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Abstract: A liquid-phosphorus-containing polyester diol, PPE, was prepared via condensation polymer-
ization using commercial reactive flame retardant 9,10-dihydro-10-[2,3-di(hydroxycarbonyl)propyl]-10-
phospha-phenanthrene-10-oxide, adipic acid, ethylene glycol, and 1,4-butanediol. PPE and/or expand-
able graphite (EG) were then incorporated into phosphorus-containing flame-retardant polyester-
based flexible polyurethane foams (P-FPUFs). The structure and properties of the resultant P-FPUFs
were characterized using scanning electron microscopy tensile measurements, limiting oxygen in-
dex (LOI), vertical burning tests, cone calorimeter tests, thermogravimetric analysis coupled with
Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy.
Unlike the FPUF prepared using regular polyester polyol (R-FPUF), PPE increased the flexibility
and elongation at break of the resultant forms. More importantly, the peak heat release rate (PHRR)
and total heat release (THR) of P-FPUF were reduced by 18.6% and 16.3%, respectively, via gas-
phase-dominated flame-retardant mechanisms, compared with those of R-FPUF. The addition of EG
further reduced the peak smoke production release (PSR) and total smoke production (TSP) of the
resultant FPUFs while increasing the LOI and char formation. Interestingly, it was observed that EG
noticeably improved the residual quantity of phosphorus in the char residue. When the EG loading
was 15 phr, the resulting FPUF (P-FPUF/15EG) attained a high LOI value (29.2%) and exhibited good
anti-dripping performance. Meanwhile, the PHRR, THR, and TSP of P-FPUF/15EG were significantly
decreased by 82.7%, 40.3%, and 83.4%, respectively, compared with those of P-FPUF. This superior
flame-retardant performance can be attributed to the combination of the bi-phase flame-retardant
behavior of PPE and condensed-phase flame-retardant characteristics of EG.

Keywords: flexible polyurethane foams; polyester diols; expandable graphite; flame retardant

1. Introduction

Flexible polyurethane foams (FPUFs), which are used as cushioning materials in furni-
ture, bedding, automobile carpets, etc., account for approximately 40% of the market share
of polyurethane materials. However, FPUFs are highly flammable because of their chemical
nature, high air permeability, and large surface area [1–10]. Therefore, the synthesis of
flame-retardant FPUFs is of great importance [11–16].

It was well-known that flame retardants can be physically coated onto or incorporated
into the matrix material to create fire-resistant polyurethanes [17–40]. However, several
problems, including weak compatibility, leaching, and poor mechanical properties, have
been observed for some liquid-based flame-retardant additives [41]. Solid flame-retardant
expandable graphite (EG), with a flake-like graphite structure, is known to reduce the
smoke release, melt-drip, and flammability of polyurethanes via the condensed-phase
mechanism of fire retardancy [42–46]. On the other hand, a number of reactive flame
retardants containing phosphorus and/or nitrogen groups have been developed and
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incorporated into the polymer matrix [47–50]. Unfortunately, many of the phosphorus-
containing flame retardants incorporated into polyurethane cause the deterioration of
the smoke release and melt-drip resistance of the polymer during combustion [41,42,49],
resulting in serious suffocation and scalding. One strategy for overcoming this is to combine
EG and the reactive flame retardant to provide additional or synergistic effects [49,51–59].
Rao et al. [49] designed and synthesized flame-retardant and smoke-suppressant FPUFs
based on EG and the liquid-phosphorus-containing polyol (PDEO). The vertical burning
test revealed that the FPUF containing 5 phr PDEO and 10 phr EG extinguished quickly
without dripping and kept the original shape after removing the igniter [49]. Recently,
Ma et al. [57] incorporated EG into a novel phosphine-oxide-containing hyperbranched
polyol and observed a significantly reduced release of contaminative smoke as well as
carbon and nitrogen oxides from fires.

