Recent Advances in Natural Fibre-Based Materials for Food Packaging Applications
Abstract
:1. Introduction
2. Natural Fibres in Packaging
2.1. Source and Compositions
2.1.1. Hemp (Cannabis sativa)
2.1.2. Sisal (Agave sisalana)
2.1.3. Kenaf (Hibiscus cannabinus L.)
2.1.4. Bamboo (Bambusa vulgaris)
2.1.5. Jute
2.1.6. Flax (Linum usitatissimum)
2.1.7. Banana Plants
2.1.8. Ramie (Boehmeria nivea (L) Gaud.)
Natural Fibre | Origin | World Production (×103 Tonnes) | Density (kg/m3) | Diameter (μm) | Tensile Strength (MPa) | Tensile Modulus (GPa) | % Elongation |
---|---|---|---|---|---|---|---|
Abaca | Leaf | 70 | 0.83 | 114–130 | 418–486 | 12–13.8 | - |
Banana | Stem | 200 | 1.35 | 80–250 | 529–759 | 8.20 | 1–3.5 |
Bamboo | Stem | 10,000 | 910 | - | 503 | 35.91 | 1.4 |
Coir | Fruit | 100 | 1.15 | 100–460 | 108–252 | 4–6 | 15–40 |
Cotton | Lint | Fruit 18,500 | 1.6 | - | 287–597 | 5.5–12.6 | 3–10 |
Flax | Stem | 810 | 1.5 | - | 345–1500 | 27.6–80 | 1.2–3.2 |
Jute | Stem | 2500 | 1.46 | - | 393–800 | 10–30 | 1.5–1.8 |
Hemp | Stem | 215 | 1.48 | - | 550–900 | 70 | 1.6 |
Kenaf | Stem | 770 | 1.4 | 81 | 250 | 4.3 | - |
Oil palm | Fruit | Abundant | 0.7–1.55 | 150–500 | 80–248 | 0.5–3.2 | 17–25 |
Ramie | Stem | 100 | 1.0–1.55 | 20–80 | 400–1000 | 24.5–128 | 1.2–4.0 |
Rice husk | Fruit/ grain | Abundant | - | - | - | - | - |
Roselle | Stem | 250 | - | - | - | - | - |
Sisal | Leaf | 380 | 1.45 | 50–300 | 227–400 | 9–20 | 2–14 |
2.2. Natural Fibre Selection Parameters as Packaging Material
Property | Examples |
---|---|
Structural properties | Tensile strength, tear properties, compression properties, bending stiffness, edge crush resistance, burst strength, puncture resistance, folding endurance, wet strength and delamination |
Barrier and absorption properties | Oxygen permeability (OP), water vapour permeability (WVP), Volatile permeability and water absorption capacity |
Manufacturability and manufacturing quality | Uniformity of thickness, density and moisture content |
Migration into food | Toxicology parameters and migration studies |
Non-structural functionality | Abrasion resistance and static and kinetic friction |
Degradability/compostability | Compostability in biodegradation tests and disintegration tests |
3. Physical and Chemical Modifications of Fibres for Food Packaging
3.1. Chemical Modification Techniques
3.2. Physical Modification Techniques
3.2.1. Cold Plasma Treatments
3.2.2. Steam Explosion
4. Production Technology
Source of Fibre | Part of Plant | Fibre Preparation/Treatment | Type of matrix/Other Polymer Blend (If Any) | Role of Fibre in Packaging | Packaging Form | Method of Packaging Production | Major Findings | Ref. |
---|---|---|---|---|---|---|---|---|
Hemp | Straw | Sodium hydroxide (NaOH) treatment | PHA, PLA, PBS, PBSA | Filler | Paper | Direct melt coating | Biodegradation in a controlled compost at 58 °C resulted in full degradation within 40 to 80 days, with PLA and PHA laminates showing 40 and 50 days, respectively. | [138] |
Oil palm | Empty fruit bunch | - | Oil palm empty fruit bunch + Formaldehyde | Matrix | Tray | Solvent casting | Oil palm empty fruit bunch fibre-based trays were below the allowable limit specified by Commission Regulation (EU) No 10/2011. | [142] |
Betel nut | Seed | - | Polyester resin | Reinforcement | Laminate | Casting | The resin had favourable characteristics in terms of elasto–plastic and stress–strain behaviour, suitable for storage and transportation. | [96] |
Kenaf | Bast | Alkaline treatment | PLA | Reinforcement | Film | Melt blending and heat pressing | Adding kenaf filler to the PLA enhanced the release of thymol from the PLA matrix, reduced production costs and increased mechanical strength. The composite films reduced Escherichia coli inoculated on the surface of processed sliced chicken samples after 30 days at 10 °C both in direct contact and in the vapour phase. | [140,141] |
Plantain pseudostem | Stem | Acetylation treatment | Polyester | Filler | Laminate | Casting | Flexural strength improved by 28% after acetylation treatment. | [143] |
Sugar palm | Trunk | - | Sugar palm + glycerol and sorbitol | Matrix | Film | Solution-casting technique | The introduction of plasticisers reduced brittleness and enhanced flexibility and peelability of films. | [144] |
Wheat straw | Straw | - | PHBV | Filler | Film | Heated hydraulic press | A 3.5-fold increase in water vapour permeability was recorded. | [145] |
Bamboo | Stem | - | PLA | Reinforcement | Laminate | Film-stacking and compression moulding | The impact strength was enhanced by 117%. | [137] |
Date palm | Leaf fibre | Acrylic acid | Polyvinylpyrrolidone | Reinforcement | Laminate | Melt mixing fabrication technique | Biocomposites reinforced with 26 wt% DPL fibre loading can be used as water- and chemical-resistant packaging materials due to their hydrophobic nature. | [114] |
Sterculia urens | Stem | Alkali treatment and silane-coupling agent | poly (lactic acid) (PLA) | Reinforcement | Laminate | Hot pressing | Alkali treatment in the presence of a silane-coupling agent caused matrix skin formation and the formation of flower-like structures on the surface of the fabric, suggesting good bonding between the reinforcement and the matrix. | [146] |
Bamboo | Stem | - | PLA | Reinforcement | Laminate | Film-stacking and compression moulding | The highest compression pressure of 1.01 MPa at 3 min exhibited a superior tensile strength of 80.71 MPa and flexural properties of 124 MPa. | [74] |
Coir | Shell fibre | - | Starch/EVOH/Glycerol | Filler | Laminate | Injection moulding | Size and shape irregularities of the fibres played a dominant role in the ultimate properties. | [147] |
5. Conclusions and Future Perspectives
- The valorisation of natural fibres in the food packaging sector exhibited promising results. However, a long-lasting supply of raw materials is essential to ensure sustainability.
