Chem. 2021, 103, 142–153. [Google Scholar] [CrossRef]
- Tian, J.; Cui, N.; Chen, P.; Guo, K.; Chen, X. High-performance wearable supercapacitors based on PANI/N-CNT@CNT fiber with a designed hierarchical core-sheath structure. J. Mater. Chem. A 2021, 9, 20635–20644. [Google Scholar] [CrossRef]
- Tang, C.; Zhao, K.; Tang, Y.; Li, F.; Meng, Q. Forest-like carbon foam templated rGO/CNTs/MnO2 electrode for high-performance supercapacitor. Electrochim. Acta 2021, 375, 137960. [Google Scholar] [CrossRef]
- Zolfaghari, Y.; Ghorbani, M.; Lashkenari, M.S. Electrochemical study on zeolitic imidazolate framework-67 modified MnFe2O4/CNT nanocomposite for supercapacitor electrode. Electrochim. Acta 2021, 380, 138234. [Google Scholar] [CrossRef]
Electrode Material | Electrolyte | Specific Capacity | Energy Density | Power Density | Ref |
---|---|---|---|---|---|
Ni3(PO4)2-Ag3PO4 | 1 M KOH | 478 C/g | 32.4 Wh/kg | 399.5 W kg−1 | [39] |
rGO-Co3O4-Ag | 1 M KOH | 94.20 C g−1 | 23.63 Wh kg−1 | 440 W kg−1 | [40] |
PANI-SrTiO3-250 | 1 M KOH | 63.33 C g−1 | 13.2 Wh kg−1 | 299 W kg−1 | [38] |
PANI-ZnCo2O4 | 2 M KOH | 398 C g−1 | 13.25 Wh kg−1 | 375 W kg−1 | [41] |
PANI-Ni3(PO4)2-Ag3PO4 | 1 M KOH | 677 C g−1 | 38.9 Wh kg−1 | 400 W kg−1 | [42] |
Mn-CoS-3/NF | 1 M KOH | 49.67 F g−1 | 17.96 Wh kg−1 | 806 W kg−1 | [43] |
Ag/Co3O4@PPy | 1 M KOH | 355.64 C g−1 | 24.79 Wh kg−1 | 554.40 W kg−1 | [14] |
MWCNT-Co3O4-Ag | 1 M KOH | 83.88 C g−1 | 16.5 Wh k g−1 | 297.5 W g−1 | [44] |
Ag/Co3O4@PANI | 1 M KOH | 262.62 C g−1 | 14.01 Wh kg−1 | 165.00 W kg−1 | [45] |
NiCoO2@CNTs@NF | 2 M KOH | 151 F g−1 | 56.0 Wh kg−1 | 500.3 W kg−1 | [46] |
MnO2/CNF-CNT | 1 M Na2SO4 | 94.25 F g−1 | 209.4 Wh kg−1 | 1000 W kg−1 | [47] |
PANI/N-CNT@CNT fiber | PVA/ H3PO4 gel | 323.8 F g−1 at 1 A g−1 | 5.9 Wh kg−1 | 200 kW kg−1 | [48] |
rGO/CNTs/MnO2 | 1.0 M Na2 SO4 | 54.4 F g−1 at 0.5 A g−1 | 41.6 Wh kg−1 | 513.7 W kg−1 | [49] |
MnFe2O4/CNT/ZIF | 3 M KOH | 330 C g −1 | 24.4 Wh kg−1 | 265 W kg−1 | [50] |
Ag/GN@PPy-Ni(OH)2 | 1 M KOH | 211.00 C g−1 | 43.26 Wh kg−1 | 750.0 W kg−1 | This Work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jafer, R.; Alsufyani, S.A.; Iqbal, J.; Ansari, M.O.; Numan, A.; Bashir, S.; Hasan, P.M.Z.; Wageh, S. Silver Decorated and Graphene Wrapped Polypyrrole@Ni(OH)2 Quaternary Nanocomposite for High Performance Energy Storage Devices. Polymers 2023, 15, 1267. https://doi.org/10.3390/polym15051267
Jafer R, Alsufyani SA, Iqbal J, Ansari MO, Numan A, Bashir S, Hasan PMZ, Wageh S. Silver Decorated and Graphene Wrapped Polypyrrole@Ni(OH)2 Quaternary Nanocomposite for High Performance Energy Storage Devices. Polymers. 2023; 15(5):1267. https://doi.org/10.3390/polym15051267
Chicago/Turabian StyleJafer, Rashida, Sarah A. Alsufyani, Javed Iqbal, Mohammad Omaish Ansari, Arshid Numan, Shahid Bashir, P. M. Z. Hasan, and S. Wageh. 2023. "Silver Decorated and Graphene Wrapped Polypyrrole@Ni(OH)2 Quaternary Nanocomposite for High Performance Energy Storage Devices" Polymers 15, no. 5: 1267. https://doi.org/10.3390/polym15051267
APA StyleJafer, R., Alsufyani, S. A., Iqbal, J., Ansari, M. O., Numan, A., Bashir, S., Hasan, P. M. Z., & Wageh, S. (2023). Silver Decorated and Graphene Wrapped Polypyrrole@Ni(OH)2 Quaternary Nanocomposite for High Performance Energy Storage Devices. Polymers, 15(5), 1267. https://doi.org/10.3390/polym15051267