9,10-Dihydro-10[2,3-di(hydroxycarbonyl)propyl]10-phosphaphenanthrene-10-oxide
(DDP) has been shown as an effective reactive phosphorus-containing monomer in the
synthesis of flame-retardant polyester diols. Meanwhile, these polyester diols have been em-
ployed in the synthesis of flame-retardant polyurethane elastomers and rigid polyurethane
foams [51,60]. Polyester-based FPUFs are widely used in luggage, footwear, textile and oil
tank filling industries due to their high resilience, high tensile strength and tear strength,
as well as oil resistance. The aim of this work was to synthesize flame-retardant, low-
smoke-releasing, and non-melt-dripping polyester-based FPUFs by incorporating a liquid-
phosphorus-containing flame-retardant polyester (PPE) diol synthetized via condensation
polymerization with DDP, adipic acid (AA), ethylene glycol (EG), and 1,4-butanediol
(1,4-BDO). As expected, phosphorus-containing flame-retardant FPUFs (P-FPUF), with
improved limiting oxygen index (LOI) values and residual char yields, were successfully
obtained, but high smoke releases during the cone calorimetry test were observed. The
incorporation of EG into the P-FPUFs decreased the smoke and total heat releases via the
mechanism of flame retardancy. The flame-retardant characteristics were studied carefully
to ultimately determine the flame retardancy mechanism.

2. Experiment
2.1. Materials

Materials used in this study are given in the Supplementary Material.

2.2. Synthesis of PPE

The synthetic route of the PPE is summarized in Scheme 1. DDP (0.8 mol, 276.94 g),
adipic acid (AA; 13.20 mol, 1926.19 g), 1,4-BDO (9.10 mol, 819.27 g), ethylene glycol (EG;
9.10 mol, 546.18 g), and catalyst (tetrabutyl titanate, TBT; 60 ppm) were cast into a 5000 mL
customized reactor equipped with nitrogen gas passed in. The reaction was heated from
room temperature to 140 ◦C, the stirring continued to run during this period, and the
reaction was continued at 140 ◦C for 3 h. The temperature was then slowly raised to 220 ◦C
in 4 h to complete the esterification process, and the byproducts and unreacted glycol were
pumped out until the acid value was less than 1 mg KOH/g. The viscosity of PPE was
12,500 cps at 25 ◦C.

2.3. Synthesis of FPUFs

The FPUFs were prepared by the one-pot and free-rise method. The formulations of
FPUFs are listed in Table S1. Polyester diols, catalysts, silicone oil, distilled water, and
expandable graphite (EG) were mixed under vigorous stir. TDI was subsequently added
to the homogeneous mixture and stirred for 10 s. The foams were cured at 80 ◦C for 6 h.
Synthesis of FPUFs is shown in Scheme 1.

2.4. Characterization

Detailed information is given in the Supplementary Material.
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3. Results and Discussion
3.1. Characterization of PPE

The chemical structure of PPE was characterized by proton nuclear magnetic resonance
(1H NMR) (Bruker spectrometer (500 MHz), Germany). The 1H NMR spectrum of PPE
is illustrated in Figure 1. The signal peaks at 1.67 (b) and 2.33 (a) ppm were assigned to
the methylene in AA; the peaks at 1.67 (e), 3.66 (g), and 4.10 (d) ppm were attributed to
methylene in 1,4-BDO; and the peaks at 3.81 (f), 4.21 (h), and 4.28 (c) ppm were ascribed to
methylene in EG. The chemical shifts (i) in the range of 7.28−7.98 ppm were clearly assigned
to the aromatic protons in DDP [51,60]. The molecular weight of PPE was measured by
gel permeation chromatography (GPC) (SHIMADZU EcoSEC8320, Japan). As shown in
Figure S1, the weight-average molecular weight (Mw) and molecular weight distribution
(Mw/Mn) were 2446 g/mol and 1.65 based on polystyrene standard, respectively, indicating
that the PPE had a relatively narrow molecular weight distribution.
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3.2. Study of Morphologies and Mechanical Properties