- Environmentally friendly extraction/purification is ideal for the production of uniform-quality fibres. The modification of natural fibres needs to address environmental issues implied by chemical methods.
- Natural fibres ensure the safety and protection of food by enhancing the mechanical properties of food packaging to resist physical damage. However, several other factors must be considered. The packaging must be designed to overcome degradation reactions and also be able to regulate gas and water barrier properties. The selection of natural fibres combined with the use of appropriate modification methods can prevent the formation of defects that would degrade the mechanical properties, while also enhancing packaging permeability.
- The decontamination of natural fibres should comply with the regulations on food contact materials to guarantee the health of the consumer. This aspect is challenging when using natural fibres due to the presence of toxicological substances such as pesticides that could migrate to food from the packaging materials.
- Consumer willingness to purchase economically competitive fully biocomposite alternatives is still uncertain. The cost of biocomposites in food packaging materials needs to be regulated to improve the demand in local markets. The future use of natural fibres is highly recommended for packaging materials due to their cost-effectiveness and availability throughout the year.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, X.; Pang, Z.; Chen, C.; Xia, Q.; Zhou, Y.; Jing, S.; Wang, R.; Ray, U.; Gan, W.; Li, C.; et al. All-Natural, Degradable, Rolled-Up Straws Based on Cellulose Micro- and Nano-Hybrid Fibers. Adv. Funct. Mater. 2020, 30, 1910417. [Google Scholar] [CrossRef]
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeevahan, J.; Chandrasekaran, M. Nanoedible films for food packaging: A review. J. Mater. Sci. 2019, 54, 12290–12318. [Google Scholar] [CrossRef]
- Al-Oqla, F.M.; Almagableh, A.; Omari, M.A. Design and Fabrication of Green Biocomposites. In Green Energy and Technology; Springer: Cham, Switzerland, 2017; pp. 45–67. [Google Scholar]
- Mastura, M.T.; Sapuan, S.M.; Mansor, M.R.; Nuraini, A.A. Environmentally conscious hybrid bio-composite material selection for automotive anti-roll bar. Int. J. Adv. Manuf. Technol. 2016, 89, 2203–2219. [Google Scholar] [CrossRef]
- Porta, R. The Plastics Sunset and the Bio-Plastics Sunrise. Coatings 2019, 9, 526. [Google Scholar] [CrossRef] [Green Version]
- Welsh, B.; Aherne, J.; Paterson, A.M.; Yao, H.; McConnell, C. Spatiotemporal variability of microplastics in Muskoka-Haliburton headwater lakes, Ontario, Canada. Environ. Earth Sci. 2022, 81, 551. [Google Scholar] [CrossRef]
- Kutralam-Muniasamy, G.; Pérez-Guevara, F.; Elizalde-Martínez, I.; Shruti, V.C. Branded milks—Are they immune from microplastics contamination? Sci. Total Environ. 2020, 714, 136823. [Google Scholar] [CrossRef] [PubMed]
- Amran, N.H.; Zaid, S.S.M.; Mokhtar, M.H.; Manaf, L.A.; Othman, S. Exposure to Microplastics during Early Developmental Stage: Review of Current Evidence. Toxics 2022, 10, 597. [Google Scholar] [CrossRef]
- Molina-Besch, K. Food delivery packaging and tableware waste. Nat. Food 2020, 1, 531–532. [Google Scholar] [CrossRef]
- Zhou, Y.; Shan, Y.; Guan, D.; Liang, X.; Cai, Y.; Liu, J.; Xie, W.; Xue, J.; Ma, Z.; Yang, Z. Sharing tableware reduces waste generation, emissions and water consumption in China’s takeaway packaging waste dilemma. Nat. Food 2020, 1, 552–561. [Google Scholar] [CrossRef]
- Srisa, A.; Promhuad, K.; San, H.; Laorenza, Y.; Wongphan, P.; Wadaugsorn, K.; Sodsai, J.; Kaewpetch, T.; Tansin, K.; Harnkarnsujarit, N. Antibacterial, Antifungal and Antiviral Polymeric Food Packaging in Post-COVID-19 Era. Polymers 2022, 14, 4042. [Google Scholar] [CrossRef]
- Laorenza, Y.; Chonhenchob, V.; Bumbudsanpharoke, N.; Jittanit, W.; Sae-Tan, S.; Rachtanapun, C.; Chanput, W.P.; Charoensiddhi, S.; Srisa, A.; Promhuad, K.; et al. Polymeric Packaging Applications for Seafood Products: Packaging-Deterioration Relevance, Technology and Trends. Polymers 2022, 14, 3706. [Google Scholar] [CrossRef]
- Jiang, S.; Zou, L.; Hou, Y.; Qian, F.; Tuo, Y.; Wu, X.; Zhu, X.; Mu, G. The influence of the addition of transglutaminase at different phase on the film and film forming characteristics of whey protein concentrate-carboxymethyl chitosan composite films. Food Packag. Shelf Life 2020, 25, 100546. [Google Scholar] [CrossRef]
- Kabasci, S. Biobased plastics. In Plastic Waste and Recycling; Academic Press: Cambridge, MA, USA, 2020; pp. 67–96. [Google Scholar]
- Majeed, K.; Jawaid, M.; Hassan, A.; Abu Bakar, A.; Abdul Khalil, H.P.S.; Salema, A.A.; Inuwa, I. Potential materials for food packaging from nanoclay/natural fibres filled hybrid composites. Mater. Des. 2013, 46, 391–410. [Google Scholar] [CrossRef]
- Yu, L.; Dean, K.; Li, L. Polymer blends and composites from renewable resources. Prog. Polym. Sci. 2006, 31, 576–602. [Google Scholar] [CrossRef]
- Pulikkalparambil, H.; Parameswaranpillai, J.; George, J.J.; Yorseng, K.; Siengchin, S. Physical and thermo-mechanical properties of bionano reinforced poly(butylene adipate-co-terephthalate), hemp/CNF/Ag-NPs composites. AIMS Mater. Sci. 2017, 4, 814–831. [Google Scholar] [CrossRef]
- Singh, M.K.; Tewari, R.; Zafar, S.; Rangappa, S.M.; Siengchin, S. A Comprehensive Review of Various Factors for Application Feasibility of Natural Fiber-Reinforced Polymer Composites. SSRN Electron. J. 2023, 17, 100355. [Google Scholar] [CrossRef]
- Tserki, V.; Matzinos, P.; Panayiotou, C. Novel biodegradable composites based on treated lignocellulosic waste flour as filler. Part II. Development of biodegradable composites using treated and compatibilized waste flour. Compos. Part A Appl. Sci. Manuf. 2006, 37, 1231–1238. [Google Scholar] [CrossRef]
- Contat-Rodrigo, L.; Ribes Greus, A. Biodegradation studies of LDPE filled with biodegradable additives: Morphological changes. I. J. Appl. Polym. Sci. 2002, 83, 1683–1691. [Google Scholar] [CrossRef]
- Kim, H.-S.; Kim, H.J.; Lee, J.W.; Choi, I.G. Biodegradability of bio-flour filled biodegradable poly(butylene succinate) bio-composites in natural and compost soil. Polym. Degrad. Stab. 2006, 91, 1117–1127. [Google Scholar] [CrossRef]
- Varghese, S.A.; Pulikkalparambil, H.; Rangappa, S.M.; Siengchin, S.; Parameswaranpillai, J. Novel biodegradable polymer films based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and Ceiba pentandra natural fibers for packaging applications. Food Packag. Shelf Life 2020, 25, 100538. [Google Scholar] [CrossRef]
- Bernstad Saraiva, A.; Pacheco, E.B.; Gomes, G.M.; Visconte, L.L.; Bernardo, C.A.; Simoes, C.L.; Soares, A.G. Comparative lifecycle assessment of mango packaging made from a polyethylene/natural fiber-composite and from cardboard material. J. Clean. Prod. 2016, 139, 1168–1180. [Google Scholar] [CrossRef]
- Mushtaq, B.; Ahmad, S.; Ahmad, F.; Nawab, Y. Alternative Natural Fibers for Biocomposites. In Natural Fibers to Composites; Springer: Cham, Switzerland, 2023; pp. 1–18. [Google Scholar]
- Puttegowda, M.; Pulikkalparambil, H.; Rangappa, S.M. Trends and Developments in Natural Fiber Composites. Appl. Sci. Eng. Prog. 2021, 14, 543–552. [Google Scholar] [CrossRef]
- Yorseng, K.; Sanjay, M.R.; Tengsuthiwat, J.; Pulikkalparambil, H.; Parameswaranpillai, J.; Siengchin, S.; Moure, M.M. Information in United States Patents on works related to ‘Natural Fibers’: 2000–2018. Curr. Mater. Sci. 2019, 12, 4–76. [Google Scholar] [CrossRef]
- Moudood, A.; Rahman, A.; Öchsner, A.; Islam, M.; Francucci, G. Flax fiber and its composites: An overview of water and moisture absorption impact on their performance. J. Reinf. Plast. Compos. 2018, 38, 323–339. [Google Scholar] [CrossRef] [Green Version]
- Zini, E.; Scandola, M. Green composites: An overview. Polym. Compos. 2011, 32, 1905–1915. [Google Scholar] [CrossRef]
- Summerscales, J.; Dissanayake, N.P.; Virk, A.S.; Hall, W. A review of bast fibres and their composites. Part 1—Fibres as reinforcements. Compos. Part A Appl. Sci. Manuf. 2010, 41, 1329–1335. [Google Scholar] [CrossRef] [Green Version]
- Mittal, V.; Saini, R.; Sinha, S. Natural fiber-mediated epoxy composites—A review. Compos. Part B Eng. 2016, 99, 425–435. [Google Scholar] [CrossRef]
- The Guaridan. Hemp: How One Little Plant Could Boost America’s Economy. Available online: https://www.theguardian.com/society/2017/feb/04/hemp-plant-that-could-boost-americas-economy (accessed on 28 February 2023).
- BBC. Hemp Fibres ’Better than Graphene’. Available online: https://www.bbc.com/news/science-environment-28770876 (accessed on 28 February 2023).
- Picturethisai. Sisal. Available online: https://www.picturethisai.com/wiki/Agave_sisalana.html (accessed on 28 February 2023).
- Exporters India. UG Sisal Fiber. Available online: https://www.exportersindia.com/minerals-handling-shipping-company/ug-sisal-fiber-3117510.htm (accessed on 28 February 2023).
- In Matteria. Kenaf: A Living Material for Construction. Available online: https://www.inmatteria.com/2014/09/29/kenaf-a-living-material-for-construction/kenaf-2/ (accessed on 28 February 2023).
- Carriage House Paper. Kenaf Fiber (Cut into 1/4 Inch Lengths). Available online: https://carriagehousepaper.com/kenaf-fiber (accessed on 28 February 2023).
- Textile Learner. Features, Characteristics and Application of Jute Fiber. Available online: https://textilelearner.net/features-properties-and-uses-of-jute-fiber/ (accessed on 28 February 2023).
- Miller Waste Mills. Jute Fiber. Available online: https://www.millerwastemills.com/products/jute-fiber/ (accessed on 28 February 2023).
- Colegiogamarra. Available online: www.colegiogamarra.com%2F2016%2F11%2Fcolegiogamarra.com%2Fpolitica-de-cookies%3Fss%3D741_4_26_24%26pp%3Dlinen%2Bis%2Bobtained%2Bfrom%2Bwhich%2Bplant%26ii%3D1040613&psig=AOvVaw1BWIJES1DqhEPbFzQoN1bG&ust=1677556113274000&source=images&cd=vfe&ved=0CBEQjhxqFwoTCJjO3dLltP0CFQAAAAAdAAAAABAE (accessed on 28 February 2023).
- Istockphoto. Flax Fiber, Raw Stock Photo. Available online: https://www.istockphoto.com/th/%E0%B8%A3%E0%B8%B9%E0%B8%9B%E0%B8%96%E0%B9%88%E0%B8%B2%E0%B8%A2/%E0%B9%80%E0%B8%AA%E0%B9%89%E0%B8%99%E0%B9%83%E0%B8%A2%E0%B8%A5%E0%B8%B4%E0%B8%99%E0%B9%80%E0%B8%9C%E0%B9%87%E0%B8%81%E0%B8%94%E0%B8%B4%E0%B8%9A-gm646167566-117200491 (accessed on 28 February 2023).