Flame-retardant FPUFs were synthesized by incorporating EG via a facile one-pot
route. The densities of the resultant flame-retardant EG-containing FPUFs are in the range
of 45−91 kg/m3 (Table S1). The surface morphologies of the FPUFs were characterized
using SEM (Manufacturer, city, state abbreviation, country). As shown in Figures 2 and S2,
the FPUFs prepared with RPE (R-FPUFs) and FRPE (P-FPUFs) have open cellular structures,
and the former has relatively small dimensions. EG can affect the nucleation and growth of
bubbles, which increases the foam density [49]. Figure 2b,d show that the introduction of
EG particles has an apparent effect on cell structure; the crude cross-sections and collapse
of the cellular structures are observed.
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3.3. Flame Retardancy

R-FPUF has a poor flame retardancy as indicated by the low LOI value of 18%. As
shown in Figure 3, the incorporation of phosphorus and EG increases the LOI. The LOI
value of P-FPUF is 21%, which is higher than that of R-FPUF (18%). It is worth noting
that the LOI value of R-FPUF/10EG is 25%, whereas the LOI value of P-FPUF/10EG is
28%, suggesting that there is an additional flame-retardant effect due to the presence of
EG [54,56].

The results of the vertical burning tests for the flame-retardant foams are shown in
Figure 4, and the tested parameters are listed in Table S1 and S2. As shown in Figure 4a,
R-FPUF burns out rapidly with severe dripping after removing the pilot flame. As for
P-FPUF, the spreading speed of the fire (Figure 4e) is lower, but melt-dripping still occurs,
and the foam burns out after removing the igniter. The incorporation of EG significantly
decreases the flame spreading rate and prevents melt-dripping. P-FPUF/5EG exhibits
excellent self-extinguishing behavior and no melt-dripping and thereby passes the vertical
burning test (Table 1). Most notably, R-FPUF/10EG failed to pass the vertical burning test.
This again indicates a better flame-retardant performance of FRPE than RPE in the case of
the same dosage of EG.
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Table 1. The vertical burning test results of R-FPUF and flame-retardant FPUFs.

Sample Pass/No
(TB117)

Dripping
(Yes/No) Sample Pass/No

(TB117)
Dripping
(Yes/No)

R-FPUF No Yes R-FPUF/15EG Pass No
P-FPUF No Yes P-FPUF/5EG Pass No

R-FPUF/5EG No Yes P-FPUF/10EG Pass No
R-FPUF/10EG No No P-FPUF/15EG Pass No

3.4. Fire Behavior

The relevant parameters, including time to ignition (TTI), total heat release (THR),
peak heat release rate (PHRR), time to peak heat release rate (TPHRR), fire growth rate index
(FIGRA), total smoke production (TSP), average effective heat of combustion (AEHC) from
ignition to flame out, carbon monoxide production (COP), and char yields (CY), are shown
in Table 2 and Figure 5. The TTI, THR, and PHRR values of R-FPUF are 9 s, 32.0 MJ/m2,
and 640 kW/m2, respectively, whereas the corresponding values for P-FPUF are 12 s,
26.8 MJ/m2, and 521 kW/m2, indicating that the phosphorus-containing FRPE is highly
effective in improving the flame-retardant property of the FPUF. When compared with
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R-RPUF, the char residue of P-FPUF after cone calorimeter (CC) testing increases owing
to the introduction of FRPE, which is consistent with the Thermogravimetric analysis
(TGA) results.

Table 2. Characteristic parameters of CC tests of FPUFs.

Sample TTI
(S)

PHRR
(kW/m2)

TPHRR
(s) FIGRA THR

(MJ/m2)
PSPR
(m2/s)

TSP
(m2)

AEHC
(MJ/Kg)

COY
(kg/kg)

CY
(%)

R-RPUF 9 640 61 10.5 32.0 0.036 1.22 22.6 0.023 2.5
P-RPUF 12 521 70 7.4 26.8 0.104 3.25 26.4 0.108 6.4

P-RPUF/10EG 19 185 40 4.6 24.7 0.031 1.71 30.3 0.101 18.0
P-RPUF/15EG 7 90 23 3.9 16.0 0.009 0.54 28.5 0.207 28.6
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As it can be seen in Table 2 and Figure 5, the incorporation of 10 phr EG decreases the
THR and PHRR values significantly. This is because EG presents carbon layers in the shape
of “worms”, forming a thermally insulating barrier. P-RPUF/10EG has a TTI of 19 s, which
is longer than the 12 s of the control sample P-RPUF. Simultaneously, the PHRR and THR
of P-RPUF/10EG reduced by 65% and 7.8%, respectively, when compared with P-RPUF.
These results support the effect caused by the presence of phosphorus and EG.

As important parameters for evaluating a flame-retardant material, lower PSPR (peak
of smoke production rate) and TSP values represent a lower risk of choking. As shown in
Figure 6a, by comparing the PSPR values of R-FPUF (0.036 m2/s) and P-FPUF (0.104 m2/s),
the incorporation of phosphorus increases the smoke release and carbon monoxide yield
(COY), which can be attributed to the classical gas-phase flame-retardant mechanism of
phosphorus-containing compounds during combustion [49,57,60,61]. As expected, with
the incorporation of EG, the PSPR and SPR values of all FPUFs decrease significantly. This
is mainly due to the thick carbonaceous shield resulting from the expansion of EG that
can trap substantial amounts of gases and provide great charring ability [43–46,49,57]. It
should be noted that the P-FPUF/10EG sample still exhibits higher PSPR and TSP values
of 0.031 m2/s and 1.71 m2. Thus, 15 phr EG was further incorporated into F-FPUF. As
shown in Figure 7 and Table 2, the PSRR and TSP of the resulting P-RPUF/15EG sample
are reduced by 82.7% and 40.3%, respectively, when compared with P-RPUF, which became
lower than that of the P-RPUF sample. However, the incorporation of 15 phr EG shortens
the TTI of R-FPUF from 19 to 7 s, indicating an easier ignition. This can be explained by the
accumulation of expanded EG in the foam matrix, which exposes the underlying materials
to the flame [44–46].
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The AEHC assesses the efficiency of a flame retardant in terms of flame inhibition and
gas-phase activity [58–60]. With the incorporation of EG, all the AEHC values increase
considerably when compared with those of the FPUFs without EG. Thus, it can be con-
cluded that the flame retardancy of EG occurs in the condensed phase. The fire growth rate
index (FIGRA, a deduced parameter which equals the maximum of HRR/time) indicates
the deflagration of a material [60,61]. Fire safety was assessed through the fire growth rate
index (FIGRA, the maximum ratio HRR (t)/t)). The lower the FIGRA value, the higher the
fire safety. A clear decreasing trend is observed with increasing EG dosage, indicating an
increase in fire safety when using the resultant FPUFs.

It should be noted that the incorporation of EG does not decrease the COY values
of most foams. As displayed in Table 2, the incomplete burning is mainly due to gas-
phase flame-retardant properties of phosphorus [47,49,60], which results in the slow and
continuous release of CO, leading to high COY values.

3.5. Thermal Degradation of FPUFs

TG analysis was performed to investigate the thermal stability and charring ability
of the resultant foams. As can be seen in Figure 8, all the FPUFs undergo a two-step
decomposition. The first weight loss is attributed to the breakage of the bonds in the
TDI-derived moieties, while the second weight loss can be ascribed to the degradation of
the soft segments [7,62]. The corresponding temperatures of maximum weight loss rate
(Tmax, denoted as the differential thermogravimetry peak maximum), maximum weight
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loss rate (RTmax), and residual weight at 600 ◦C (C600) are listed in Table 3. The lower
Tmax1 and RTmax1 of P-FPUFs indicate that the incorporation of the phosphorus-containing
segment of DDP accelerates the first degradation step [60,61]. In contrast, the Tmax2 of
P-FPUFs increases by approximately 20 ◦C when compared with that of R-RPUF, as also
seen in previous studies [41,47,49,60]. Additionally, the C600 residue of R-FPUF is only
2.3 wt.%, which is lower than that of P-FPUF (5.2 wt.%). The polyphosphoric acids and their
derivatives result from the degradation of DDP and play a catalytic role in the dehydration
and carbon-forming reactions that lead to the formation of stable chars [31,32,60,61].
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Table 3. TGA data of FPUFs at a heating rate of 20 ◦C/min in N2.