- Gardening Know How. What to Feed Banana Plants–How to Fertilize a Banana Tree Plant. Available online: https://www.gardeningknowhow.com/edible/fruits/banana/feeding-banana-plants.htm (accessed on 28 February 2023).
- Textile Coach. BANANA FIBER|Textile Fibers. Available online: https://www.textilecoach.net/post/banana-fiber (accessed on 28 February 2023).
- Northeast Now. Meghalaya’s Organic Textile Fabric Ramie Makes a Splash in Indian Fashion Industry. Available online: https://nenow.in/environment/meghalayas-organic-textile-fabric-ramie-makes-splash-indian-fashion-industry.html (accessed on 28 February 2023).
- Textile with Me. Ramie. Available online: http://textilewithme.blogspot.com/2015/04/ramie.html (accessed on 28 February 2023).
- Teles, M.C.A.; Glória, G.O.; Altoé, G.R.; Netto, P.A.; Margem, F.M.; Braga, F.O.; Monteiro, S.N. Evaluation of the Diameter Influence on the Tensile Strength of Pineapple Leaf Fibers (PALF) by Weibull Method. Mater. Res. 2015, 18, 185–192. [Google Scholar] [CrossRef] [Green Version]
- World Wildlife. SUSTAINABLE AGRICULTURE COTTON. Available online: https://www.worldwildlife.org/industries/cotton (accessed on 28 February 2023).
- Fibre to Fashion. Natural Cotton Fibre Supplier. Available online: https://www.fibre2fashion.com/fibres/cotton-fibre-suppliers-20181615 (accessed on 28 February 2023).
- Bonnie Plants. GROWING CORN. Available online: https://bonnieplants.com/blogs/how-to-grow/growing-corn (accessed on 28 February 2023).
- Berliandika, S.; Yahya, I.; Ubaidillah. Acoustic performance of corn husk fiber (Zea mays L) waste composite as sound absorber with latex adhesive. AIP Conf. Proc. 2019, 2088, 050001. [Google Scholar]
- Plants Guru. Water Bamboo Plant-Equisetum Hyemale, Rough Horsetail. Available online: https://www.plantsguru.com/water-bamboo (accessed on 28 February 2023).
- Bamboo Technology Network Europe. Organic Bamboo Fiber Manufacturing. Available online: https://www.btn-europe.com/organic-bamboo-fiber-manufacturing.php (accessed on 28 February 2023).
- Gardening Solutions. Roselle. Available online: https://gardeningsolutions.ifas.ufl.edu/plants/edibles/vegetables/roselle.html (accessed on 28 February 2023).
- Tamta, M.; Kalita, B.B. Properties of Roselle and its Blends. Int. J. Curr. Microbiol. Appl. Sci. 2020, 9, 3616–3621. [Google Scholar] [CrossRef]
- Ginger Hillfarm. The Many Uses of the Coconut Tree. Available online: https://gingerhillfarm.com/the-many-uses-of-the-coconut-tree/ (accessed on 28 February 2023).
- Alibaba. COIR FIBER, COCONUT FIBER, COIR FIBER WITH CHEAP PRICE FROM VIETNAM. Available online: https://thai.alibaba.com/product-detail/COIR-FIBER-COCONUT-FIBER-COIR-FIBER-62005347723.html (accessed on 28 February 2023).
- Architectural Plants. AGAVE AMERICANA (CENTURY PLANT). Available online: https://www.architecturalplants.com/product/agave-americana/ (accessed on 28 February 2023).
- Jani, S.P.; Sajith, S.; Rajaganapathy, C.; Khan, M.A. Mechanical and thermal insulation properties of surface-modified Agave Americana/carbon fibre hybrid reinforced epoxy composites. Mater. Proc. 2021, 37, 1648–1653. [Google Scholar] [CrossRef]
- Stock Adobe. Sugarcane Field. Available online: https://stock.adobe.com/th/search?k=%22sugarcane+field%22&asset_id=489068318 (accessed on 28 February 2023).
- Petfood Industry. Sugarcane Fiber Pet Food Ingredient Made by Partnership. Available online: https://www.petfoodindustry.com/articles/6189-sugarcane-fiber-pet-food-ingredient-made-by-partnership (accessed on 28 February 2023).
- Promhuad, K.; Srisa, A.; San, H.; Laorenza, Y.; Wongphan, P.; Sodsai, J.; Tansin, K.; Phromphen, P.; Chartvivatpornchai, N.; Ngoenchai, P.; et al. Applications of Hemp Polymers and Extracts in Food, Textile and Packaging: A Review. Polymers 2022, 14, 4274. [Google Scholar] [CrossRef]
- Khan, B.A.; Warner, P.; Wang, H. Antibacterial Properties of Hemp and Other Natural Fibre Plants: A Review. BioResources 2014, 9, 3642–3659. [Google Scholar] [CrossRef]
- Cassano, R.; Trombino, S.; Ferrarelli, T.; Nicoletta, F.P.; Mauro, M.V.; Giraldi, C.; Picci, N. Hemp fiber (Cannabis sativa L.) derivatives with antibacterial and chelating properties. Cellulose 2013, 20, 547–557. [Google Scholar] [CrossRef]
- Appendino, G.; Gibbons, S.; Giana, A.; Pagani, A.; Grassi, G.; Stavri, M.; Smith, E.; Rahman, M.M. Antibacterial Cannabinoids from Cannabis sativa: A Structure−Activity Study. J. Nat. Prod. 2008, 71, 1427–1430. [Google Scholar] [CrossRef]
- Vaquero, M.J.R.; Alberto, M.R.; de Nadra, M.C.M. Antibacterial effect of phenolic compounds from different wines. Food Control 2007, 18, 93–101. [Google Scholar] [CrossRef]
- Khan, B.A.; Wang, J.; Warner, P.; Wang, H. Antibacterial properties of hemp hurd powder against E. coli. J. Appl. Polym. Sci. 2015, 132. [Google Scholar] [CrossRef]
- Teixeira, F.P.; Gomes, O.D.F.M.; de Andrade Silva, F. Degradation mechanisms of curaua, hemp, and sisal fibers exposed to elevated temperatures. BioResources 2019, 14, 1494–1511. [Google Scholar] [CrossRef]