Sample T5 (◦C) Tmax1 (◦C) RTmax1 (%/min) Tmax2 (◦C) RTmax2 (%/min) Cwt600 (%)

R-FPUF 251 280 7.9 400 25.7 2.3
P-FPUF 254 277 9.0 419 25.2 5.2

P-FPUF/10EG 248 272 8.9 408 21.9 9.6
P-FPUF/15EG 246 273 8.5 403 21.2 12.2

As can be seen in Table 3 and Figure 8, the incorporation of EG leads to slight changes
in T5, Tmax1, and RTmax1. The Tmax2 values of P-RPUFs decrease consistently with the
incorporation of EG. The remarkable decrease in Tmax2 for P-RPUF/15EG can be related to
the decomposition process of EG [44–46,49]. As expected, the incorporation of EG leads
to a decrease in RTmax2 and an increase in C600. These observations can be attributed to
the carbonaceous intumescent shield formed from the expansion of EG, which provides a
layer of low thermal conductivity. The C600 value of P-RPUF/15EG is 12.2 wt.%, which
is significantly higher than their counterparts without EG. The high char yield and low
RTmax2 often imply improved flame retardancy.

3.6. Analysis of Gas Phase

To study the flame-retardant mechanism, the gaseous products formed during the
thermal degradation process of the prepared foams were investigated using TG-IR. Figure 9
shows the TG-IR spectra acquired at different temperatures. The characteristic absorption
bands of –NCO (2270 cm−1) and carbon dioxide (CO2, 2356 cm−1) are observed at T5%,
indicating the degradation of the hard segments during the heating process [4,7,60]. When
the temperature increases to Tmax2, strong characteristic signals for –CH2 and –CH3 (2976,
2932, and 2883 cm−1), C=O (1730 cm−1), and C–O (1145 cm−1) emerge due to the thermal
cleavage of the soft segments [63,64]. It can be noted that a new absorption band at
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2320 cm−1 attributed to the P–H stretching vibration [41,47] appears in the TG-IR spectrum
of P-FPUF at 270 ◦C.
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To further investigate the change in the degradation products, the time-dependent
evolution of CO2, hydrocarbons, C=O, and C–O signals were monitored. The obtained
results are presented in Figure 10. As expected, the incorporation of phosphorus decreased
the absorbance intensity of flammable organic gases and CO2, indicating that phosphorus
provides great charring ability, which is consistent with the CC and TGA results mentioned
above. As predicted, the incorporation of EG further decreased the absorbance intensity of
flammable organic gases and CO2, confirming that the thick carbonaceous shield resulting
from the expansion of EG traps the gases and provides great charring ability.

3.7. Analysis of Condensed Phase

The digital photos and SEM images for the char residues of the FPUFs with EG after
the cone calorimetry tests are shown in Figure 11. The char residue of R-FPUF (Figure 11a–1)
is very thin and fragmented. Some regions of the aluminum substrate are exposed because
of the low char residue. Compared to the low char yield of R-FPUF, it was found that
the addition of phosphorus obviously increases the char yield of P-FPUF, which indicates
more pyrolysis products were turned into char. The surface of the char residue of P-FPUF
is relatively smooth but presents several big cracks, indicating that the condensed-phase
flame-retardant phosphorus still cannot provide a complete protection layer, leading to its
unsatisfactory performance in the CC test, as also seen in previous studies [60]. As it can
be seen in Figure 11c–1, after incorporating EG, the P-FPUF/15EG sample exhibits carbon
layers in the shape of “worms”, revealing the protective effect during combustion, which
was consistent with the cone result.

The carbon structure of the char was further analyzed by Raman spectroscopy. The
D peak at about 1371 cm−1 corresponds to a defect peak of graphite, and the other G
peak at 1604 cm−1 represents the regularity of graphite [65–67]. The intensity ratio of
G band to D band (ID/IG) is used to characterize the graphitization degree. As can be
seen in Figure 11a–3,b–3, the values of ID/IG for R-FPUF (5.36) and P-FPUF (5.56) char
residue are very close, indicating that the degree of graphitization is not improved by the
introduction of phosphorus. Obviously, with the addition of EG, the value of ID/IG of
the P-FPUF/15EG sample was decreased to 3.02 (Figure 11c–3). The highly graphitized
char layer has high strength and thermal stability, and it can effectively hinder the transfer
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of heat and flammable gases. The results are consistent with the observed results of char
residue morphology and the CC test.