- Jener, D.G.S.; Branco, A.; Silva, A.F.; Pinheiro, C.S.; Neto, A.G.; Uetanabaro, A.P.; Queiroz, S.R.; Osuna, J.T. Antimicrobial activity of Agave sisalana. Afr. J. Biotechnol. 2009, 8, 6181–6184. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, B.D.; Alviano, D.S.; Barreto, D.W.; Coelho, M.A.Z. Functional properties of saponins from sisal (Agave sisalana) and juá (Ziziphus joazeiro): Critical micellar concentration, antioxidant and antimicrobial activities. Colloids Surf. A Physicochem. Eng. Asp. 2013, 436, 736–743. [Google Scholar] [CrossRef]
- Pulikkalparambil, H.; Nandi, D.; Rangappa, S.M.; Prasanth, S.; Siengchin, S. Polymer composites from natural fibers and recycled waste surgical masks during COVID-19 pandemic. Polym. Compos. 2022, 43, 3944–3950. [Google Scholar] [CrossRef] [PubMed]
- Asyraf, M.R.M.; Rafidah, M.; Azrina, A.; Razman, M.R. Dynamic mechanical behaviour of kenaf cellulosic fibre biocomposites: A comprehensive review on chemical treatments. Cellulose 2021, 28, 2675–2695. [Google Scholar] [CrossRef]
- Giwa Ibrahim, S.A.; Karim, R.; Saari, N.; Wan Abdullah, W.Z.; Zawawi, N.; Ab Razak, A.F.; Hamim, N.A.; Umar, R.U.A. Kenaf (Hibiscus cannabinus L.) Seed and its Potential Food Applications: A Review. J. Food Sci. 2019, 84, 2015–2023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdul Khalil, H.P.S.; Bhat, I.U.H.; Jawaid, M.; Zaidon, A.; Hermawan, D.; Hadi, Y.S. Bamboo fibre reinforced biocomposites: A review. Mater. Des. 2012, 42, 353–368. [Google Scholar] [CrossRef]
- Rawi, N.F.M.; Jayaraman, K.; Bhattacharyya, D. A performance study on composites made from bamboo fabric and poly(lactic acid). J. Reinf. Plast. Compos. 2013, 32, 1513–1525. [Google Scholar] [CrossRef]
- Afrin, T.; Kanwar, R.K.; Wang, X.; Tsuzuki, T. Properties of bamboo fibres produced using an environmentally benign method. J. Text. Inst. 2014, 105, 1293–1299. [Google Scholar] [CrossRef]
- Bavasso, I.; Sergi, C.; Valente, T.; Tirillò, J.; Sarasini, F. Recycled Multi-Material Packaging Reinforced with Flax Fibres: Thermal and Mechanical Behaviour. Polymers 2022, 14, 4423. [Google Scholar] [CrossRef]
- Srinivasan, V.S.; Boopathy, S.R.; Sangeetha, D.; Ramnath, B.V. Evaluation of mechanical and thermal properties of banana–flax based natural fibre composite. Mater. Des. 2014, 60, 620–627. [Google Scholar] [CrossRef]
- Rana, R.S.; Rana, S.; Nigrawal, A. Preparation and mechanical properties evaluation of polyvinyl alcohol and banana fibres composite. Mater. Today Proc. 2020, 26, 3145–3147. [Google Scholar] [CrossRef]
- Rangappa, S.M.; Siengchin, S.; Parameswaranpillai, J.; Jawaid, M.; Ozbakkaloglu, T. Lignocellulosic fiber reinforced composites: Progress, performance, properties, applications, and future perspectives. Polym. Compos. 2021, 43, 645–691. [Google Scholar] [CrossRef]
- Dallyn, H.; Shorten, D. Hygiene aspects of packaging in the food industry. Int. Biodeterior. 1988, 24, 387–392. [Google Scholar] [CrossRef]
- Pickering, K.L. Properties Performance of Natural-Fibre Composites. In Properties and Performance of Natural-Fibre Composites; Pickering, K.L., Ed.; Woodhead Publishing: Cambridge, UK, 2008; pp. xi–xiv. [Google Scholar]
- Ramalingam, K.; Thiagamani, S.M.K.; Pulikkalparambil, H.; Muthukumar, C.; Krishnasamy, S.; Siengchin, S.; Alosaimi, A.M.; Hussein, M.A.; Rangappa, S.M. Novel Cellulosic Natural Fibers from Abelmoschus Ficulneus Weed: Extraction and Characterization for Potential Application in Polymer Composites. J. Polym. Environ. 2022, 1–12. [Google Scholar] [CrossRef]
- Rao, H.J.; Singh, S.; Pulikkalparambil, H.; Ramulu, P.J.; Rangappa, S.M.; Siengchin, S. Extraction of Cellulosic Filler from Artocarpus heterophyllus (Jackfruit) as a Reinforcement Material for Polymer Composites. J. Polym. Environ. 2022, 31, 479–487. [Google Scholar] [CrossRef]
- Ku, H.; Wang, H.; Pattarachaiyakoop, N.; Trada, M. A review on the tensile properties of natural fiber reinforced polymer composites. Compos. Part B Eng. 2011, 42, 856–873. [Google Scholar] [CrossRef] [Green Version]
- Yu, T.; Li, Y.; Ren, J. Preparation and properties of short natural fiber reinforced poly(lactic acid) composites. Trans. Nonferrous Met. Soc. China 2009, 19, s651–s655. [Google Scholar] [CrossRef]
- Kamarudin, S.H.; Abdullah, L.C.; Aung, M.M.; Ratnam, C.T.; Jusoh, E.R. A study of mechanical and morphological properties of PLA based biocomposites prepared with EJO vegetable oil based plasticiser and kenaf fibres. Mater. Res. Express 2018, 368, 085314. [Google Scholar] [CrossRef]
- San, H.; Laorenza, Y.; Behzadfar, E.; Sonchaeng, U.; Wadaugsorn, K.; Sodsai, J.; Kaewpetch, T.; Promhuad, K.; Srisa, A.; Wongphan, P.; et al. Functional Polymer and Packaging Technology for Bakery Products. Polymers 2022, 14, 3793. [Google Scholar] [CrossRef]
- Sonchaeng, U.; Promsorn, J.; Bumbudsanpharoke, N.; Chonhenchob, V.; Sablani, S.S.; Harnkarnsujarit, N. Polyesters Incorporating Gallic Acid as Oxygen Scavenger in Biodegradable Packaging. Polymers 2022, 14, 5296. [Google Scholar] [CrossRef]
- Kaewpetch, T.; Pratummang, A.; Suwarak, S.; Wongphan, P.; Promhuad, K.; Leelaphiwat, P.; Bumbudsanpharoke, N.; Lorenzo, J.M.; Harnkarnsujarit, N. Ylang-ylang (Cananga odorata) essential oils with flora odorants enhanced active function of biodegradable polyester films produced by extrusion. Food Biosci. 2023, 51, 102284. [Google Scholar] [CrossRef]
- Sanchez-Garcia, M.D.; Gimenez, E.; Lagaron, J.M. Morphology and barrier properties of solvent cast composites of thermoplastic biopolymers and purified cellulose fibers. Carbohydr. Polym. 2008, 71, 235–244. [Google Scholar] [CrossRef]
- Ludueña, L.; Vázquez, A.; Alvarez, V. Effect of lignocellulosic filler type and content on the behavior of polycaprolactone based eco-composites for packaging applications. Carbohydr. Polym. 2012, 87, 411–421. [Google Scholar] [CrossRef] [PubMed]
- Promhuad, K.; Bumbudsanpharoke, N.; Wadaugsorn, K.; Sonchaeng, U.; Harnkarnsujarit, N. Maltol-Incorporated Acetylated Cassava Starch Films for Shelf-Life-Extension Packaging of Bakery Products. Polymers 2022, 14, 5342. [Google Scholar] [CrossRef] [PubMed]
- Sirviö, J.A.; Kolehmainen, A.; Liimatainen, H.; Niinimäki, J.; Hormi, O.E. Biocomposite cellulose-alginate films: Promising packaging materials. Food Chem. 2014, 151, 343–351. [Google Scholar] [CrossRef]
- Thiagamani, S.M.K.; Pulikkalparambil, H.; Siengchin, S.; Ilyas, R.A.; Krishnasamy, S.; Muthukumar, C.; Radzi, A.M.; Rangappa, S.M. Mechanical, absorption, and swelling properties of jute/kenaf/banana reinforced epoxy hybrid composites: Influence of various stacking sequences. Polym. Compos. 2022, 43, 8297–8307. [Google Scholar] [CrossRef]
- Cetin, M.S.; Aydogdu, R.B.; Toprakci, O.; Karahan Toprakci, H.A. Sustainable, Tree-Free, PLA Coated, Biodegradable, Barrier Papers from Kendir (Turkish Hemp). J. Nat. Fibers 2022, 19, 13802–13814. [Google Scholar] [CrossRef]
- Das, S.; Rani, P.; Tripathy, P.P. Development and Characterization of Betel Nut Fiber Composite as a Food Packaging Material. J. Nat. Fibers 2020, 19, 747–760. [Google Scholar] [CrossRef]
- Sanchez-Garcia, M.D.; Lopez-Rubio, A.; Lagaron, J.M. Natural micro and nanobiocomposites with enhanced barrier properties and novel functionalities for food biopackaging applications. Trends Food Sci. Technol. 2010, 21, 528–536. [Google Scholar] [CrossRef]
- Phothisarattana, D.; Harnkarnsujarit, N. Migration, aggregations and thermal degradation behaviors of TiO2 and ZnO incorporated PBAT/TPS nanocomposite blown films. Food Packag. Shelf Life 2022, 33, 100901. [Google Scholar] [CrossRef]
- Promsorn, J.; Harnkarnsujarit, N. Pyrogallol loaded thermoplastic cassava starch based films as bio-based oxygen scavengers. Ind. Crops Prod. 2022, 186, 115226. [Google Scholar] [CrossRef]
- Promsorn, J.; Harnkarnsujarit, N. Oxygen absorbing food packaging made by extrusion compounding of thermoplastic cassava starch with gallic acid. Food Control 2022, 142, 109273. [Google Scholar] [CrossRef]
- Peterson, S.; Jayaraman, K.; Bhattacharyya, D. Forming performance and biodegradability of woodfibre–Biopol™ composites. Compos. Part A Appl. Sci. Manuf. 2002, 33, 1123–1134. [Google Scholar] [CrossRef]
- Gassan, J.; Bledzki, A.K. The influence of fiber-surface treatment on the mechanical properties of jute-polypropylene composites. Compos. Part A Appl. Sci. Manuf. 1997, 28, 1001–1005. [Google Scholar] [CrossRef]
- Kim, B.S.; Nguyen, M.H.; Hwang, B.S.; Lee, S. Effect of plasma treatment on the mechanical properties of natural fiber/polypropylene composites. In Natural Filler and Fibre Composites; WIT Press: Southampton, UK, 2015; pp. 27–35. [Google Scholar]
- Varghese, S.A.; Pulikkalparambil, H.; Rangappa, S.M.; Parameswaranpillai, J.; Siengchin, S. Antimicrobial active packaging based on PVA/Starch films incorporating basil leaf extracts. Mater. Today Proc. 2023, 72, 3056–3062. [Google Scholar] [CrossRef]
- Sun, D. Surface Modification of Natural Fibers Using Plasma Treatment. In Biodegradable Green Composites; Wiley: Hoboken, NJ, USA, 2016; pp. 18–39. [Google Scholar]
- Borah, J.; Dutta, N. Development and Properties Evaluation of Betel Nut Fibres Composite Material. Mater. Today Proc. 2018, 5, 2229–2233. [Google Scholar] [CrossRef]
- Senthilkumar, K.; Saba, N.; Chandrasekar, M.; Jawaid, M.; Rajini, N.; Siengchin, S.; Ayrilmis, N.; Mohammad, F.; Al-Lohedan, H.A. Compressive, dynamic and thermo-mechanical properties of cellulosic pineapple leaf fibre/polyester composites: Influence of alkali treatment on adhesion. Int. J. Adhes. Adhes. 2021, 106, 102823. [Google Scholar] [CrossRef]
- Ciannamea, E.M.; Stefani, P.M.; Ruseckaite, R.A. Medium-density particleboards from modified rice husks and soybean protein concentrate-based adhesives. Bioresour. Technol. 2010, 101, 818–825. [Google Scholar] [CrossRef]
- Salam, A.; Reddy, N.; Yang, Y. Bleaching of Kenaf and Cornhusk Fibers. Ind. Eng. Chem. Res. 2007, 46, 1452–1458. [Google Scholar] [CrossRef]
- Kalia, S.; Kaith, B.S.; Kaur, I. Pretreatments of natural fibers and their application as reinforcing material in polymer composites—A review. Polym. Eng. Sci. 2009, 49, 1253–1272. [Google Scholar] [CrossRef]