Polymers 2023, 15, x FOR PEER REVIEW 10 of 17 
 

 

 
Figure 10. Intensities of absorption peaks for C─O (a,e), C=O (b,f), CO2 (c,g) and hydrocarbons (d,h) 
of R-FPUF, P-FPUF, P-FPUF/10EG, and P-FPUF/15EG. 

3.7. Analysis of Condensed Phase 
The digital photos and SEM images for the char residues of the FPUFs with EG after 

the cone calorimetry tests are shown in Figure 11. The char residue of R-FPUF (Figure 
11a–1) is very thin and fragmented. Some regions of the aluminum substrate are exposed 
because of the low char residue. Compared to the low char yield of R-FPUF, it was found 
that the addition of phosphorus obviously increases the char yield of P-FPUF, which in-
dicates more pyrolysis products were turned into char. The surface of the char residue of 
P-FPUF is relatively smooth but presents several big cracks, indicating that the con-
densed-phase flame-retardant phosphorus still cannot provide a complete protection 
layer, leading to its unsatisfactory performance in the CC test, as also seen in previous 
studies [60]. As it can be seen in Figure 11c–1, after incorporating EG, the P-FPUF/15EG 
sample exhibits carbon layers in the shape of “worms”, revealing the protective effect dur-
ing combustion, which was consistent with the cone result. 

The carbon structure of the char was further analyzed by Raman spectroscopy. The 
D peak at about 1371 cm−1 corresponds to a defect peak of graphite, and the other G peak 
at 1604 cm−1 represents the regularity of graphite [65–67]. The intensity ratio of G band to 
D band (ID/IG) is used to characterize the graphitization degree. As can be seen in Figure 
11a–3 and Figure 11b–3, the values of ID/IG for R-FPUF (5.36) and P-FPUF (5.56) char 
residue are very close, indicating that the degree of graphitization is not improved by the 
introduction of phosphorus. Obviously, with the addition of EG, the value of ID/IG of the 
P-FPUF/15EG sample was decreased to 3.02 (Figure 11c–3). The highly graphitized char 
layer has high strength and thermal stability, and it can effectively hinder the transfer of 

Figure 10. Intensities of absorption peaks for C–O (a), C=O (b), CO2 (c) and hydrocarbons (d) of
R-FPUF, P-FPUF, P-FPUF/10EG, and P-FPUF/15EG.

The X-ray photoelectron spectroscopy (XPS) (Manufacturer, city, state abbreviation,
country) spectra of the char residues for R-FPUF, P-FPUF, and P-FPUF/15EG samples
obtained from the cone test are shown in Figure 12. They reveal that C, N, and O are
the main elements remaining in the char residues of the three groups. For the control
R-FPUF sample, the char residues consisted of C, O, and N, because no flame retardants
were involved. The concentrations of C, O, and N in the char residues of the R-FPUF
and P-FPUF samples are similar. The high-resolution XPS spectra of C1s and P2p for the
R-FPUF, P-FPUF, and P-FPUF/15EG char samples are shown in Figure 12b–f. The C1s
spectra of the R-FPUF and P-FPUF char residues shown in Figure 12b,c were similar and
can be fitted to four characteristic peaks, namely C–C at 284.8 eV, C–O at 286.4 eV, C–N at
287.8 eV, and O–C=O at 288.5 eV [66]. Meanwhile, a peak is detected at 134 eV (P2p) [66,67]
for the P-FPUF char residue sample, indicating that some phosphorus remains in the char
residue. Approximately 12.4 wt.% of the phosphorus remained in the P-FPUF char residue
based on the comparison of the phosphorus content in the char residue (1.4 wt.%) and the
corresponding original foam (0.72 wt.%), indicating that phosphorus mainly acted as a
gas-phase flame retardant.
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Remarkably, as can be seen in Figure 12c, although the C1s spectrum of the P-
FPUF/15EG char residue can also be fitted to the four characteristic peaks of C–C, C–O,
C–N, and O–C=O, the concentration of each bond was significantly lower than that of the
R-FPUF and P-FPUF char samples, indicating a high degree of graphitization, similar to
the Raman results. The P2p spectra of the P-FPUF char sample presented in Figure 12e,f
were fitted to three characteristic peaks of 133.4, 134.3, and 135.1 eV, corresponding to the
P–C, P–O, and P=O groups, respectively [67]. The concentration of phosphorus in the
P-FPUF/15E char sample was higher than that of the P-FPUF sample (see Table 4). By
calculation, approximately 75.4% of the phosphorus remained in the P-FPUF/15EG char
residue. A high phosphorus content improves the oxidation resistance and mechanical
strength of the char, which is beneficial for the formation of a high-quality char layer [17].