- Li, X.; Tabil, L.G.; Panigrahi, S. Chemical Treatments of Natural Fiber for Use in Natural Fiber-Reinforced Composites: A Review. J. Polym. Environ. 2007, 15, 25–33. [Google Scholar] [CrossRef]
- Agrawal, R.; Saxena, N.S.; Sharma, K.B.; Thomas, S.; Sreekala, M.S. Activation energy and crystallization kinetics of untreated and treated oil palm fibre reinforced phenol formaldehyde composites. Mater. Sci. Eng. A 2000, 277, 77–82. [Google Scholar] [CrossRef]
- Smith, M.K.M.; Paleri, D.M.; Abdelwahab, M.; Mielewski, D.F.; Misra, M.; Mohanty, A.K. Sustainable composites from poly(3-hydroxybutyrate) (PHB) bioplastic and agave natural fibre. Green Chem. 2020, 22, 3906–3916. [Google Scholar] [CrossRef]
- Mohanty, J.R.; Das, S.N.; Das, H.C.; Swain, S.K. Effect of chemically modified date palm leaf fiber on mechanical, thermal and rheological properties of polyvinylpyrrolidone. Fibers Polym. 2014, 15, 1062–1070. [Google Scholar] [CrossRef]
- Nazrin, A.; Sapuan, S.M.; Zuhri, M.Y.M.; Ilyas, R.A.; Syafiq, R.; Sherwani, S.F.K. Nanocellulose Reinforced Thermoplastic Starch (TPS), Polylactic Acid (PLA), and Polybutylene Succinate (PBS) for Food Packaging Applications. Front. Chem. 2020, 8, 213. [Google Scholar] [CrossRef] [PubMed]
- Cejudo-Bastante, C.; Arjona-Mudarra, P.; Fernández-Ponce, M.T.; Casas, L.; Mantell, C.; Martínez de la Ossa, E.J.; Pereyra, C. Application of a Natural Antioxidant from Grape Pomace Extract in the Development of Bioactive Jute Fibers for Food Packaging. Antioxidants 2021, 10, 216. [Google Scholar] [CrossRef]
- Jara-Palacios, M.J.; Gonçalves, S.; Heredia, F.J.; Hernanz, D.; Romano, A. Extraction of Antioxidants from Winemaking Byproducts: Effect of the Solvent on Phenolic Composition, Antioxidant and Anti-Cholinesterase Activities, and Electrochemical Behaviour. Antioxidants 2020, 9, 675. [Google Scholar] [CrossRef]
- Wang, R.; Xue, H.; Leng, J.; Zhang, J.; Yan, Z.; Liu, X.; Feng, H.; Xiao, L.; Zhu, W. Preparation and antibacterial properties of hemp cellulose-based material based on Schiff base between lysine grafted N-halamine and dialdehyde hemp. Ind. Crops Prod. 2022, 176, 114388. [Google Scholar] [CrossRef]
- Yuan, X.; Jayaraman, K.; Bhattacharyya, D. Effects of plasma treatment in enhancing the performance of woodfibre-polypropylene composites. Compos. Part A Appl. Sci. Manuf. 2004, 35, 1363–1374. [Google Scholar] [CrossRef]
- Parida, D.; Jassal, M.; Agarwal, A.K. Functionalization of Cotton by In-Situ Reaction of Styrene in Atmospheric Pressure Plasma Zone. Plasma Chem. Plasma Process. 2012, 32, 1259–1274. [Google Scholar] [CrossRef]
- Barani, H.; Calvimontes, A. Effects of Oxygen Plasma Treatment on the Physical and Chemical Properties of Wool Fiber Surface. Plasma Chem. Plasma Process. 2014, 34, 1291–1302. [Google Scholar] [CrossRef]
- Sinha, E.; Panigrahi, S. Effect of Plasma Treatment on Structure, Wettability of Jute Fiber and Flexural Strength of Its Composite. J. Compos. Mater. 2009, 43, 1791–1802. [Google Scholar] [CrossRef]
- Hari Prakash, N.; Sarma, B.; Gopi, S.; Sarma, A. Surface and moisture characteristics of jute using a DC glow discharge argon plasma. Instrum. Sci. Technol. 2015, 44, 73–84. [Google Scholar] [CrossRef]
- Bozaci, E.; Sever, K.; Sarikanat, M.; Seki, Y.; Demir, A.; Ozdogan, E.; Tavman, I. Effects of the atmospheric plasma treatments on surface and mechanical properties of flax fiber and adhesion between fiber–matrix for composite materials. Compos. Part B Eng. 2013, 45, 565–572. [Google Scholar] [CrossRef]
- Patino, A.; Canal, C.; Rodríguez, C.; Caballero, G.; Navarro, A.; Canal, J.M. Surface and bulk cotton fibre modifications: Plasma and cationization. Influence on dyeing with reactive dye. Cellulose 2011, 18, 1073–1083. [Google Scholar] [CrossRef]
- Valášek, P.; Müller, M.; Šleger, V. Influence of Plasma Treatment on Mechanical Properties of Cellulose-based Fibres and Their Interfacial Interaction in Composite Systems. BioResources 2017, 12, 5449–5461. [Google Scholar] [CrossRef]
- Gieparda, W.; Rojewski, S.; Różańska, W. Effectiveness of Silanization and Plasma Treatment in the Improvement of Selected Flax Fibers’ Properties. Materials 2021, 14, 3564. [Google Scholar] [CrossRef] [PubMed]
- Putra, A.E.E.; Renreng, I.; Arsyad, H.; Bakri, B. Investigating the effects of liquid-plasma treatment on tensile strength of coir fibers and interfacial fiber-matrix adhesion of composites. Compos. Part B Eng. 2020, 183, 107722. [Google Scholar] [CrossRef]
- Han, G.; Cheng, W.; Deng, J.; Dai, C.; Zhang, S.; Wu, Q. Effect of pressurized steam treatment on selected properties of wheat straws. Ind. Crops Prod. 2009, 30, 48–53. [Google Scholar] [CrossRef]
- Kamath, S.S.; Sampathkumar, D.; Bennehalli, B. A review on natural areca fibre reinforced polymer composite materials. Ciênc. Tecnol. Dos Mater. 2017, 29, 106–128. [Google Scholar] [CrossRef]
- Omrani, E.; Menezes, P.L.; Rohatgi, P.K. State of the art on tribological behavior of polymer matrix composites reinforced with natural fibers in the green materials world. Eng. Sci. Technol. Int. J. 2016, 19, 717–736. [Google Scholar] [CrossRef] [Green Version]