Table 4. Elemental composition and content of residual char.

Sample C (wt.%) N (wt.%) O (wt.%) P (wt.%)

R-FPUF 67.3 13.3 19.4 0
P-FPUF 69.9 9.9 19.9 1.4

P-FPUF/15EG 81.4 4.5 13.8 1.9

3.8. Flame-Retardant Mechanism

Combining the above analyses and referring to the literature, it is concluded that for
the control R-FPUF sample with no flame retardants, the heat transfers quickly, resulting
in the combustion of the polymer. The introduction of phosphorus increased the yield
of char residue owing to a condensed-phase flame-retardant mechanism. Meanwhile,
the gas-phase flame-retardant mechanism resulting from volatile phosphorus-containing
compounds in the gas phase improved the LOI value but produced a large amount of smoke
during combustion. With the loading of EG, the resulting phosphorus-rich intumescent
carbonization layers acted as physical protective layers as well as gas scavengers. The
formation of a dense network of highly graphitized char layers isolated the external oxygen,
flammable gas, and heat from the internal matrix and effectively suppressed the release of
heat and smoke. Overall, the combination of phosphorus and EG depressed combustion
and led to lower THR and PHRR values, as well as a low smoke release. Figure 13 shows
the flame-retardant mechanism of phosphorus and EG in the P-FPUFs.
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The effect of PPE and/or EG on the mechanical properties of R-FPUFs and P-FPUFs
was evaluated by measuring the tensile strength and elongation at break (Figure 14). As
presented in Figure 14, the R-FPUF sample has a common tensile strength and elongation at
break of about 190 KPa and 180%, respectively. Remarkably, higher tensile strength above
250 kPa and elongation at break more than 300% are observed for all P-FPUF samples,
which can be attributed to the strong interactions between the soft and hard segments of the
FRPE chains with the introduction of 9,10-Dihydro-10[2,3-di(hydroxycarbonyl)propyl]10-
phosphaphenanthrene-10-oxide (DDP) [60]. These good mechanical properties make P-
FPUF highly attractive for use in practical application.
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4. Conclusions

Inherently flame-retardant and smoke-suppressant FPUFs were obtained via the
reaction of toluene diisocyanate and a reactive phosphorus-containing flame-retardant
polyester diol made from 9,10-dihydro-10-[2,3-di(hydroxycarbonyl)propyl]-10-phospha-
Phenanthrene-10-oxide, adipic acid, ethylene glycol, and 1,4-butanediol. Compared to the
regular FPUF with no flame retardants, the introduction of phosphorus improves the LOI
value and char residue yield of P-FPUFs but produces a large amount of smoke during
combustion. With further loading of EG, the resultant P-FPUF/EG foams exhibited good
mechanical properties as well as flame-retardant, anti-dripping, and smoke suppression
performances. This superior flame-retardant performance can be explained by the combi-
nation of the gas-phase flame-retardant characteristics of phosphorus-containing volatile
compounds and the condensed-phase flame-retardant behaviors of EG and phosphorus.
This superior performance and the simplicity of this strategy make it highly attractive for
use in preparing new flame-retardant FPUFs.
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