- Cheung, H.-Y.; Ho, M.P.; Lau, K.T.; Cardona, F.; Hui, D. Natural fibre-reinforced composites for bioengineering and environmental engineering applications. Compos. Part B Eng. 2009, 40, 655–663. [Google Scholar] [CrossRef]
- Nunna, S.; Chandra, P.R.; Shrivastava, S.; Jalan, A.K. A review on mechanical behavior of natural fiber based hybrid composites. J. Reinf. Plast. Compos. 2012, 31, 759–769. [Google Scholar] [CrossRef]
- Santulli, C. Impact properties of glass/plant fibre hybrid laminates. J. Mater. Sci. 2007, 42, 3699–3707. [Google Scholar] [CrossRef]
- Harish, S.; Michael, D.P.; Bensely, A.; Lal, D.M.; Rajadurai, A. Mechanical property evaluation of natural fiber coir composite. Mater. Charact. 2009, 60, 44–49. [Google Scholar] [CrossRef]
- Sánchez-Safont, E.L.; Aldureid, A.; Lagarón, J.M.; Gámez-Pérez, J.; Cabedo, L. Biocomposites of different lignocellulosic wastes for sustainable food packaging applications. Compos. Part B Eng. 2018, 145, 215–225. [Google Scholar] [CrossRef]
- Rawi, N.F.M.; Jayaraman, K.; Bhattacharyya, D. Bamboo fabric reinforced polypropylene and poly(lactic acid) for packaging applications: Impact, thermal, and physical properties. Polym. Compos. 2014, 35, 1888–1899. [Google Scholar] [CrossRef]
- Nabels-Sneiders, M.; Platnieks, O.; Grase, L.; Gaidukovs, S. Lamination of Cast Hemp Paper with Bio-Based Plastics for Sustainable Packaging: Structure-Thermomechanical Properties Relationship and Biodegradation Studies. J. Compos. Sci. 2022, 6, 246. [Google Scholar] [CrossRef]
- Ji, M.; Li, J.; Li, F.; Wang, X.; Man, J.; Li, J.; Zhang, C.; Peng, S. A biodegradable chitosan-based composite film reinforced by ramie fibre and lignin for food packaging. Carbohydr. Polym. 2022, 281, 119078. [Google Scholar] [CrossRef]
- Tawakkal, I.S.M.A.; Cran, M.J.; Bigger, S.W. Release of thymol from poly(lactic acid)-based antimicrobial films containing kenaf fibres as natural filler. LWT Food Sci. Technol. 2016, 66, 629–637. [Google Scholar] [CrossRef] [Green Version]
- Tawakkal, I.S.M.A.; Cran, M.J.; Bigger, S.W. Effect of Poly(Lactic Acid)/Kenaf Composites Incorporated with Thymol on the Antimicrobial Activity of Processed Meat. J. Food Process. Preserv. 2017, 41, e13145. [Google Scholar] [CrossRef]
- Naziruddin, M.A.; Jawaid, M.; Yusof, N.L.; Abdul-Mutalib, N.A.; Ahmad, M.F.; Sanny, M.; Alzahari, A. Assessment and detection of the potential contaminants from oil palm empty fruit bunch fiber-based biodegradable tray. Food Packag. Shelf Life 2021, 29, 100685. [Google Scholar] [CrossRef]
- Cadena Ch, E.M.; Jawaid, M.; Yusof, N.L.; Abdul-Mutalib, N.A.; Ahmad, M.F.; Sanny, M.; Alzahari, A. Natural Fibers from Plantain Pseudostem (Musa paradisiaca) for Use in Fiber-Reinforced Composites. J. Nat. Fibers 2017, 14, 678–690. [Google Scholar] [CrossRef]
- Sanyang, M.L.; Sapuan, S.M.; Jawaid, M.; Ishak, M.R.; Sahari, J. Effect of plasticizer type and concentration on physical properties of biodegradable films based on sugar palm (Arenga pinnata) starch for food packaging. J. Food Sci. Technol. 2015, 53, 326–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berthet, M.-A.; Angellier-Coussy, H.; Machado, D.; Hilliou, L.; Staebler, A.; Vicente, A.; Gontard, N. Exploring the potentialities of using lignocellulosic fibres derived from three food by-products as constituents of biocomposites for food packaging. Ind. Crops Prod. 2015, 69, 110–122. [Google Scholar] [CrossRef]
- Jayaramudu, J.; Reddy, G.S.M.; Varaprasad, K.; Sadiku, E.R.; Ray, S.S.; Rajulu, A.V. Structure and properties of poly (lactic acid)/Sterculia urens uniaxial fabric biocomposites. Carbohydr. Polym. 2013, 94, 822–828. [Google Scholar] [CrossRef] [PubMed]
- Rosa, M.F.; Chiou, B.S.; Medeiros, E.S.; Wood, D.F.; Mattoso, L.H.; Orts, W.J.; Imam, S.H. Biodegradable composites based on starch/EVOH/glycerol blends and coconut fibers. J. Appl. Polym. Sci. 2008, 111, 612–618. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pulikkalparambil, H.; Varghese, S.A.; Chonhenchob, V.; Nampitch, T.; Jarupan, L.; Harnkarnsujarit, N. Recent Advances in Natural Fibre-Based Materials for Food Packaging Applications. Polymers 2023, 15, 1393. https://doi.org/10.3390/polym15061393
Pulikkalparambil H, Varghese SA, Chonhenchob V, Nampitch T, Jarupan L, Harnkarnsujarit N. Recent Advances in Natural Fibre-Based Materials for Food Packaging Applications. Polymers. 2023; 15(6):1393. https://doi.org/10.3390/polym15061393
Chicago/Turabian StylePulikkalparambil, Harikrishnan, Sandhya Alice Varghese, Vanee Chonhenchob, Tarinee Nampitch, Lerpong Jarupan, and Nathdanai Harnkarnsujarit. 2023. "Recent Advances in Natural Fibre-Based Materials for Food Packaging Applications" Polymers 15, no. 6: 1393. https://doi.org/10.3390/polym15061393
APA StylePulikkalparambil, H., Varghese, S. A., Chonhenchob, V., Nampitch, T., Jarupan, L., & Harnkarnsujarit, N. (2023). Recent Advances in Natural Fibre-Based Materials for Food Packaging Applications. Polymers, 15(6), 1393. https://doi.org/10.3390/polym15061393